//----------------------------------------------------------------------------- // Routines to support ISO 14443 type A. // // Gerhard de Koning Gans - May 2008 //----------------------------------------------------------------------------- #include #include "apps.h" #include "../common/iso14443_crc.c" typedef enum { SEC_D = 1, SEC_E = 2, SEC_F = 3, SEC_X = 4, SEC_Y = 5, SEC_Z = 6 } SecType; //----------------------------------------------------------------------------- // The software UART that receives commands from the reader, and its state // variables. //----------------------------------------------------------------------------- static struct { enum { STATE_UNSYNCD, STATE_START_OF_COMMUNICATION, STATE_MILLER_X, STATE_MILLER_Y, STATE_MILLER_Z, STATE_ERROR_WAIT } state; WORD shiftReg; int bitCnt; int byteCnt; int byteCntMax; int posCnt; int syncBit; int parityBits; int samples; int highCnt; int bitBuffer; enum { DROP_NONE, DROP_FIRST_HALF, DROP_SECOND_HALF } drop; BYTE *output; } Uart; static BOOL MillerDecoding(int bit) { int error = 0; int bitright; if(!Uart.bitBuffer) { Uart.bitBuffer = bit ^ 0xFF0; return FALSE; } else { Uart.bitBuffer <<= 4; Uart.bitBuffer ^= bit; } BOOL EOC = FALSE; if(Uart.state != STATE_UNSYNCD) { Uart.posCnt++; if((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) { bit = 0x00; } else { bit = 0x01; } if(((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) { bitright = 0x00; } else { bitright = 0x01; } if(bit != bitright) { bit = bitright; } if(Uart.posCnt == 1) { // measurement first half bitperiod if(!bit) { Uart.drop = DROP_FIRST_HALF; } } else { // measurement second half bitperiod if(!bit & (Uart.drop == DROP_NONE)) { Uart.drop = DROP_SECOND_HALF; } else if(!bit) { // measured a drop in first and second half // which should not be possible Uart.state = STATE_ERROR_WAIT; error = 0x01; } Uart.posCnt = 0; switch(Uart.state) { case STATE_START_OF_COMMUNICATION: Uart.shiftReg = 0; if(Uart.drop == DROP_SECOND_HALF) { // error, should not happen in SOC Uart.state = STATE_ERROR_WAIT; error = 0x02; } else { // correct SOC Uart.state = STATE_MILLER_Z; } break; case STATE_MILLER_Z: Uart.bitCnt++; Uart.shiftReg >>= 1; if(Uart.drop == DROP_NONE) { // logic '0' followed by sequence Y // end of communication Uart.state = STATE_UNSYNCD; EOC = TRUE; } // if(Uart.drop == DROP_FIRST_HALF) { // Uart.state = STATE_MILLER_Z; stay the same // we see a logic '0' } if(Uart.drop == DROP_SECOND_HALF) { // we see a logic '1' Uart.shiftReg |= 0x100; Uart.state = STATE_MILLER_X; } break; case STATE_MILLER_X: Uart.shiftReg >>= 1; if(Uart.drop == DROP_NONE) { // sequence Y, we see a '0' Uart.state = STATE_MILLER_Y; Uart.bitCnt++; } if(Uart.drop == DROP_FIRST_HALF) { // Would be STATE_MILLER_Z // but Z does not follow X, so error Uart.state = STATE_ERROR_WAIT; error = 0x03; } if(Uart.drop == DROP_SECOND_HALF) { // We see a '1' and stay in state X Uart.shiftReg |= 0x100; Uart.bitCnt++; } break; case STATE_MILLER_Y: Uart.bitCnt++; Uart.shiftReg >>= 1; if(Uart.drop == DROP_NONE) { // logic '0' followed by sequence Y // end of communication Uart.state = STATE_UNSYNCD; EOC = TRUE; } if(Uart.drop == DROP_FIRST_HALF) { // we see a '0' Uart.state = STATE_MILLER_Z; } if(Uart.drop == DROP_SECOND_HALF) { // We see a '1' and go to state X Uart.shiftReg |= 0x100; Uart.state = STATE_MILLER_X; } break; case STATE_ERROR_WAIT: // That went wrong. Now wait for at least two bit periods // and try to sync again if(Uart.drop == DROP_NONE) { Uart.highCnt = 6; Uart.state = STATE_UNSYNCD; } break; default: Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; break; } Uart.drop = DROP_NONE; // should have received at least one whole byte... if((Uart.bitCnt == 2) && EOC && (Uart.byteCnt > 0)) { return TRUE; } if(Uart.bitCnt == 9) { Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); Uart.byteCnt++; Uart.parityBits <<= 1; Uart.parityBits ^= ((Uart.shiftReg >> 8) & 0x01); if(EOC) { // when End of Communication received and // all data bits processed.. return TRUE; } Uart.bitCnt = 0; } /*if(error) { Uart.output[Uart.byteCnt] = 0xAA; Uart.byteCnt++; Uart.output[Uart.byteCnt] = error & 0xFF; Uart.byteCnt++; Uart.output[Uart.byteCnt] = 0xAA; Uart.byteCnt++; Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; Uart.byteCnt++; Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; Uart.byteCnt++; Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; Uart.byteCnt++; Uart.output[Uart.byteCnt] = 0xAA; Uart.byteCnt++; return TRUE; }*/ } } else { bit = Uart.bitBuffer & 0xf0; bit >>= 4; bit ^= 0x0F; if(bit) { // should have been high or at least (4 * 128) / fc // according to ISO this should be at least (9 * 128 + 20) / fc if(Uart.highCnt == 8) { // we went low, so this could be start of communication // it turns out to be safer to choose a less significant // syncbit... so we check whether the neighbour also represents the drop Uart.posCnt = 1; // apparently we are busy with our first half bit period Uart.syncBit = bit & 8; Uart.samples = 3; if(!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } else if(bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } if(!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } else if(bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } if(!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; if(Uart.syncBit & (Uart.bitBuffer & 8)) { Uart.syncBit = 8; // the first half bit period is expected in next sample Uart.posCnt = 0; Uart.samples = 3; } } else if(bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } Uart.syncBit <<= 4; Uart.state = STATE_START_OF_COMMUNICATION; Uart.drop = DROP_FIRST_HALF; Uart.bitCnt = 0; Uart.byteCnt = 0; Uart.parityBits = 0; error = 0; } else { Uart.highCnt = 0; } } else { if(Uart.highCnt < 8) { Uart.highCnt++; } } } return FALSE; } //============================================================================= // ISO 14443 Type A - Manchester //============================================================================= static struct { enum { DEMOD_UNSYNCD, DEMOD_START_OF_COMMUNICATION, DEMOD_MANCHESTER_D, DEMOD_MANCHESTER_E, DEMOD_MANCHESTER_F, DEMOD_ERROR_WAIT } state; int bitCount; int posCount; int syncBit; int parityBits; WORD shiftReg; int buffer; int buff; int samples; int len; enum { SUB_NONE, SUB_FIRST_HALF, SUB_SECOND_HALF } sub; BYTE *output; } Demod; static BOOL ManchesterDecoding(int v) { int bit; int modulation; int error = 0; if(!Demod.buff) { Demod.buff = 1; Demod.buffer = v; return FALSE; } else { bit = Demod.buffer; Demod.buffer = v; } if(Demod.state==DEMOD_UNSYNCD) { Demod.output[Demod.len] = 0xfa; Demod.syncBit = 0; //Demod.samples = 0; Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part if(bit & 0x08) { Demod.syncBit = 0x08; } if(!Demod.syncBit) { if(bit & 0x04) { Demod.syncBit = 0x04; } } else if(bit & 0x04) { Demod.syncBit = 0x04; bit <<= 4; } if(!Demod.syncBit) { if(bit & 0x02) { Demod.syncBit = 0x02; } } else if(bit & 0x02) { Demod.syncBit = 0x02; bit <<= 