//----------------------------------------------------------------------------- // Jonathan Westhues, April 2006 // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Routines to load the FPGA image, and then to configure the FPGA's major // mode once it is configured. //----------------------------------------------------------------------------- #include "proxmark3.h" #include "apps.h" #include "util.h" #include "string.h" //----------------------------------------------------------------------------- // Set up the Serial Peripheral Interface as master // Used to write the FPGA config word // May also be used to write to other SPI attached devices like an LCD //----------------------------------------------------------------------------- void SetupSpi(int mode) { // PA10 -> SPI_NCS2 chip select (LCD) // PA11 -> SPI_NCS0 chip select (FPGA) // PA12 -> SPI_MISO Master-In Slave-Out // PA13 -> SPI_MOSI Master-Out Slave-In // PA14 -> SPI_SPCK Serial Clock // Disable PIO control of the following pins, allows use by the SPI peripheral AT91C_BASE_PIOA->PIO_PDR = GPIO_NCS0 | GPIO_NCS2 | GPIO_MISO | GPIO_MOSI | GPIO_SPCK; AT91C_BASE_PIOA->PIO_ASR = GPIO_NCS0 | GPIO_MISO | GPIO_MOSI | GPIO_SPCK; AT91C_BASE_PIOA->PIO_BSR = GPIO_NCS2; //enable the SPI Peripheral clock AT91C_BASE_PMC->PMC_PCER = (1<SPI_CR = AT91C_SPI_SPIEN; switch (mode) { case SPI_FPGA_MODE: AT91C_BASE_SPI->SPI_MR = ( 0 << 24) | // Delay between chip selects (take default: 6 MCK periods) (14 << 16) | // Peripheral Chip Select (selects FPGA SPI_NCS0 or PA11) ( 0 << 7) | // Local Loopback Disabled ( 1 << 4) | // Mode Fault Detection disabled ( 0 << 2) | // Chip selects connected directly to peripheral ( 0 << 1) | // Fixed Peripheral Select ( 1 << 0); // Master Mode AT91C_BASE_SPI->SPI_CSR[0] = ( 1 << 24) | // Delay between Consecutive Transfers (32 MCK periods) ( 1 << 16) | // Delay Before SPCK (1 MCK period) ( 6 << 8) | // Serial Clock Baud Rate (baudrate = MCK/6 = 24Mhz/6 = 4M baud ( 8 << 4) | // Bits per Transfer (16 bits) ( 0 << 3) | // Chip Select inactive after transfer ( 1 << 1) | // Clock Phase data captured on leading edge, changes on following edge ( 0 << 0); // Clock Polarity inactive state is logic 0 break; case SPI_LCD_MODE: AT91C_BASE_SPI->SPI_MR = ( 0 << 24) | // Delay between chip selects (take default: 6 MCK periods) (11 << 16) | // Peripheral Chip Select (selects LCD SPI_NCS2 or PA10) ( 0 << 7) | // Local Loopback Disabled ( 1 << 4) | // Mode Fault Detection disabled ( 0 << 2) | // Chip selects connected directly to peripheral ( 0 << 1) | // Fixed Peripheral Select ( 1 << 0); // Master Mode AT91C_BASE_SPI->SPI_CSR[2] = ( 1 << 24) | // Delay between Consecutive Transfers (32 MCK periods) ( 1 << 16) | // Delay Before SPCK (1 MCK period) ( 6 << 8) | // Serial Clock Baud Rate (baudrate = MCK/6 = 24Mhz/6 = 4M baud ( 1 << 4) | // Bits per Transfer (9 bits) ( 0 << 3) | // Chip Select inactive after transfer ( 1 << 1) | // Clock Phase data captured on leading edge, changes on following edge ( 0 << 0); // Clock Polarity inactive state is logic 0 break; default: // Disable SPI AT91C_BASE_SPI->SPI_CR = AT91C_SPI_SPIDIS; break; } } //----------------------------------------------------------------------------- // Set up the synchronous serial port, with the one set of options that we // always use when we are talking to the FPGA. Both RX and TX are