//----------------------------------------------------------------------------- // Jonathan Westhues, split Nov 2006 // Modified by Greg Jones, Jan 2009 // Modified by Adrian Dabrowski "atrox", Mar-Sept 2010,Oct 2011 // Modified by Christian Herrmann "iceman", 2017 // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Routines to support ISO 15693. This includes both the reader software and // the `fake tag' modes, but at the moment I've implemented only the reader // stuff, and that barely. // Modified to perform modulation onboard in arm rather than on PC // Also added additional reader commands (SELECT, READ etc.) //----------------------------------------------------------------------------- // The ISO 15693 describes two transmission modes from reader to tag, and 4 // transmission modes from tag to reader. As of Mar 2010 this code only // supports one of each: "1of4" mode from reader to tag, and the highspeed // variant with one subcarrier from card to reader. // As long, as the card fully support ISO 15693 this is no problem, since the // reader chooses both data rates, but some non-standard tags do not. Further for // the simulation to work, we will need to support all data rates. // // VCD (reader) -> VICC (tag) // 1 out of 256: // data rate: 1,66 kbit/s (fc/8192) // used for long range // 1 out of 4: // data rate: 26,48 kbit/s (fc/512) // used for short range, high speed // // VICC (tag) -> VCD (reader) // Modulation: // ASK / one subcarrier (423,75 khz) // FSK / two subcarriers (423,75 khz && 484,28 khz) // Data Rates / Modes: // low ASK: 6,62 kbit/s // low FSK: 6.67 kbit/s // high ASK: 26,48 kbit/s // high FSK: 26,69 kbit/s //----------------------------------------------------------------------------- // added "1 out of 256" mode (for VCD->PICC) - atrox 20100911 // Random Remarks: // *) UID is always used "transmission order" (LSB), which is reverse to display order // TODO / BUGS / ISSUES: // *) writing to tags takes longer: we miss the answer from the tag in most cases // -> tweak the read-timeout times // *) signal decoding from the card is still a bit shaky. // *) signal decoding is unable to detect collissions. // *) add anti-collission support for inventory-commands // *) read security status of a block // *) sniffing and simulation do only support one transmission mode. need to support // all 8 transmission combinations // *) remove or refactor code under "depricated" // *) document all the functions #include "proxmark3.h" #include "util.h" #include "apps.h" #include "string.h" #include "iso15693tools.h" #include "cmd.h" /////////////////////////////////////////////////////////////////////// // ISO 15693 Part 2 - Air Interface // This section basicly contains transmission and receiving of bits /////////////////////////////////////////////////////////////////////// // 32 + 2 crc + 1 #define ISO15_MAX_FRAME 35 #define CMD_ID_RESP 5 #define CMD_READ_RESP 13 #define CMD_INV_RESP 12 #define FrameSOF Iso15693FrameSOF #define Logic0 Iso15693Logic0 #define Logic1 Iso15693Logic1 #define FrameEOF Iso15693FrameEOF #define Crc(data,datalen) Iso15693Crc(data, datalen) #define AddCrc(data,datalen) Iso15693AddCrc(data, datalen) #define sprintUID(target,uid) Iso15693sprintUID(target, uid) int DEBUG = 0; static void BuildIdentifyRequest(uint8_t *cmdout); //static void BuildReadBlockRequest(uint8_t *cmdout, uint8_t *uid, uint8_t blockNumber ); static void BuildInventoryResponse(uint8_t *cmdout, uint8_t *uid); // --------------------------- // Signal Processing // --------------------------- // prepare data using "1 out of 4" code for later transmission // resulting data rate is 26,48 kbit/s (fc/512) // cmd ... data // n ... length of data static void CodeIso15693AsReader(uint8_t *cmd, int n) { int i, j; ToSendReset(); // Give it a bit of slack at the beginning for(i = 0; i < 24; i++) ToSendStuffBit(1); // SOF for 