4; } if(!Demod.syncBit) { if(bit & 0x01) { Demod.syncBit = 0x01; } if(Demod.syncBit & (Demod.buffer & 0x08)) { Demod.syncBit = 0x08; // The first half bitperiod is expected in next sample Demod.posCount = 0; Demod.output[Demod.len] = 0xfb; } } else if(bit & 0x01) { Demod.syncBit = 0x01; } if(Demod.syncBit) { Demod.len = 0; Demod.state = DEMOD_START_OF_COMMUNICATION; Demod.sub = SUB_FIRST_HALF; Demod.bitCount = 0; Demod.shiftReg = 0; Demod.parityBits = 0; Demod.samples = 0; if(Demod.posCount) { switch(Demod.syncBit) { case 0x08: Demod.samples = 3; break; case 0x04: Demod.samples = 2; break; case 0x02: Demod.samples = 1; break; case 0x01: Demod.samples = 0; break; } } error = 0; } } else { //modulation = bit & Demod.syncBit; modulation = ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; Demod.samples += 4; if(Demod.posCount==0) { Demod.posCount = 1; if(modulation) { Demod.sub = SUB_FIRST_HALF; } else { Demod.sub = SUB_NONE; } } else { Demod.posCount = 0; if(modulation && (Demod.sub == SUB_FIRST_HALF)) { if(Demod.state!=DEMOD_ERROR_WAIT) { Demod.state = DEMOD_ERROR_WAIT; Demod.output[Demod.len] = 0xaa; error = 0x01; } } else if(modulation) { Demod.sub = SUB_SECOND_HALF; } switch(Demod.state) { case DEMOD_START_OF_COMMUNICATION: if(Demod.sub == SUB_FIRST_HALF) { Demod.state = DEMOD_MANCHESTER_D; } else { Demod.output[Demod.len] = 0xab; Demod.state = DEMOD_ERROR_WAIT; error = 0x02; } break; case DEMOD_MANCHESTER_D: case DEMOD_MANCHESTER_E: if(Demod.sub == SUB_FIRST_HALF) { Demod.bitCount++; Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; Demod.state = DEMOD_MANCHESTER_D; } else if(Demod.sub == SUB_SECOND_HALF) { Demod.bitCount++; Demod.shiftReg >>= 1; Demod.state = DEMOD_MANCHESTER_E; } else { Demod.state = DEMOD_MANCHESTER_F; } break; case DEMOD_MANCHESTER_F: // Tag response does not need to be a complete byte! if(Demod.len > 0 || Demod.bitCount > 0) { if(Demod.bitCount > 0) { Demod.shiftReg >>= (9 - Demod.bitCount); Demod.output[Demod.len] = Demod.shiftReg & 0xff; Demod.len++; // No parity bit, so just shift a 0 Demod.parityBits <<= 1; } Demod.state = DEMOD_UNSYNCD; return TRUE; } else { Demod.output[Demod.len] = 0xad; Demod.state = DEMOD_ERROR_WAIT; error = 0x03; } break; case DEMOD_ERROR_WAIT: Demod.state = DEMOD_UNSYNCD; break; default: Demod.output[Demod.len] = 0xdd; Demod.state = DEMOD_UNSYNCD; break; } if(Demod.bitCount>=9) { Demod.output[Demod.len] = Demod.shiftReg & 0xff; Demod.len++; Demod.parityBits <<= 1; Demod.parityBits ^= ((Demod.shiftReg >> 8) & 0x01); Demod.bitCount = 0; Demod.shiftReg = 0; } /*if(error) { Demod.output[Demod.len] = 0xBB; Demod.len++; Demod.output[Demod.len] = error & 0xFF; Demod.len++; Demod.output[Demod.len] = 0xBB; Demod.len++; Demod.output[Demod.len] = bit & 0xFF; Demod.len++; Demod.output[Demod.len] = Demod.buffer & 0xFF; Demod.len++; Demod.output[Demod.len] = Demod.syncBit & 0xFF; Demod.len++; Demod.output[Demod.len] = 0xBB; Demod.len++; return TRUE; }*/ } } // end (state != UNSYNCED) return FALSE; } //============================================================================= // Finally, a `sniffer' for ISO 14443 Type A // Both sides of communication! //============================================================================= //----------------------------------------------------------------------------- // Record the sequence of commands sent by the reader to the tag, with // triggering so that we start recording at the point that the tag is moved // near the