//----------------------------------------------------------------------------- // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // See LICENSE.txt for the text of the license. //----------------------------------------------------------------------------- // Generator commands //----------------------------------------------------------------------------- #include "generator.h" #include #include #include #include #include #include #include "commonutil.h" //BSWAP_16 #include "common.h" //BSWAP_32/64 #include "util.h" #include "pm3_cmd.h" #include "crc16.h" // crc16 ccitt #include "mbedtls/sha1.h" #include "mbedtls/md5.h" #include "mbedtls/cmac.h" #include "mbedtls/cipher.h" #include "mbedtls/md.h" #ifndef ON_DEVICE #include "ui.h" # define prnt(args...) PrintAndLogEx(DEBUG, ## args ); #else # include "dbprint.h" # define prnt Dbprintf #endif // Implementation tips: // For each implementation of the algos, I recommend adding a self test for easy "simple unit" tests when Travis CI / Appveyor runs. // See special note for MFC based algos. //------------------------------------ // MFU/NTAG PWD/PACK generation stuff // Italian transport system // Amiibo // Lego Dimension // XYZ 3D printing // Vinglock //------------------------------------ static void transform_D(uint8_t *ru) { const uint32_t c_D[] = { 0x6D835AFC, 0x7D15CD97, 0x0942B409, 0x32F9C923, 0xA811FB02, 0x64F121E8, 0xD1CC8B4E, 0xE8873E6F, 0x61399BBB, 0xF1B91926, 0xAC661520, 0xA21A31C9, 0xD424808D, 0xFE118E07, 0xD18E728D, 0xABAC9E17, 0x18066433, 0x00E18E79, 0x65A77305, 0x5AE9E297, 0x11FC628C, 0x7BB3431F, 0x942A8308, 0xB2F8FD20, 0x5728B869, 0x30726D5A }; //Transform uint8_t i; uint8_t p = 0; uint32_t v1 = ((ru[3] << 24) | (ru[2] << 16) | (ru[1] << 8) | ru[0]) + c_D[p++]; uint32_t v2 = ((ru[7] << 24) | (ru[6] << 16) | (ru[5] << 8) | ru[4]) + c_D[p++]; for (i = 0; i < 12; i += 2) { uint32_t tempA = v1 ^ v2; uint32_t t1 = PM3_ROTL(tempA, v2 & 0x1F) + c_D[p++]; uint32_t tempB = v2 ^ t1; uint32_t t2 = PM3_ROTL(tempB, t1 & 0x1F) + c_D[p++]; tempA = t1 ^ t2; v1 = PM3_ROTL(tempA, t2 & 0x1F) + c_D[p++]; tempB = t2 ^ v1; v2 = PM3_ROTL(tempB, v1 & 0x1F) + c_D[p++]; } //Re-use ru ru[0] = v1 & 0xFF; ru[1] = (v1 >> 8) & 0xFF; ru[2] = (v1 >> 16) & 0xFF; ru[3] = (v1 >> 24) & 0xFF; ru[4] = v2 & 0xFF; ru[5] = (v2 >> 8) & 0xFF; ru[6] = (v2 >> 16) & 0xFF; ru[7] = (v2 >> 24) & 0xFF; } // Transport system (IT) pwd generation algo nickname A. uint32_t ul_ev1_pwdgenA(const uint8_t *uid) { uint8_t pos = (uid[3] ^ uid[4] ^ uid[5] ^ uid[6]) % 32; uint32_t xortable[] = { 0x4f2711c1, 0x07D7BB83, 0x9636EF07, 0xB5F4460E, 0xF271141C, 0x7D7BB038, 0x636EF871, 0x5F4468E3, 0x271149C7, 0xD7BB0B8F, 0x36EF8F1E, 0xF446863D, 0x7114947A, 0x7BB0B0F5, 0x6EF8F9EB, 0x44686BD7, 0x11494fAF, 0xBB0B075F, 0xEF8F96BE, 0x4686B57C, 0x1494F2F9, 0xB0B07DF3, 0xF8F963E6, 0x686B5FCC, 0x494F2799, 0x0B07D733, 0x8F963667, 0x86B5F4CE, 0x94F2719C, 0xB07D7B38, 0xF9636E70, 