1of4 ToSendStuffBit(0); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(0); ToSendStuffBit(1); ToSendStuffBit(1); for(i = 0; i < n; i++) { for(j = 0; j < 8; j += 2) { int these = (cmd[i] >> j) & 3; switch(these) { case 0: ToSendStuffBit(1); ToSendStuffBit(0); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); break; case 1: ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(0); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); break; case 2: ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(0); ToSendStuffBit(1); ToSendStuffBit(1); break; case 3: ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(0); break; } } } // EOF ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(0); ToSendStuffBit(1); // And slack at the end, too. for(i = 0; i < 24; i++) ToSendStuffBit(1); } // encode data using "1 out of 256" sheme // data rate is 1,66 kbit/s (fc/8192) // is designed for more robust communication over longer distances static void CodeIso15693AsReader256(uint8_t *cmd, int n) { int i, j; ToSendReset(); // Give it a bit of slack at the beginning for(i = 0; i < 24; i++) ToSendStuffBit(1); // SOF for 1of256 ToSendStuffBit(0); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(0); for(i = 0; i < n; i++) { for (j = 0; j <= 255; j++) { if (cmd[i] == j) { ToSendStuffBit(1); ToSendStuffBit(0); } else { ToSendStuffBit(1); ToSendStuffBit(1); } } } // EOF ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(0); ToSendStuffBit(1); // And slack at the end, too. for(i = 0; i < 24; i++) ToSendStuffBit(1); } // Transmit the command (to the tag) that was placed in ToSend[]. static void TransmitTo15693Tag(const uint8_t *cmd, int len, int *samples, int *wait) { int c; volatile uint32_t r; FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX); if (wait) { if (*wait < 10) { *wait = 10; } for (c = 0; c < *wait;) { if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! ++c; } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { r = AT91C_BASE_SSC->SSC_RHR; (void)r; } WDT_HIT(); } } c = 0; for(;;) { WDT_HIT(); if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = cmd[c]; if( ++c >= len) break; } if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { r = AT91C_BASE_SSC->SSC_RHR; (void)r; } } if (samples) { if (wait) *samples = (c + *wait) << 3; else *samples = c << 3; } } //----------------------------------------------------------------------------- // Transmit the command (to the reader) that was placed in ToSend[]. //----------------------------------------------------------------------------- static void TransmitTo15693Reader(const uint8_t *cmd, int len, int *samples, int *wait) { int c = 0; volatile uint32_t r; FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR|FPGA_HF_SIMULATOR_MODULATE_424K); if (wait) { if (*wait < 10) { *wait = 10; } for (c = 0; c < *wait;) { if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! ++c; } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { r = AT91C_BASE_SSC->SSC_RHR; (void)r; } WDT_HIT(); } } c = 0; for(;;) { WDT_HIT(); if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = cmd[c]; if( ++c >= len) break; } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { r = AT91C_BASE_SSC->SSC_RHR; (void)r; } } if (samples) { if (wait) *samples = (c + *wait) << 3; else *samples = c << 3; } } //----------------------------------------------------------------------------- // DEMODULATE tag answer //----------------------------------------------------------------------------- static int DemodAnswer(uint8_t *received, uint8_t *dest, uint16_t samplecount) { int i, j; int max = 0, maxPos = 0, skip = 4; int k = 0; // this will be our return value // First, correlate for SOF for (i = 0; i < samplecount; i++) { int corr = 0; for ( j = 0; j < ARRAYLEN(FrameSOF); j += skip) { corr += FrameSOF[j] * dest[i+(j/skip)]; } if (corr > max) { max = corr; maxPos = i; } } // DbpString("SOF at %d, correlation %d", maxPos,max/(ARRAYLEN(FrameSOF)/skip)); // greg - If correlation is less than 1 then there's little point in continuing if ((max / (ARRAYLEN(FrameSOF)/skip) ) < 1) return k; i = maxPos + ARRAYLEN(FrameSOF) / skip; uint8_t outBuf[ISO15_MAX_FRAME]; memset(outBuf, 0, sizeof(outBuf)); uint8_t mask = 0x01; for(;;) { int corr0 = 0, corr1 = 0, corrEOF = 0; for (j = 0; j < ARRAYLEN(Logic0); j += skip) { corr0 += Logic0[j] * dest[i+(j/skip)]; } for (j = 0; j < ARRAYLEN(Logic1); j += skip) { corr1 += Logic1[j] * dest[i+(j/skip)]; } for (j = 0; j < ARRAYLEN(FrameEOF); j += skip) { corrEOF += FrameEOF[j] * dest[i+(j/skip)]; } // Even things out by the length of the target waveform. corr0 *= 4; corr1 *= 4; // if (DEBUG) // Dbprintf("Corr1 %d, Corr0 %d, CorrEOF %d", corr1, corr0, corrEOF); if (corrEOF > corr1 && corrEOF > corr0) break; if (corr1 > corr0) { i += ARRAYLEN(Logic1) / skip; outBuf[k] |= mask; } else { i += ARRAYLEN(Logic0) / skip; } mask <<= 1; if (mask == 0) { k++; mask = 0x01; } if ( ( i + (int)ARRAYLEN(FrameEOF)) >= samplecount-1) { //Dbprintf("ran off end! %d | %d",( i + (int)ARRAYLEN(FrameEOF)), samplecount-1); break; } } if (DEBUG) Dbprintf("ice: demod bytes %u", k); if (mask != 0x01) { // this happens, when we miss the EOF // TODO: for some reason this happens quite often if (DEBUG) Dbprintf("error, uneven octet! (extra bits!) mask %02x", mask); //if (mask < 0x08) k--; // discard the last uneven octet; // 0x08 is an assumption - but works quite often } for(i = 0; i < k; i++) received[i] = outBuf[i]; // return the number of bytes demodulated return k; } // Read from Tag // Parameters: // received // samples // elapsed // returns: // number of decoded bytes // logging enabled static int GetIso15693AnswerFromTag(uint8_t *received, int *elapsed) { #define SIGNAL_BUFF_SIZE 15000 // get current clock uint32_t time_0 = GetCountSspClk(); uint32_t time_stop = 0; bool getNext = false; int counter = 0, ci = 0, cq = 0; //volatile uint32_t r; uint8_t *buf = BigBuf_malloc(SIGNAL_BUFF_SIZE); if (elapsed) *elapsed = 0; FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); // for (counter = 0; counter < wait;) { // WDT_HIT(); // if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { // AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! // counter++; // } // if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { // r = AT91C_BASE_SSC->SSC_RHR; (void)r; // } // } // counter = 0; for(;;) { WDT_HIT(); if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = 0x00; //0x43; // To make use of exact timing of next command from reader!! if (elapsed) (*elapsed)++; } if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { ci = (int8_t)AT91C_BASE_SSC->SSC_RHR; // LSB is a FPGA singal bit ci >>= 1; ci = ABS(ci); // The samples are correlations against I and Q versions of the // tone that the tag AM-modulates, so every other sample is I, // every other is Q. We just want power, so abs(I) + abs(Q) is // close to what we want. // iceman 2016, amplitude sqrt(abs(i) + abs(q)) if (getNext) { buf[counter++] = (uint8_t)(MAX(ci,cq) + (MIN(ci, cq) >> 1)); if (counter >= SIGNAL_BUFF_SIZE) break; } else { cq = ci; } getNext = !getNext; } } time_stop = GetCountSspClk() - time_0 ; int len = DemodAnswer(received, buf, counter); LogTrace(received, len, time_0 << 4, time_stop << 4, NULL, false); BigBuf_free(); return len; } // Now the GetISO15693 message from sniffing command // logging enable, static int GetIso15693AnswerFromSniff(uint8_t *received, int *samples, int *elapsed) { bool getNext = false; int counter = 0, ci = 0, cq = 0; uint32_t time_0 = 0, time_stop = 0; uint8_t *buf = BigBuf_get_addr(); // get current clock time_0 = GetCountSspClk(); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); for(;;) { WDT_HIT(); if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) AT91C_BASE_SSC->SSC_THR = 