reader. //----------------------------------------------------------------------------- void SnoopIso14443a(void) { // BIG CHANGE - UNDERSTAND THIS BEFORE WE COMMIT #define RECV_CMD_OFFSET 3032 #define RECV_RES_OFFSET 3096 #define DMA_BUFFER_OFFSET 3160 #define DMA_BUFFER_SIZE 4096 #define TRACE_LENGTH 3000 // #define RECV_CMD_OFFSET 2032 // original (working as of 21/2/09) values // #define RECV_RES_OFFSET 2096 // original (working as of 21/2/09) values // #define DMA_BUFFER_OFFSET 2160 // original (working as of 21/2/09) values // #define DMA_BUFFER_SIZE 4096 // original (working as of 21/2/09) values // #define TRACE_LENGTH 2000 // original (working as of 21/2/09) values // We won't start recording the frames that we acquire until we trigger; // a good trigger condition to get started is probably when we see a // response from the tag. BOOL triggered = TRUE; // FALSE to wait first for card // The command (reader -> tag) that we're receiving. // The length of a received command will in most cases be no more than 18 bytes. // So 32 should be enough! BYTE *receivedCmd = (((BYTE *)BigBuf) + RECV_CMD_OFFSET); // The response (tag -> reader) that we're receiving. BYTE *receivedResponse = (((BYTE *)BigBuf) + RECV_RES_OFFSET); // As we receive stuff, we copy it from receivedCmd or receivedResponse // into trace, along with its length and other annotations. BYTE *trace = (BYTE *)BigBuf; int traceLen = 0; // The DMA buffer, used to stream samples from the FPGA SBYTE *dmaBuf = ((SBYTE *)BigBuf) + DMA_BUFFER_OFFSET; int lastRxCounter; SBYTE *upTo; int smpl; int maxBehindBy = 0; // Count of samples received so far, so that we can include timing // information in the trace buffer. int samples = 0; int rsamples = 0; memset(trace, 0x44, RECV_CMD_OFFSET); // Set up the demodulator for tag -> reader responses. Demod.output = receivedResponse; Demod.len = 0; Demod.state = DEMOD_UNSYNCD; // And the reader -> tag commands memset(&Uart, 0, sizeof(Uart)); Uart.output = receivedCmd; Uart.byteCntMax = 32; // was 100 (greg)//////////////////////////////////////////////////////////////////////// Uart.state = STATE_UNSYNCD; // And put the FPGA in the appropriate mode // Signal field is off with the appropriate LED LED_D_OFF(); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); // Setup for the DMA. FpgaSetupSsc(); upTo = dmaBuf; lastRxCounter = DMA_BUFFER_SIZE; FpgaSetupSscDma((BYTE *)dmaBuf, DMA_BUFFER_SIZE); LED_A_ON(); // And now we loop, receiving samples. for(;;) { WDT_HIT(); int behindBy = (lastRxCounter - AT91C_BASE_PDC_SSC->PDC_RCR) & (DMA_BUFFER_SIZE-1); if(behindBy > maxBehindBy) { maxBehindBy = behindBy; if(behindBy > 400) { DbpString("blew circular buffer!"); goto done; } } if(behindBy < 1) continue; smpl = upTo[0]; upTo++; lastRxCounter -= 1; if(upTo - dmaBuf > DMA_BUFFER_SIZE) { upTo -= DMA_BUFFER_SIZE; lastRxCounter += DMA_BUFFER_SIZE; AT91C_BASE_PDC_SSC->PDC_RNPR = (DWORD)upTo; AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; } samples += 4; #define HANDLE_BIT_IF_BODY \ LED_C_ON(); \ if(triggered) { \ trace[traceLen++] = ((rsamples >> 0) & 0xff); \ trace[traceLen++] = ((rsamples >> 8) & 0xff); \ trace[traceLen++] = ((rsamples >> 16) & 0xff); \ trace[traceLen++] = ((rsamples >> 24) & 0xff); \ trace[traceLen++] = ((Uart.parityBits >> 0) & 0xff); \ trace[traceLen++] = ((Uart.parityBits >> 8) & 0xff); \ trace[traceLen++] = ((Uart.parityBits >> 16) & 0xff); \ trace[traceLen++] = ((Uart.parityBits >> 24) & 0xff); \ trace[traceLen++] = Uart.byteCnt; \ memcpy(trace+traceLen, receivedCmd, Uart.byteCnt); \ traceLen += Uart.byteCnt; \ if(traceLen > TRACE_LENGTH) break; \ } \ /* And ready to receive another command. */ \ Uart.state = STATE_UNSYNCD; \ /* And also reset the demod code, which might have been */ \ /* false-triggered by the commands from the reader. */ \ Demod.state = DEMOD_UNSYNCD; \ LED_B_OFF(); \ if(MillerDecoding((smpl & 0xF0) >> 4)) { rsamples = samples - Uart.samples; HANDLE_BIT_IF_BODY } if(ManchesterDecoding(smpl & 0x0F)) { rsamples = samples - Demod.samples; LED_B_ON(); // timestamp, as a count of samples trace[traceLen++] = ((rsamples >> 0) & 0xff); trace[traceLen++] = ((rsamples >> 8) & 0xff); trace[traceLen++] = ((rsamples >> 16) & 0xff); trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff); // length trace[traceLen++] = Demod.len; memcpy(trace+traceLen, receivedResponse, Demod.len); traceLen += Demod.len; if(traceLen > TRACE_LENGTH) break; triggered = TRUE; // And ready to receive another response. memset(&Demod, 0, sizeof(Demod)); Demod.output = receivedResponse; Demod.state = DEMOD_UNSYNCD; LED_C_OFF(); } if(BUTTON_PRESS()) { DbpString("cancelled_a"); goto done; } } DbpString("COMMAND FINISHED"); DbpIntegers(maxBehindBy, Uart.state, Uart.byteCnt); DbpIntegers(Uart.byteCntMax, traceLen, (int)Uart.output[0]); done: AT91C_BASE_PDC_SSC->PDC_PTCR = AT91C_PDC_RXTDIS; DbpIntegers(maxBehindBy, Uart.state, Uart.byteCnt); DbpIntegers(Uart.byteCntMax, traceLen, (int)Uart.output[0]); LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF(); } // Prepare communication bits to send to FPGA void Sequence(SecType seq) { ToSendMax++; switch(seq) { // CARD TO READER case SEC_D: // Sequence D: 11110000 // modulation with subcarrier during first half ToSend[ToSendMax] = 0xf0; break; case SEC_E: // Sequence E: 00001111 // modulation with subcarrier during second half ToSend[ToSendMax] = 0x0f; break; case SEC_F: // Sequence F: 00000000 // no modulation with subcarrier ToSend[ToSendMax] = 0x00; break; // READER TO CARD case SEC_X: // Sequence X: 00001100 // drop after half a period ToSend[ToSendMax] = 0x0c; break; case SEC_Y: default: // Sequence Y: 00000000 // no drop ToSend[ToSendMax] = 0x00; break; case SEC_Z: // Sequence Z: 11000000 // drop at start ToSend[ToSendMax] = 0xc0; break; } } //----------------------------------------------------------------------------- // Prepare tag messages //----------------------------------------------------------------------------- static void CodeIso14443aAsTag(const BYTE *cmd, int len) { int i; int oddparity; ToSendReset(); // Correction bit, might be removed when not needed ToSendStuffBit(0); ToSendStuffBit(0); ToSendStuffBit(0); ToSendStuffBit(0); ToSendStuffBit(1); // 1 ToSendStuffBit(0); ToSendStuffBit(0); ToSendStuffBit(0); // Send startbit Sequence(SEC_D); for(i = 0; i < len; i++) { int j; BYTE b = cmd[i]; // Data bits oddparity = 0x01; for(j = 0; j < 8; j++) { oddparity ^= (b & 1); if(b & 1) { Sequence(SEC_D); } else { Sequence(SEC_E); } b >>= 1; } // Parity bit if(oddparity) { Sequence(SEC_D); } else { Sequence(SEC_E); } } // Send stopbit Sequence(SEC_F); // Flush the buffer in FPGA!! for(i = 0; i < 5; i++) { Sequence(SEC_F); } // Convert from last byte pos to length ToSendMax++; // Add a few more for slop ToSend[ToSendMax++] = 0x00; ToSend[ToSendMax++] = 0x00; //ToSendMax += 2; } //----------------------------------------------------------------------------- // This is to send a NACK kind of answer, its only 