enabled. //----------------------------------------------------------------------------- void FpgaSetupSsc(void) { // First configure the GPIOs, and get ourselves a clock. AT91C_BASE_PIOA->PIO_ASR = GPIO_SSC_FRAME | GPIO_SSC_DIN | GPIO_SSC_DOUT | GPIO_SSC_CLK; AT91C_BASE_PIOA->PIO_PDR = GPIO_SSC_DOUT; AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_SSC); // Now set up the SSC proper, starting from a known state. AT91C_BASE_SSC->SSC_CR = AT91C_SSC_SWRST; // RX clock comes from TX clock, RX starts when TX starts, data changes // on RX clock rising edge, sampled on falling edge AT91C_BASE_SSC->SSC_RCMR = SSC_CLOCK_MODE_SELECT(1) | SSC_CLOCK_MODE_START(1); // 8 bits per transfer, no loopback, MSB first, 1 transfer per sync // pulse, no output sync, start on positive-going edge of sync AT91C_BASE_SSC->SSC_RFMR = SSC_FRAME_MODE_BITS_IN_WORD(8) | AT91C_SSC_MSBF | SSC_FRAME_MODE_WORDS_PER_TRANSFER(0); // clock comes from TK pin, no clock output, outputs change on falling // edge of TK, sample on rising edge of TK AT91C_BASE_SSC->SSC_TCMR = SSC_CLOCK_MODE_SELECT(2) | SSC_CLOCK_MODE_START(5); // tx framing is the same as the rx framing AT91C_BASE_SSC->SSC_TFMR = AT91C_BASE_SSC->SSC_RFMR; AT91C_BASE_SSC->SSC_CR = AT91C_SSC_RXEN | AT91C_SSC_TXEN; } //----------------------------------------------------------------------------- // Set up DMA to receive samples from the FPGA. We will use the PDC, with // a single buffer as a circular buffer (so that we just chain back to // ourselves, not to another buffer). The stuff to manipulate those buffers // is in apps.h, because it should be inlined, for speed. //----------------------------------------------------------------------------- bool FpgaSetupSscDma(uint8_t *buf, int len) { if (buf == NULL) { return false; } AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; // Disable DMA Transfer AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) buf; // transfer to this memory address AT91C_BASE_PDC_SSC->PDC_RCR = len; // transfer this many bytes AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) buf; // next transfer to same memory address AT91C_BASE_PDC_SSC->PDC_RNCR = len; // ... with same number of bytes AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTEN; // go! return true; } static void DownloadFPGA_byte(unsigned char w) { #define SEND_BIT(x) { if(w & (1<PIO_OER = GPIO_FPGA_ON; AT91C_BASE_PIOA->PIO_PER = GPIO_FPGA_ON; HIGH(GPIO_FPGA_ON); // ensure everything is powered on SpinDelay(50); LED_D_ON(); // These pins are inputs AT91C_BASE_PIOA->PIO_ODR = GPIO_FPGA_NINIT | GPIO_FPGA_DONE; // PIO controls the following pins AT91C_BASE_PIOA->PIO_PER = GPIO_FPGA_NINIT | GPIO_FPGA_DONE; // Enable pull-ups AT91C_BASE_PIOA->PIO_PPUER = GPIO_FPGA_NINIT | GPIO_FPGA_DONE; // setup initial logic state HIGH(GPIO_FPGA_NPROGRAM); LOW(GPIO_FPGA_CCLK); LOW(GPIO_FPGA_DIN); // These pins are outputs AT91C_BASE_PIOA->PIO_OER = GPIO_FPGA_NPROGRAM | GPIO_FPGA_CCLK | GPIO_FPGA_DIN; // enter FPGA configuration mode LOW(GPIO_FPGA_NPROGRAM); SpinDelay(50); HIGH(GPIO_FPGA_NPROGRAM); i=100000; // wait for FPGA ready to accept data signal while ((i) && ( !