//----------------------------------------------------------------------------- // Copyright (C) Jonathan Westhues, Sept 2005 // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // See LICENSE.txt for the text of the license. //----------------------------------------------------------------------------- // Timers, Clocks functions used in LF or Legic where you would need detailed time. //----------------------------------------------------------------------------- #include "ticks.h" #include "proxmark3_arm.h" #ifndef AS_BOOTROM #include "dbprint.h" #endif #ifndef AS_BOOTROM // timer counts in 666ns increments (32/48MHz), rounding applies // WARNING: timer can't measure more than 43ms (666ns * 0xFFFF) void SpinDelayUsPrecision(int us) { int ticks = ((MCK / 1000000) * us + 16) >> 5; // Borrow a PWM unit for my real-time clock AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0); // 48 MHz / 32 gives 1.5 Mhz AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(5); // Channel Mode Register AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0; // Channel Duty Cycle Register AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xFFFF; // Channel Period Register uint16_t end = AT91C_BASE_PWMC_CH0->PWMC_CCNTR + ticks; if (end == 0) // AT91C_BASE_PWMC_CH0->PWMC_CCNTR is never == 0 end++; // so we have to end++ to avoid inivity loop for (;;) { uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; if (now == end) return; WDT_HIT(); } } // timer counts in 21.3us increments (1024/48MHz), rounding applies // WARNING: timer can't measure more than 1.39s (21.3us * 0xffff) void SpinDelayUs(int us) { int ticks = ((MCK / 1000000) * us + 512) >> 10; // Borrow a PWM unit for my real-time clock AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0); // 48 MHz / 1024 gives 46.875 kHz AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10); // Channel Mode Register AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0; // Channel Duty Cycle Register AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff; // Channel Period Register uint16_t end = AT91C_BASE_PWMC_CH0->PWMC_CCNTR + ticks; if (end == 0) // AT91C_BASE_PWMC_CH0->PWMC_CCNTR is never == 0 end++; // so we have to end++ to avoid inivity loop for (;;) { uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; if (now == end) return; WDT_HIT(); } } // WARNING: timer can't measure more than 1.39s (21.3us * 0xffff) void SpinDelay(int ms) { if (ms > 1390) { if (g_dbglevel >= DBG_ERROR) Dbprintf(_RED_("Error, SpinDelay called with %i > 1390"), ms); ms = 1390; } // convert to us and call microsecond delay function SpinDelayUs(ms * 1000); } // ------------------------------------------------------------------------- // timer lib // ------------------------------------------------------------------------- // test procedure: // // ti = GetTickCount(); // SpinDelay(1000); // ti = GetTickCount() - ti; // Dbprintf("timer(1s): %d t=%d", ti, GetTickCount()); void StartTickCount(void) { // This timer is based on the slow clock. The slow clock frequency is between 22kHz and 40kHz. // We can determine the actual slow clock frequency by looking at the Main Clock Frequency Register. while ((AT91C_BASE_PMC->PMC_MCFR & AT91C_CKGR_MAINRDY) == 0); // Wait for MAINF value to become available... uint16_t mainf = AT91C_BASE_PMC->PMC_MCFR & AT91C_CKGR_MAINF; // Get # main clocks within 16 slow clocks // set RealTimeCounter divider to count at 1kHz, should be 32 if RC is exactly at 32kHz: AT91C_BASE_RTTC->RTTC_RTMR = AT91C_RTTC_RTTRST | ((((MAINCK / 1000 * 16) + (mainf / 2)) / mainf) & AT91C_RTTC_RTPRES); // note: worst case precision is approx 2.5% } /* * Get the current count. */ uint32_t RAMFUNC GetTickCount(void) { return AT91C_BASE_RTTC->RTTC_RTVR; } uint32_t RAMFUNC GetTickCountDelta(uint32_t start_ticks) { uint32_t stop_ticks = AT91C_BASE_RTTC->RTTC_RTVR; if (stop_ticks >= start_ticks) return stop_ticks - start_ticks; return (UINT32_MAX - start_ticks) + stop_ticks; } // ------------------------------------------------------------------------- // Timer for iso14443 commands. Uses ssp_clk from FPGA // ------------------------------------------------------------------------- void StartCountSspClk(void) { AT91C_BASE_PMC->PMC_PCER |= (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1) | (1 << AT91C_ID_TC2); // Enable Clock to all timers AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_TIOA1 // XC0 Clock = TIOA1 | AT91C_TCB_TC1XC1S_NONE // XC1 Clock = none | AT91C_TCB_TC2XC2S_TIOA0; // XC2 Clock = TIOA0 // configure TC1 to create a short pulse on TIOA1 when a rising edge on TIOB1 (= ssp_clk from FPGA) occurs: AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // disable TC1 AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK // TC1 Clock = MCK(48MHz)/2 = 24MHz | AT91C_TC_CPCSTOP // Stop clock on RC compare | AT91C_TC_EEVTEDG_RISING // Trigger on rising edge of Event | AT91C_TC_EEVT_TIOB // Event-Source: TIOB1 (= ssp_clk from FPGA = 13,56MHz/16) | AT91C_TC_ENETRG // Enable external trigger event | AT91C_TC_WAVESEL_UP // Upmode without automatic trigger on RC compare | AT91C_TC_WAVE // Waveform Mode | AT91C_TC_AEEVT_SET // Set TIOA1 on external event | AT91C_TC_ACPC_CLEAR; // Clear TIOA1 on RC Compare AT91C_BASE_TC1->TC_RC = 0x01; // RC Compare value = 0x01, pulse width to TC0 // use TC0 to count TIOA1 pulses AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // disable TC0 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_XC0 // TC0 clock = XC0 clock = TIOA1 | AT91C_TC_WAVE // Waveform Mode | AT91C_TC_WAVESEL_UP // just count | AT91C_TC_ACPA_CLEAR // Clear TIOA0 on RA Compare | AT91C_TC_ACPC_SET; // Set TIOA0 on RC Compare AT91C_BASE_TC0->TC_RA = 1; // RA Compare value = 1; pulse width to TC2 AT91C_BASE_TC0->TC_RC = 0; // RC Compare value = 0; increment TC2 on overflow // use TC2 to count TIOA0 pulses (giving us a 32bit counter (TC0/TC2) clocked by ssp_clk) AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKDIS; // disable TC2 AT91C_BASE_TC2->TC_CMR = AT91C_TC_CLKS_XC2 // TC2 clock = XC2 clock = TIOA0 | AT91C_TC_WAVE // Waveform Mode | AT91C_TC_WAVESEL_UP; // just count AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // enable and reset TC0 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // enable and reset TC1 AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // enable and reset TC2 // // synchronize the counter with the ssp_frame signal. // Note: FPGA must be in a FPGA mode with SSC transfer, otherwise SSC_FRAME and SSC_CLK signals would not be present // while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME); // wait for ssp_frame to be low while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME)); // wait for ssp_frame to go high (start of frame) while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 1st ssp_clk after start of frame while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low; while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 2nd ssp_clk after start of frame if ((AT91C_BASE_SSC->SSC_RFMR & SSC_FRAME_MODE_BITS_IN_WORD(32)) == SSC_FRAME_MODE_BITS_IN_WORD(16)) { // 16bit frame while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low; while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 3rd ssp_clk after start of frame while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low; while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 4th ssp_clk after start of frame while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low; while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 5th ssp_clk after start of frame while (AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK); // wait for ssp_clk to go low; while (!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high; 6th ssp_clk after start of frame } // note: up to now two ssp_clk rising edges have passed since the rising edge of ssp_frame // it is now safe to assert a sync signal. This sets all timers to 0 on next active clock edge AT91C_BASE_TCB->TCB_BCR = 1; // assert Sync (set all timers to 0 on next active clock edge) // at the next (3rd) ssp_clk rising edge, TC1 will be reset (and not generate a clock signal to TC0) // at the next (4th) ssp_clk rising edge, TC0 (the low word of our counter) will be reset. From now on, // whenever the last three bits of our counter go 0, we can be sure to be in the middle of a frame transfer. // (just started with the transfer of the 4th Bit). // The high word of the counter (TC2) will not reset until the low word (TC0) overflows. // Therefore need to wait quite some