0x43; if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { ci = (int8_t)AT91C_BASE_SSC->SSC_RHR; // LSB is a FPGA singal bit ci >>= 1; ci = ABS(ci); // The samples are correlations against I and Q versions of the // tone that the tag AM-modulates, so every other sample is I, // every other is Q. We just want power, so abs(I) + abs(Q) is // close to what we want. if (getNext) { buf[counter++] = (uint8_t)(MAX(ci,cq) + (MIN(ci, cq) >> 1)); if(counter >= 20000) break; } else { cq = ci; } getNext = !getNext; } } time_stop = GetCountSspClk() - time_0; int k = DemodAnswer(received, buf, counter); LogTrace(received, k, time_0 << 4, time_stop << 4, NULL, false); return k; } //----------------------------------------------------------------------------- // Start to read an ISO 15693 tag. We send an identify request, then wait // for the response. The response is not demodulated, just left in the buffer // so that it can be downloaded to a PC and processed there. //----------------------------------------------------------------------------- void AcquireRawAdcSamplesIso15693(void) { int c = 0, getNext = false; volatile uint32_t r; int ci = 0, cq = 0; FpgaDownloadAndGo(FPGA_BITSTREAM_HF); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); FpgaSetupSsc(); // Give the tags time to energize FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); SpinDelay(100); // Now send the command FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX); uint8_t *buf = BigBuf_get_addr(); uint32_t time_start = GetCountSspClk(); uint8_t cmd[CMD_ID_RESP] = {0}; BuildIdentifyRequest(cmd); // sending command c = 0; for(;;) { WDT_HIT(); if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = ToSend[c]; c++; if(c == ToSendMax + 3) { break; } } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { r = AT91C_BASE_SSC->SSC_RHR; (void)r; } } LogTrace(cmd, CMD_ID_RESP, time_start << 4, (GetCountSspClk() - time_start) << 4, NULL, true); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); c = 0; for(;;) { WDT_HIT(); if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) AT91C_BASE_SSC->SSC_THR = 0x43; if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { ci = (int8_t)AT91C_BASE_SSC->SSC_RHR; // LSB is a FPGA singal bit ci >>= 1; ci = ABS(ci); // The samples are correlations against I and Q versions of the // tone that the tag AM-modulates, so every other sample is I, // every other is Q. We just want power, so abs(I) + abs(Q) is // close to what we want. // iceman 2016, amplitude sqrt(abs(i) + abs(q)) if (getNext) { buf[c++] = (uint8_t)(MAX(ci,cq) + (MIN(ci, cq) >> 1)); if (c >= 7000) break; } else { cq = ci; } getNext = !getNext; } } } // switch_off, initreader, no logging void RecordRawAdcSamplesIso15693(void) { int c = 0, getNext = false; int ci = 0, cq = 0; Iso15693InitReader(); uint8_t *buf = BigBuf_get_addr(); for(;;) { WDT_HIT(); if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = 0x43; } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { ci = (int8_t)AT91C_BASE_SSC->SSC_RHR; // LSB is a FPGA singal bit ci >>= 1; ci = ABS(ci); // The samples are correlations against I and Q versions of the // tone that the tag AM-modulates, so every other sample is I, // every other is Q. We just want power, so abs(I) + abs(Q) is // close to what we want. if (getNext) { buf[c++] = (uint8_t)(MAX(ci,cq) + (MIN(ci, cq) >> 1)); if(c >= 7000) break; } else { cq = ci; } getNext = !getNext; } } Dbprintf("done"); switch_off(); } // Initialize the proxmark as iso15k reader // (this might produces glitches that confuse some tags void Iso15693InitReader(void) { LEDsoff(); clear_trace(); set_tracing(true); FpgaDownloadAndGo(FPGA_BITSTREAM_HF); // Start from off (no field generated) FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(10); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); FpgaSetupSsc(); // Give the tags time to energize FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); SpinDelay(100); // Start the timer StartCountSspClk(); if (DEBUG) DbpString("Iso15693InitReader Exit"); LED_A_ON(); } /////////////////////////////////////////////////////////////////////// // ISO 15693 Part 3 - Air Interface // This section basicly contains transmission and receiving of bits /////////////////////////////////////////////////////////////////////// // Encode (into the ToSend buffers) an identify request, which is the first // thing that you must send to a tag to get a response. static void BuildIdentifyRequest(uint8_t *out) { uint8_t cmd[CMD_ID_RESP] = {0, ISO15_CMD_INVENTORY, 0, 0, 0}; // flags cmd[0] = ISO15_REQ_SUBCARRIER_SINGLE | ISO15_REQ_DATARATE_HIGH | ISO15_REQ_INVENTORY | ISO15_REQINV_SLOT1; // no mask cmd[2] = 0x00; // CRC uint16_t crc = Crc(cmd, 3); cmd[3] = crc & 0xff; cmd[4] = crc >> 8; // coding as high speed (1 out of 4) CodeIso15693AsReader(cmd, CMD_ID_RESP); memcpy(out, cmd, CMD_ID_RESP); } // uid is in transmission order (which is reverse of display order) /* static void BuildReadBlockRequest(uint8_t **out, uint8_t *uid, uint8_t blockNumber ) { uint8_t cmd[CMD_READ_RESP] = {0,0,0,0,0,0,0,0,0,0,0,0,0}; // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block // followed by teh block data // one sub-carrier, inventory, 1 slot, fast rate cmd[0] = (1 << 6)| (1 << 5) | (1 << 1); // no SELECT bit, ADDR bit, OPTION bit // READ BLOCK command code cmd[1] = 0x20; // UID may be optionally specified here // 64-bit UID cmd[2] = uid[0]; cmd[3] = uid[1]; cmd[4] = uid[2]; cmd[5] = uid[3]; cmd[6] = uid[4]; cmd[7] = uid[5]; cmd[8] = uid[6]; cmd[9] = uid[7]; // 0xe0; // always e0 (not exactly unique) // Block number to read cmd[10] = blockNumber;//0x00; // CRC uint16_t crc = Crc(cmd, 11); // the crc needs to be calculated over 12 bytes cmd[11] = crc & 0xff; cmd[12] = crc >> 8; CodeIso15693AsReader(cmd, CMD_READ_RESP); memcpy(out, cmd, CMD_ID_RESP); } */ // Now the VICC>VCD responses when we are simulating a tag static void BuildInventoryResponse(uint8_t *out, uint8_t *uid) { uint8_t cmd[CMD_INV_RESP] = {0,0,0,0,0,0,0,0,0,0,0,0}; // one sub-carrier, inventory, 1 slot, fast rate // AFI is at bit 5 (1<<4) when doing an INVENTORY //(1 << 2) | (1 << 5) | (1 << 1); cmd[0] = 0; // cmd[1] = 0; // DSFID (data storage format identifier). 0x00 = not supported // 64-bit UID cmd[2] = uid[7]; //0x32; cmd[3] = uid[6]; //0x4b; cmd[4] = uid[5]; //0x03; cmd[5] = uid[4]; //0x01; cmd[6] = uid[3]; //0x00; cmd[7] = uid[2]; //0x10; cmd[8] = uid[1]; //0x05; cmd[9] = uid[0]; //0xe0; // CRC uint16_t crc = Crc(cmd, 10); cmd[10] = crc & 0xff; cmd[11] = crc >> 8; CodeIso15693AsReader(cmd, CMD_INV_RESP); memcpy(out, cmd, CMD_ID_RESP); } // Universal Method for sending to and recv bytes from a tag // init ... should we initialize the reader? // speed ... 0 low speed, 1 hi speed // **recv will return you a pointer to the received data // If you do not need the answer use NULL for *recv[] // return: lenght of received data // logging enabled int SendDataTag(uint8_t *send, int sendlen, bool init, int speed, uint8_t *outdata) { int t_samples = 0, wait = 0, elapsed = 0, answer_len = 0; LEDsoff(); if (init) Iso15693InitReader(); LED_A_ON(); if (!speed) CodeIso15693AsReader256(send, sendlen); // low speed (1 out of 256) else CodeIso15693AsReader(send, sendlen); // high speed (1 out of 4) LED_A_INV(); uint32_t time_start = GetCountSspClk(); TransmitTo15693Tag(ToSend, ToSendMax, &t_samples, &wait); LogTrace(send, sendlen, time_start << 4, (GetCountSspClk() - time_start) << 4, NULL, true); // Now wait for a response if (outdata != NULL) { LED_B_INV(); answer_len = GetIso15693AnswerFromTag(outdata, &elapsed); } LEDsoff(); return answer_len; } // -------------------------------------------------------------------- // Debug Functions // -------------------------------------------------------------------- // Decodes a