(AT91C_BASE_PIOA->PIO_PDSR & GPIO_FPGA_NINIT ) ) ) { i--; } // crude error indicator, leave both red LEDs on and return if (i==0){ LED_C_ON(); LED_D_ON(); return; } if(bytereversal) { /* This is only supported for uint32_t aligned images */ if( ((int)FpgaImage % sizeof(uint32_t)) == 0 ) { i=0; while(FpgaImageLen-->0) DownloadFPGA_byte(FpgaImage[(i++)^0x3]); /* Explanation of the magic in the above line: * i^0x3 inverts the lower two bits of the integer i, counting backwards * for each 4 byte increment. The generated sequence of (i++)^3 is * 3 2 1 0 7 6 5 4 11 10 9 8 15 14 13 12 etc. pp. */ } } else { while(FpgaImageLen-->0) DownloadFPGA_byte(*FpgaImage++); } // continue to clock FPGA until ready signal goes high i=100000; while ( (i--) && ( !(AT91C_BASE_PIOA->PIO_PDSR & GPIO_FPGA_DONE ) ) ) { HIGH(GPIO_FPGA_CCLK); LOW(GPIO_FPGA_CCLK); } // crude error indicator, leave both red LEDs on and return if (i==0){ LED_C_ON(); LED_D_ON(); return; } LED_D_OFF(); } static char *bitparse_headers_start; static char *bitparse_bitstream_end; static int bitparse_initialized; /* Simple Xilinx .bit parser. The file starts with the fixed opaque byte sequence * 00 09 0f f0 0f f0 0f f0 0f f0 00 00 01 * After that the format is 1 byte section type (ASCII character), 2 byte length * (big endian), bytes content. Except for section 'e' which has 4 bytes * length. */ static const char _bitparse_fixed_header[] = {0x00, 0x09, 0x0f, 0xf0, 0x0f, 0xf0, 0x0f, 0xf0, 0x0f, 0xf0, 0x00, 0x00, 0x01}; static int bitparse_init(void * start_address, void *end_address) { bitparse_initialized = 0; if(memcmp(_bitparse_fixed_header, start_address, sizeof(_bitparse_fixed_header)) != 0) { return 0; /* Not matched */ } else { bitparse_headers_start= ((char*)start_address) + sizeof(_bitparse_fixed_header); bitparse_bitstream_end= (char*)end_address; bitparse_initialized = 1; return 1; } } int bitparse_find_section(char section_name, char **section_start, unsigned int *section_length) { char *pos = bitparse_headers_start; int result = 0; if(!bitparse_initialized) return 0; while(pos < bitparse_bitstream_end) { char current_name = *pos++; unsigned int current_length = 0; if(current_name < 'a' || current_name > 'e') { /* Strange section name, abort */ break; } current_length = 0; switch(current_name) { case 'e': /* Four byte length field */ current_length += (*pos++) << 24; current_length += (*pos++) << 16; default: /* Fall through, two byte length field */ current_length += (*pos++) << 8; current_length += (*pos++) << 0; } if(current_name != 'e' && current_length > 255) { /* Maybe a parse error */ break; } if(current_name == section_name) { /* Found it */ *section_start = pos; *section_length = current_length; result = 1; break; } pos += current_length; /* Skip section */ } return result; } //----------------------------------------------------------------------------- // Find out which FPGA image format is stored in flash, then call DownloadFPGA // with the right parameters to download the image //----------------------------------------------------------------------------- extern char _binary_fpga_bit_start, _binary_fpga_bit_end; void FpgaDownloadAndGo(void) { /* Check for the new flash image format: Should have the .bit file at &_binary_fpga_bit_start */ if(bitparse_init(&_binary_fpga_bit_start, &_binary_fpga_bit_end)) { /* Successfully initialized the .bit parser. Find the 'e' section and * send its contents to the FPGA. */ char *bitstream_start; unsigned int bitstream_length; if(bitparse_find_section('e', &bitstream_start, &bitstream_length)) { DownloadFPGA(bitstream_start, bitstream_length, 