time before we can use the counter. while (AT91C_BASE_TC2->TC_CV > 0); } void ResetSspClk(void) { //enable clock of timer and software trigger AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; while (AT91C_BASE_TC2->TC_CV > 0); } uint32_t RAMFUNC GetCountSspClk(void) { uint32_t tmp_count = (AT91C_BASE_TC2->TC_CV << 16) | AT91C_BASE_TC0->TC_CV; // small chance that we may have missed an increment in TC2 if ((tmp_count & 0x0000ffff) == 0) { return (AT91C_BASE_TC2->TC_CV << 16); } return tmp_count; } uint32_t RAMFUNC GetCountSspClkDelta(uint32_t start) { uint32_t stop = GetCountSspClk(); if (stop >= start) { return stop - start; } return (UINT32_MAX - start) + stop; } void WaitMS(uint32_t ms) { WaitTicks((ms & 0x1FFFFF) * 1500); } #endif // #ifndef AS_BOOTROM // ------------------------------------------------------------------------- // microseconds timer // ------------------------------------------------------------------------- void StartCountUS(void) { AT91C_BASE_PMC->PMC_PCER |= (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1); AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE; // fast clock // tick=1.5mks AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz) / 32 AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR | AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET; AT91C_BASE_TC0->TC_RA = 1; AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // timer disable AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_XC1; // from timer 0 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // Assert a sync signal. This sets all timers to 0 on next active clock edge AT91C_BASE_TCB->TCB_BCR = 1; while (AT91C_BASE_TC1->TC_CV > 0); } uint32_t RAMFUNC GetCountUS(void) { //return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV / 15) * 10); // By suggestion from PwPiwi, http://www.proxmark.org/forum/viewtopic.php?pid=17548#p17548 return ((uint32_t)AT91C_BASE_TC1->TC_CV) * 0x8000 + (((uint32_t)AT91C_BASE_TC0->TC_CV) * 2) / 3; } // ------------------------------------------------------------------------- // Timer for bitbanging, or LF stuff when you need a very precis timer // 1us = 1.5ticks // ------------------------------------------------------------------------- void StartTicks(void) { // initialization of the timer AT91C_BASE_PMC->PMC_PCER |= (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1); AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE; // disable TC0 and TC1 for re-configuration AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // first configure TC1 (higher, 0xFFFF0000) 16 bit counter AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_XC1; // just connect to TIOA0 from TC0 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // re-enable timer and wait for TC0 // second configure TC0 (lower, 0x0000FFFF) 16 bit counter AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz) / 32 AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR | // RA comperator clears TIOA (carry bit) AT91C_TC_ACPC_SET | // RC comperator sets TIOA (carry bit) AT91C_TC_ASWTRG_SET; // SWTriger sets TIOA (carry bit) AT91C_BASE_TC0->TC_RC = 0; // set TIOA (carry bit) on overflow, return to zero AT91C_BASE_TC0->TC_RA = 1; // clear carry bit on next clock cycle AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN | AT91C_TC_SWTRG; // reset and re-enable timer // synchronized startup procedure while (AT91C_BASE_TC0->TC_CV > 0); // wait until TC0 returned to zero while (AT91C_BASE_TC0->TC_CV < 2); // and has started (TC_CV > TC_RA, now TC1 is cleared) // return to zero AT91C_BASE_TC1->TC_CCR = AT91C_TC_SWTRG; AT91C_BASE_TC0->TC_CCR = AT91C_TC_SWTRG; while (AT91C_BASE_TC0->TC_CV > 0); } uint32_t GetTicks(void) { uint32_t hi, lo; do { hi = AT91C_BASE_TC1->TC_CV; lo = AT91C_BASE_TC0->TC_CV; } while (hi != AT91C_BASE_TC1->TC_CV); return (hi << 16) | lo; } // Wait - Spindelay in ticks. // if called with a high number, this will trigger the WDT... void WaitTicks(uint32_t ticks) { if (ticks == 0) return; ticks += GetTicks(); while (GetTicks() < ticks); } // Wait / Spindelay in us (microseconds) // 1us = 1.5ticks. void WaitUS(uint32_t us) { WaitTicks((us & 0x3FFFFFFF) * 3 / 2); } // stop clock void StopTicks(void) { AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; }