0x6B5F44E0 }; uint8_t entry[] = {0x00, 0x00, 0x00, 0x00}; uint8_t pwd[] = {0x00, 0x00, 0x00, 0x00}; num_to_bytes(xortable[pos], 4, entry); pwd[0] = entry[0] ^ uid[1] ^ uid[2] ^ uid[3]; pwd[1] = entry[1] ^ uid[0] ^ uid[2] ^ uid[4]; pwd[2] = entry[2] ^ uid[0] ^ uid[1] ^ uid[5]; pwd[3] = entry[3] ^ uid[6]; return (uint32_t)bytes_to_num(pwd, 4); } // Amiibo pwd generation algo nickname B. (very simple) uint32_t ul_ev1_pwdgenB(const uint8_t *uid) { uint8_t pwd[] = {0x00, 0x00, 0x00, 0x00}; pwd[0] = uid[1] ^ uid[3] ^ 0xAA; pwd[1] = uid[2] ^ uid[4] ^ 0x55; pwd[2] = uid[3] ^ uid[5] ^ 0xAA; pwd[3] = uid[4] ^ uid[6] ^ 0x55; return (uint32_t)bytes_to_num(pwd, 4); } // Lego Dimension pwd generation algo nickname C. uint32_t ul_ev1_pwdgenC(const uint8_t *uid) { uint32_t pwd = 0; uint32_t base[] = { 0xffffffff, 0x28ffffff, 0x43202963, 0x7279706f, 0x74686769, 0x47454c20, 0x3032204f, 0xaaaa3431 }; memcpy(base, uid, 7); for (int i = 0; i < 8; i++) { pwd = base[i] + ROTR(pwd, 25) + ROTR(pwd, 10) - pwd; } return BSWAP_32(pwd); } // XYZ 3d printing pwd generation algo nickname D. uint32_t ul_ev1_pwdgenD(const uint8_t *uid) { uint8_t i; // rotation offset uint8_t r = (uid[1] + uid[3] + uid[5]) & 7; // rotated UID uint8_t ru[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; for (i = 0; i < 7; i++) ru[(i + r) & 7] = uid[i]; transform_D(ru); // offset r = (ru[0] + ru[2] + ru[4] + ru[6]) & 3; // calc key uint32_t pwd = 0; for (i = 0; i < 4; i++) pwd = ru[i + r] + (pwd << 8); return BSWAP_32(pwd); } // AIR purifier Xiaomi uint32_t ul_ev1_pwdgenE(const uint8_t *uid) { uint8_t hash[20]; mbedtls_sha1(uid, 7, hash); uint32_t pwd = 0; pwd |= (hash[ hash[0] % 20 ]) << 24 ; pwd |= (hash[(hash[0] + 5) % 20 ]) << 16; pwd |= (hash[(hash[0] + 13) % 20 ]) << 8; pwd |= (hash[(hash[0] + 17) % 20 ]); return pwd; } // NDEF tools format password generator uint32_t ul_ev1_pwdgenF(const uint8_t *uid) { uint8_t hash[16]; mbedtls_md5(uid, 7, hash); uint32_t pwd = 0; pwd |= hash[0] << 24; pwd |= hash[1] << 16; pwd |= hash[2] << 8; pwd |= hash[3]; return pwd; } // Solution from @atc1441 // https://gist.github.com/atc1441/41af75048e4c22af1f5f0d4c1d94bb56 // Philips Sonicare toothbrush NFC head uint32_t ul_ev1_pwdgenG(const uint8_t *uid, const uint8_t *mfg) { init_table(CRC_PHILIPS); // UID uint32_t crc1 = crc16_philips(uid, 7); // MFG string uint32_t crc2 = crc16_fast(mfg, 10, crc1, false, false); return (BSWAP_16(crc2) << 16 | BSWAP_16(crc1)); } // pack generation for algo 1-3 uint16_t ul_ev1_packgenA(const uint8_t *uid) { uint16_t pack = (uid[0] ^ uid[1] ^ uid[2]) << 8 | (uid[2] ^ 8); return pack; } uint16_t ul_ev1_packgenB(const uint8_t *uid) { return 0x8080; } uint16_t ul_ev1_packgenC(const uint8_t *uid) { return 0xaa55; } uint16_t ul_ev1_packgenD(const uint8_t *uid) { uint8_t i; //Rotate uint8_t r = (uid[2] + uid[5]) & 7; //Rotation offset uint8_t ru[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; //Rotated