message from a tag and displays its metadata and content #define DBD15STATLEN 48 void DbdecodeIso15693Answer(int len, uint8_t *d) { char status[DBD15STATLEN+1] = {0}; uint16_t crc; if (len > 3) { if (d[0] & ( 1 << 3 )) strncat(status, "ProtExt ", DBD15STATLEN); if (d[0] & 1) { // error strncat(status, "Error ", DBD15STATLEN); switch (d[1]) { case 0x01: strncat(status, "01:notSupp", DBD15STATLEN); break; case 0x02: strncat(status, "02:notRecog", DBD15STATLEN); break; case 0x03: strncat(status, "03:optNotSupp", DBD15STATLEN); break; case 0x0f: strncat(status, "0f:noInfo", DBD15STATLEN); break; case 0x10: strncat(status, "10:dontExist", DBD15STATLEN); break; case 0x11: strncat(status, "11:lockAgain", DBD15STATLEN); break; case 0x12: strncat(status, "12:locked", DBD15STATLEN); break; case 0x13: strncat(status, "13:progErr", DBD15STATLEN); break; case 0x14: strncat(status, "14:lockErr", DBD15STATLEN); break; default: strncat(status, "unknownErr", DBD15STATLEN); } strncat(status ," " ,DBD15STATLEN); } else { strncat(status ,"No err ", DBD15STATLEN); } crc = Crc(d, len-2); if ( (( crc & 0xff ) == d[len-2]) && (( crc >> 8 ) == d[len-1]) ) strncat(status, "Crc OK", DBD15STATLEN); else strncat(status, "Crc Fail!", DBD15STATLEN); if ( DEBUG ) Dbprintf("%s", status); } } /////////////////////////////////////////////////////////////////////// // Functions called via USB/Client /////////////////////////////////////////////////////////////////////// void SetDebugIso15693(uint32_t debug) { DEBUG = debug; Dbprintf("Iso15693 Debug is now %s", DEBUG ? "on" : "off"); return; } //----------------------------------------------------------------------------- // Act as ISO15693 reader, perform anti-collision and then attempt to read a sector // all demodulation performed in arm rather than host. - greg //----------------------------------------------------------------------------- // ok // parameter is unused !?! void ReaderIso15693(uint32_t parameter) { int answerLen1 = 0; //int answerLen2 = 0; //int answerLen3 = 0; int tsamples = 0, wait = 0, elapsed = 0; uint8_t uid[8] = {0,0,0,0,0,0,0,0}; // set up device/fpga Iso15693InitReader(); uint8_t *answer1 = BigBuf_malloc(50); uint8_t *answer2 = BigBuf_malloc(50); //uint8_t *answer3 = BigBuf_malloc(50); // Blank arrays memset(answer1, 0x00, 50); memset(answer2, 0x00, 50); //memset(answer3, 0x00, 50); // Now send the IDENTIFY command // FIRST WE RUN AN INVENTORY TO GET THE TAG UID // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME uint32_t time_start = GetCountSspClk(); uint8_t cmd[CMD_ID_RESP] = {0}; BuildIdentifyRequest( cmd ); TransmitTo15693Tag(ToSend, ToSendMax, &tsamples, &wait); LogTrace(cmd, CMD_ID_RESP, time_start << 4, (GetCountSspClk() - time_start) << 4, NULL, true); // Now wait for a response answerLen1 = GetIso15693AnswerFromTag(answer1, &elapsed) ; // we should do a better check than this if (answerLen1 >= 12) { uid[0] = answer1[9]; // always E0 uid[1] = answer1[8]; // IC Manufacturer code uid[2] = answer1[7]; uid[3] = answer1[6]; uid[4] = answer1[5]; uid[5] = answer1[4]; uid[6] = answer1[3]; uid[7] = answer1[2]; if ( DEBUG ) { Dbprintf("UID = %02X%02X%02X%02X%02X%02X%02X%02X", uid[0], uid[1], uid[2], uid[3], uid[4], uid[5], uid[5], uid[6] ); } // send UID back to client. // arg0 = 1 = OK // arg1 = len of response (12 bytes) // arg2 = rtf // asbytes = uid. cmd_send(CMD_ACK, 1, sizeof(uid), 0, uid, sizeof(uid)); } if ( DEBUG ) { Dbprintf("%d octets read from IDENTIFY request:", answerLen1); DbdecodeIso15693Answer(answerLen1, answer1); Dbhexdump(answerLen1, answer1, true); } // DEBUG read all pages /* if (answerLen1 >= 12 && DEBUG) { i = 0; while ( i < 32 ) { // sanity check, assume max 32 pages cmdlen = BuildReadBlockRequest(cmd, uid, i); TransmitTo15693Tag(ToSend, ToSendMax, &tsamples, &wait); LogTrace(cmd, cmdlen, time_start<<4, (GetCountSspClk()-time_start)<<4, NULL, true); answerLen2 = GetIso15693AnswerFromTag(answer2, &elapsed); if (answerLen2 > 0) { Dbprintf("READ SINGLE BLOCK %d returned %d octets:", i, answerLen2); DbdecodeIso15693Answer(answerLen2, answer2); Dbhexdump(answerLen2, answer2, true); if ( *((uint32_t*) answer2) == 0x07160101 ) break; // exit on NoPageErr } i++; } } */ switch_off(); } // Simulate an ISO15693 TAG, perform anti-collision and then print any reader commands // all demodulation performed in arm rather than host. - greg void SimTagIso15693(uint32_t parameter, uint8_t *uid) { FpgaDownloadAndGo(FPGA_BITSTREAM_HF); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); FpgaSetupSsc(); // Start from off (no field generated) FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(200); LED_A_ON(); uint32_t time_start = 0; int ans = 0, samples = 0, tsamples = 0; int wait = 0, elapsed = 0; Dbprintf("ISO-15963 Simulating uid: %02X%02X%02X%02X%02X%02X%02X%02X", uid[0], uid[1], uid[2], uid[3], uid[4], uid[5], uid[6], uid[7]); uint8_t buf[ISO15_MAX_FRAME]; memset(buf, 0x00, sizeof(buf)); LED_C_ON(); // Build a suitable reponse to the reader INVENTORY cocmmand // not so obsvious, but in the call to BuildInventoryResponse, the command is copied to the global ToSend buffer used below. uint8_t cmd[CMD_INV_RESP] = {0}; BuildInventoryResponse(cmd, uid); while (!BUTTON_PRESS() && !usb_poll_validate_length() ) { WDT_HIT(); // Listen to reader ans = GetIso15693AnswerFromSniff(buf, &samples, &elapsed) ; // we should do a better check than this if (ans >= 1 ) { time_start = GetCountSspClk(); TransmitTo15693Reader(ToSend, ToSendMax, &tsamples, &wait); LogTrace(cmd, CMD_INV_RESP, time_start << 4, (GetCountSspClk() - time_start) << 4, NULL, true); if (DEBUG) { Dbprintf("%d octets read from reader command: %x %x %x %x %x %x %x %x", ans, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], buf[6], buf[7] ); } } } switch_off(); } // Since there is no standardized way of reading the AFI out of a tag, we will brute force it // (some manufactures offer a way to read the AFI, though) void BruteforceIso15693Afi(uint32_t speed) { uint8_t data[7] = {0,0,0,0,0,0,0}; uint8_t buf[ISO15_MAX_FRAME]; memset(buf, 0x00, sizeof(buf)); int datalen = 0, recvlen = 0; Iso15693InitReader(); // first without AFI // Tags should respond wihtout AFI and with AFI=0 even when AFI is active data[0] = ISO15_REQ_SUBCARRIER_SINGLE | ISO15_REQ_DATARATE_HIGH | ISO15_REQ_INVENTORY | ISO15_REQINV_SLOT1; data[1] = ISO15_CMD_INVENTORY; data[2] = 0; // mask length datalen = AddCrc(data, 3); recvlen = SendDataTag(data, datalen, false, speed, buf); WDT_HIT(); if (recvlen >= 12) { Dbprintf("NoAFI UID = %s", sprintUID(NULL, buf + 2) ); } // now with AFI data[0] |= ISO15_REQINV_AFI; //data[1] = ISO15_CMD_INVENTORY; data[2] = 0; // AFI data[3] = 0; // mask length for (int i = 0; i < 256; i++) { data[2] = i & 0xFF; datalen = AddCrc(data, 4); recvlen = SendDataTag(data, datalen, false, speed, buf); WDT_HIT(); if (recvlen >= 12) { Dbprintf("AFI = %i UID = %s", i, sprintUID(NULL, buf + 2) ); } if (BUTTON_PRESS()) { DbpString("button pressed, aborting.."); break; } } DbpString("AFI Bruteforcing done."); switch_off(); } // Allows to directly send commands to the tag via the client // Has to increase dialog between device and client. void DirectTag15693Command(uint32_t datalen, uint32_t speed, uint32_t recv, uint8_t *data) { bool init = true; int buflen = 0; uint8_t buf[ISO15_MAX_FRAME]; memset(buf, 0x00, sizeof(buf)); if (DEBUG) { DbpString("SEND"); Dbhexdump(datalen, data, true); } buflen = SendDataTag(data, datalen, init, speed, (recv ? buf : NULL)); if (recv) { buflen = (buflen > ISO15_MAX_FRAME) ? ISO15_MAX_FRAME : buflen; LED_B_ON(); cmd_send(CMD_ACK, buflen, 0, 0, buf, buflen); LED_B_OFF(); if (DEBUG) { DbpString("RECV"); DbdecodeIso15693Answer(buflen, buf); Dbhexdump(buflen, buf, true); } } else { cmd_send(CMD_ACK,1,0,0,0,0); } }