0); return; /* All done */ } } /* Fallback for the old flash image format: Check for the magic marker 0xFFFFFFFF * 0xAA995566 at address 0x102000. This is raw bitstream with a size of 336,768 bits * = 10,524 uint32_t, stored as uint32_t e.g. little-endian in memory, but each DWORD * is still to be transmitted in MSBit first order. Set the invert flag to indicate * that the DownloadFPGA function should invert every 4 byte sequence when doing * the bytewise download. */ if( *(uint32_t*)0x102000 == 0xFFFFFFFF && *(uint32_t*)0x102004 == 0xAA995566 ) DownloadFPGA((char*)0x102000, 10524*4, 1); } void FpgaGatherVersion(char *dst, int len) { char *fpga_info; unsigned int fpga_info_len; dst[0] = 0; if(!bitparse_find_section('e', &fpga_info, &fpga_info_len)) { strncat(dst, "FPGA image: legacy image without version information", len-1); } else { strncat(dst, "FPGA image built", len-1); /* USB packets only have 48 bytes data payload, so be terse */ #if 0 if(bitparse_find_section('a', &fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) { strncat(dst, " from ", len-1); strncat(dst, fpga_info, len-1); } if(bitparse_find_section('b', &fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) { strncat(dst, " for ", len-1); strncat(dst, fpga_info, len-1); } #endif if(bitparse_find_section('c', &fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) { strncat(dst, " on ", len-1); strncat(dst, fpga_info, len-1); } if(bitparse_find_section('d', &fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) { strncat(dst, " at ", len-1); strncat(dst, fpga_info, len-1); } } } //----------------------------------------------------------------------------- // Send a 16 bit command/data pair to the FPGA. // The bit format is: C3 C2 C1 C0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 // where C is the 4 bit command and D is the 12 bit data //----------------------------------------------------------------------------- void FpgaSendCommand(uint16_t cmd, uint16_t v) { SetupSpi(SPI_FPGA_MODE); while ((AT91C_BASE_SPI->SPI_SR & AT91C_SPI_TXEMPTY) == 0); // wait for the transfer to complete AT91C_BASE_SPI->SPI_TDR = AT91C_SPI_LASTXFER | cmd | v; // send the data } //----------------------------------------------------------------------------- // Write the FPGA setup word (that determines what mode the logic is in, read // vs. clone vs. etc.). This is now a special case of FpgaSendCommand() to // avoid changing this function's occurence everywhere in the source code. //----------------------------------------------------------------------------- void FpgaWriteConfWord(uint8_t v) { FpgaSendCommand(FPGA_CMD_SET_CONFREG, v); } //----------------------------------------------------------------------------- // Set up the CMOS switches that mux the ADC: four switches, independently // closable, but should only close one at a time. Not an FPGA thing, but // the samples from the ADC always flow through the FPGA. //----------------------------------------------------------------------------- void SetAdcMuxFor(uint32_t whichGpio) { AT91C_BASE_PIOA->PIO_OER = GPIO_MUXSEL_HIPKD | GPIO_MUXSEL_LOPKD | GPIO_MUXSEL_LORAW | GPIO_MUXSEL_HIRAW; AT91C_BASE_PIOA->PIO_PER = GPIO_MUXSEL_HIPKD | GPIO_MUXSEL_LOPKD | GPIO_MUXSEL_LORAW | GPIO_MUXSEL_HIRAW; LOW(GPIO_MUXSEL_HIPKD); LOW(GPIO_MUXSEL_HIRAW); LOW(GPIO_MUXSEL_LORAW); LOW(GPIO_MUXSEL_LOPKD); HIGH(whichGpio); }