UID for (i = 0; i < 7; i++) ru[(i + r) & 7] = uid[i]; transform_D(ru); //Calc pack uint32_t p = 0; for (i = 0; i < 8; i++) p += ru[i] * 13; p ^= 0x5555; return BSWAP_16(p & 0xFFFF); } uint16_t ul_ev1_packgenE(const uint8_t *uid) { uint32_t pwd = ul_ev1_pwdgenE(uid); return (0xAD << 8 | ((pwd >> 24) & 0xFF)); } uint16_t ul_ev1_packgenG(const uint8_t *uid, const uint8_t *mfg) { init_table(CRC_PHILIPS); // UID uint32_t crc1 = crc16_philips(uid, 7); // MFG string uint32_t crc2 = crc16_fast(mfg, 10, crc1, false, false); // PWD uint32_t pwd = (BSWAP_16(crc2) << 16 | BSWAP_16(crc1)); uint8_t pb[4]; num_to_bytes(pwd, 4, pb); return BSWAP_16(crc16_fast(pb, 4, crc2, false, false)); } // default shims uint32_t ul_ev1_pwdgen_def(const uint8_t *uid) { return 0xFFFFFFFF; } uint16_t ul_ev1_packgen_def(const uint8_t *uid) { return 0x0000; } // MIFARE ULTRALIGHT OTP generators uint32_t ul_c_otpgenA(const uint8_t *uid) { return 0x534C544F; } //------------------------------------ // MFC key generation stuff // Each algo implementation should offer two key generation functions. // 1. function that returns all keys // 2. function that returns one key, target sector | block //------------------------------------ //------------------------------------ // MFC keyfile generation stuff //------------------------------------ // Vinglock int mfc_algo_ving_one(uint8_t *uid, uint8_t sector, uint8_t keytype, uint64_t *key) { if (sector > 15) return PM3_EINVARG; if (key == NULL) return PM3_EINVARG; *key = 0; return PM3_SUCCESS; } int mfc_algo_ving_all(uint8_t *uid, uint8_t *keys) { if (keys == NULL) return PM3_EINVARG; for (int keytype = 0; keytype < 2; keytype++) { for (int sector = 0; sector < 16; sector++) { uint64_t key = 0; mfc_algo_ving_one(uid, sector, keytype, &key); num_to_bytes(key, 6, keys + (keytype * 16 * 6) + (sector * 6)); } } return PM3_SUCCESS; } // Yale Doorman int mfc_algo_yale_one(uint8_t *uid, uint8_t sector, uint8_t keytype, uint64_t *key) { if (sector > 15) return PM3_EINVARG; if (key == NULL) return PM3_EINVARG; if (keytype > 2) return PM3_EINVARG; *key = 0; return PM3_SUCCESS; } int mfc_algo_yale_all(uint8_t *uid, uint8_t *keys) { if (keys == NULL) return PM3_EINVARG; for (int keytype = 0; keytype < 2; keytype++) { for (int sector = 0; sector < 16; sector++) { uint64_t key = 0; mfc_algo_yale_one(uid, sector, keytype, &key); num_to_bytes(key, 6, keys + (keytype * 16 * 6) + (sector * 6)); } } return PM3_SUCCESS; } // Saflok / Maid UID to key. int mfc_algo_saflok_one(uint8_t *uid, uint8_t sector, uint8_t keytype, uint64_t *key) { if (sector > 15) return PM3_EINVARG; if (key == NULL) return PM3_EINVARG; if (keytype > 2) return PM3_EINVARG; *key = 0; return PM3_SUCCESS; } int mfc_algo_saflok_all(uint8_t *uid, uint8_t *keys) { if (keys == NULL) return PM3_EINVARG; for (int keytype = 0; keytype < 2; keytype++) { for (int sector = 0; sector < 16; sector++) { uint64_t key = 0; mfc_algo_saflok_one(uid, sector, keytype, &key); num_to_bytes(key, 6, keys + (keytype * 16 * 6) + (sector * 6)); } } return PM3_SUCCESS; } // MIZIP algo int mfc_algo_mizip_one(const uint8_t *uid, uint8_t sector, uint8_t keytype, uint64_t *key) { if (sector > 4) return PM3_EINVARG; if (key == NULL) return PM3_EINVARG; if (keytype > 2) return PM3_EINVARG; if (sector == 0) { // A if (keytype == 0) *key = 0xA0A1A2A3A4A5U; else // B *key = 0xB4C132439eef; } else { uint8_t xor[6]; if (keytype == 0) { uint64_t xor_tbl_a[] = { 0x09125a2589e5, 0xAB75C937922F, 0xE27241AF2C09, 0x317AB72F4490, }; num_to_bytes(xor_tbl_a[sector - 1], 6, xor); *key = (uint64_t)(uid[0] ^ xor[0]) << 40 | (uint64_t)(uid[1] ^ xor[1]) << 32 | (uint64_t)(uid[2] ^ xor[2]) << 24 | (uint64_t)(uid[3] ^ xor[3]) << 16 | (uint64_t)(uid[0] ^ xor[4]) << 8 | (uint64_t)(uid[1] ^ xor[5]) ; } else { uint64_t xor_tbl_b[] = { 0xF12C8453D821, 0x73E799FE3241, 0xAA4D137656AE, 0xB01327272DFD }; // B num_to_bytes(xor_tbl_b[sector - 1], 6, xor); *key = (uint64_t)(uid[2] ^ xor[0]) << 40 | (uint64_t)(uid[3] ^ xor[1]) << 32 | (uint64_t)(uid[0] ^ xor[2]) << 24 | (uint64_t)(uid[1] ^ xor[3]) << 16 | (uint64_t)(uid[2] ^ xor[4]) << 8 | (uint64_t)(uid[3] ^ xor[5]) ; } } return PM3_SUCCESS; } // returns all Mifare Mini (MFM) 10 keys. // keys must have 5*2*6 = 60bytes space int mfc_algo_mizip_all(uint8_t *uid, uint8_t *keys) { if (keys == NULL) return PM3_EINVARG; for (int keytype = 0; keytype < 2; keytype++) { for (int sector = 0; sector < 5; sector++) { uint64_t key = 0; mfc_algo_mizip_one(uid, sector, keytype, &key); num_to_bytes(key, 6, keys + (keytype * 5 * 6) + (sector * 6)); } } return PM3_SUCCESS; } // Disney Infinity algo int mfc_algo_di_one(uint8_t *uid, uint8_t sector, uint8_t keytype, uint64_t *key) { if (sector > 4) return PM3_EINVARG; if (key == NULL) return PM3_EINVARG; uint8_t hash[64]; uint8_t input[] = { 0x0A, 0x14, 0xFD, 0x05, 0x07, 0xFF, 0x4B, 0xCD, 0x02, 0x6B, 0xA8, 0x3F, 0x0A, 0x3B, 0x89, 0xA9, uid[0], uid[1], uid[2], uid[3], uid[4], uid[5], uid[6], 0x28, 0x63, 0x29, 0x20, 0x44, 0x69, 0x73, 0x6E, 0x65, 0x79, 0x20, 0x32, 0x30, 0x31, 0x33 }; mbedtls_sha1(input, sizeof(input), hash); *key = ( (uint64_t)hash[3] << 40 | (uint64_t)hash[2] << 32 | (uint64_t)hash[1] << 24 | (uint64_t)hash[0] << 16 | (uint64_t)hash[7] << 8 | hash[6] ); return PM3_SUCCESS; } int mfc_algo_di_all(uint8_t *uid, uint8_t *keys) { if (keys == NULL) return PM3_EINVARG; for (int keytype = 0; keytype < 2; keytype++) { for (int sector = 0; sector < 5; sector++) { uint64_t key = 0; mfc_algo_di_one(uid, sector, keytype, &key); num_to_bytes(key, 6, keys + (keytype * 5 * 6) + (sector * 6)); } } return PM3_SUCCESS; } // Skylanders static uint64_t sky_crc64_like(uint64_t result, uint8_t sector) { #define SKY_POLY UINT64_C(0x42f0e1eba9ea3693) #define SKY_TOP UINT64_C(0x800000000000) result ^= (uint64_t)sector << 40; for (int i = 0; i < 8; i++) { result = (result & SKY_TOP) ? (result << 1) ^ SKY_POLY : result << 1; } return result; } int mfc_algo_sky_one(uint8_t *uid, uint8_t sector, uint8_t keytype, uint64_t *key) { #define SKY_KEY_MASK 0xFFFFFFFFFFFF if (sector > 15) return PM3_EINVARG; if (key == NULL) return PM3_EINVARG; if (sector == 0 && keytype == 0) { *key = 0x4B0B20107CCB; return PM3_SUCCESS; } if (keytype == 1) { *key = 0x000000000000; return PM3_SUCCESS; } // hash UID uint64_t hash = 0x9AE903260CC4; for (int i = 0; i < 4; i++) { hash = sky_crc64_like(hash, uid[i]); } uint64_t sectorhash = sky_crc64_like(hash, sector); *key = BSWAP_64(sectorhash & SKY_KEY_MASK) >> 16; return PM3_SUCCESS; } int mfc_algo_sky_all(uint8_t *uid, uint8_t *keys) { if (keys == NULL) return PM3_EINVARG; for (int keytype = 0; keytype < 2; keytype++) { for (int sector = 0; sector < 16; sector++) { uint64_t key = 0; mfc_algo_sky_one(uid, sector, keytype, &key); num_to_bytes(key, 6, keys + (keytype * 16 * 6) + (sector * 6)); } } return PM3_SUCCESS; } // LF T55x7 White gun cloner algo uint32_t lf_t55xx_white_pwdgen(uint32_t id) { uint32_t r1 = rotl(id & 0x000000ec, 8); uint32_t r2 = rotl(id & 0x86000000, 16); uint32_t pwd = 0x10303; pwd += ((id & 0x86ee00ec) ^ r1 ^ r2); return pwd; } // Gallagher Desfire Key Diversification Input for Cardax Card Data Application int mfdes_kdf_input_gallagher(uint8_t *uid, uint8_t uidLen, uint8_t keyNo, uint32_t aid, uint8_t *kdfInputOut, uint8_t *kdfInputLen) { if (uid == NULL || (uidLen != 4 && uidLen != 7) || keyNo > 2 || kdfInputOut == NULL || kdfInputLen == NULL) { prnt("Invalid arguments"); return PM3_EINVARG; } int len = 0; // If the keyNo == 1 or the aid is 000000, then omit the UID. // On the other hand, if the aid is 1f81f4 (config card) always include the UID. if ((keyNo != 1 && aid != 0x000000) || (aid == 0x1f81f4)) { if (*kdfInputLen < (4 + uidLen)) { return PM3_EINVARG; } memcpy(kdfInputOut, uid, uidLen); len += uidLen; } else if (*kdfInputLen < 4) { return PM3_EINVARG; } kdfInputOut[len++] = keyNo; kdfInputOut[len++] = aid & 0xff; kdfInputOut[len++] = (aid >> 8) & 0xff; kdfInputOut[len++] = (aid >> 16) & 0xff; *kdfInputLen = len; return PM3_SUCCESS; } int mfc_generate4b_nuid(uint8_t *uid, uint8_t *nuid) { uint16_t crc; uint8_t b1, b2; compute_crc(CRC_14443_A, uid, 3, &b1, &b2); nuid[0] = (b2 & 0xE0) | 0xF; nuid[1] = b1; crc = b1; crc |= b2 << 8; crc = crc16_fast(&uid[3], 4, reflect16(crc), true, true); nuid[2] = (crc >> 8) & 0xFF ; nuid[3] = crc & 0xFF; return PM3_SUCCESS; } int mfc_algo_touch_one(uint8_t *uid, uint8_t sector, uint8_t keytype, uint64_t *key) { if (uid == NULL) return PM3_EINVARG; if (key == NULL) return PM3_EINVARG; *key = ( (uint64_t)(uid[1] ^ uid[2] ^ uid[3]) << 40 | (uint64_t)uid[1] << 32 | (uint64_t)uid[2] << 24 | (uint64_t)(((uid[0] + uid[1] + uid[2] + uid[3]) % 0x100) ^ uid[3]) << 16 | (uint64_t)0 << 8 | (uint64_t)0 ); return PM3_SUCCESS; } //------------------------------------ // Self tests //------------------------------------ int generator_selftest(void) { #ifndef ON_DEVICE #define NUM_OF_TEST 8 PrintAndLogEx(INFO, "PWD / KEY generator selftest"); PrintAndLogEx(INFO, "----------------------------"); uint8_t testresult = 0; uint8_t uid1[] = {0x04, 0x11, 0x12, 0x11, 0x12, 0x11, 0x10}; uint32_t pwd1 = ul_ev1_pwdgenA(uid1); bool success = (pwd1 == 0x8432EB17); if (success) testresult++; PrintAndLogEx(success ? SUCCESS : WARNING, "UID | %s | %08X - %s", sprint_hex(uid1, 7), pwd1, success ? "OK" : "->8432EB17<-"); uint8_t uid2[] = {0x04, 0x1f, 0x98, 0xea, 0x1e, 0x3e, 0x81}; uint32_t pwd2 = ul_ev1_pwdgenB(uid2); success = (pwd2 == 0x5fd37eca); if (success) testresult++; PrintAndLogEx(success ? SUCCESS : WARNING, "UID | %s | %08X - %s", sprint_hex(uid2, 7), pwd2, success ? "OK" : "->5fd37eca<--"); uint8_t uid3[] = {0x04, 0x62, 0xB6, 0x8A, 0xB4, 0x42, 0x80}; uint32_t pwd3 = ul_ev1_pwdgenC(uid3); success = (pwd3 == 0x5a349515); if (success) testresult++; PrintAndLogEx(success ? SUCCESS : WARNING, "UID | %s | %08X - %s", sprint_hex(uid3, 7), pwd3, success ? "OK" : "->5a349515<--"); uint8_t uid4[] = {0x04, 0xC5, 0xDF, 0x4A, 0x6D, 0x51, 0x80}; uint32_t pwd4 = ul_ev1_pwdgenD(uid4); success = (pwd4 == 0x72B1EC61); if (success) testresult++; PrintAndLogEx(success ? SUCCESS : WARNING, "UID | %s | %08X - %s", sprint_hex(uid4, 7), pwd4, success ? "OK" : "->72B1EC61<--"); uint8_t uid5[] = {0x04, 0xA0, 0x3C, 0xAA, 0x1E, 0x70, 0x80}; uint32_t pwd5 = ul_ev1_pwdgenE(uid5); success = (pwd5 == 0xCD91AFCC); if (success) testresult++; PrintAndLogEx(success ? SUCCESS : WARNING, "UID | %s | %08X - %s", sprint_hex(uid5, 7), pwd5, success ? "OK" : "->CD91AFCC<--"); uint8_t uid6[] = {0x04, 0x77, 0x42, 0xAB, 0xEF, 0x42, 0x70}; uint32_t pwd6 = ul_ev1_pwdgenF(uid6); success = (pwd6 == 0xA9C4C3C0); if (success) testresult++; PrintAndLogEx(success ? SUCCESS : WARNING, "UID | %s | %08X - %s", sprint_hex(uid6, 7), pwd6, success ? "OK" : "->A9C4C3C0<--"); // uint8_t uid5[] = {0x11, 0x22, 0x33, 0x44}; // uint64_t key1 = mfc_algo_a(uid5); // success = (key1 == 0xD1E2AA68E39A); // PrintAndLogEx(success ? SUCCESS : WARNING, "UID | %s | %"PRIx64" - %s", sprint_hex(uid5, 4), key1, success ? "OK" : "->D1E2AA68E39A<--"); uint8_t uid7[] = {0x74, 0x57, 0xCA, 0xA9}; uint64_t key7 = 0; mfc_algo_sky_one(uid7, 15, 0, &key7); success = (key7 == 0x82c7e64bc565); if (success) testresult++; PrintAndLogEx(success ? SUCCESS : WARNING, "UID | %s | %"PRIx64" - %s", sprint_hex(uid7, 4), key7, success ? "OK" : "->82C7E64BC565<--"); uint32_t lf_id = lf_t55xx_white_pwdgen(0x00000080); success = (lf_id == 0x00018383); if (success) testresult++; PrintAndLogEx(success ? SUCCESS : WARNING, "ID | 0x00000080 | %08"PRIx32 " - %s", lf_id, success ? "OK" : "->00018383<--"); PrintAndLogEx(SUCCESS, "------------------- Selftest %s", (testresult == NUM_OF_TEST) ? "OK" : "fail"); #endif return PM3_SUCCESS; }