3 bits, I know it should be 4 //----------------------------------------------------------------------------- static void CodeStrangeAnswer() { int i; ToSendReset(); // Correction bit, might be removed when not needed ToSendStuffBit(0); ToSendStuffBit(0); ToSendStuffBit(0); ToSendStuffBit(0); ToSendStuffBit(1); // 1 ToSendStuffBit(0); ToSendStuffBit(0); ToSendStuffBit(0); // Send startbit Sequence(SEC_D); // 0 Sequence(SEC_E); // 0 Sequence(SEC_E); // 1 Sequence(SEC_D); // Send stopbit Sequence(SEC_F); // Flush the buffer in FPGA!! for(i = 0; i < 5; i++) { Sequence(SEC_F); } // Convert from last byte pos to length ToSendMax++; // Add a few more for slop ToSend[ToSendMax++] = 0x00; ToSend[ToSendMax++] = 0x00; //ToSendMax += 2; } //----------------------------------------------------------------------------- // Wait for commands from reader // Stop when button is pressed // Or return TRUE when command is captured //----------------------------------------------------------------------------- static BOOL GetIso14443aCommandFromReader(BYTE *received, int *len, int maxLen) { // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen // only, since we are receiving, not transmitting). // Signal field is off with the appropriate LED LED_D_OFF(); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); // Now run a `software UART' on the stream of incoming samples. Uart.output = received; Uart.byteCntMax = maxLen; Uart.state = STATE_UNSYNCD; for(;;) { WDT_HIT(); if(BUTTON_PRESS()) return FALSE; if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = 0x00; } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { BYTE b = (BYTE)AT91C_BASE_SSC->SSC_RHR; if(MillerDecoding((b & 0xf0) >> 4)) { *len = Uart.byteCnt; return TRUE; } if(MillerDecoding(b & 0x0f)) { *len = Uart.byteCnt; return TRUE; } } } } //----------------------------------------------------------------------------- // Main loop of simulated tag: receive commands from reader, decide what // response to send, and send it. //----------------------------------------------------------------------------- void SimulateIso14443aTag(int tagType, int TagUid) { // This function contains the tag emulation // Prepare protocol messages // static const BYTE cmd1[] = { 0x26 }; // static const BYTE response1[] = { 0x02, 0x00 }; // Says: I am Mifare 4k - original line - greg // static const BYTE response1[] = { 0x44, 0x03 }; // Says: I am a DESFire Tag, ph33r me // static const BYTE response1[] = { 0x44, 0x00 }; // Says: I am a ULTRALITE Tag, 0wn me // UID response // static const BYTE cmd2[] = { 0x93, 0x20 }; //static const BYTE response2[] = { 0x9a, 0xe5, 0xe4, 0x43, 0xd8 }; // original value - greg // my desfire static const BYTE response2[] = { 0x88, 0x04, 0x21, 0x3f, 0x4d }; // known uid - note cascade (0x88), 2nd byte (0x04) = NXP/Phillips // When reader selects us during cascade1 it will send cmd3 //BYTE response3[] = { 0x04, 0x00, 0x00 }; // SAK Select (cascade1) successful response (ULTRALITE) BYTE response3[] = { 0x24, 0x00, 0x00 }; // SAK Select (cascade1) successful response (DESFire) ComputeCrc14443(CRC_14443_A, response3, 1, &response3[1], &response3[2]); // send cascade2 2nd half of UID static const BYTE response2a[] = { 0x51, 0x48, 0x1d, 0x80, 0x84 }; // uid - cascade2 - 2nd half (4 bytes) of UID+ BCCheck // NOTE : THE CRC on the above may be wrong as I have obfuscated the actual UID // When reader selects us during cascade2 it will send cmd3a //BYTE response3a[] = { 0x00, 0x00, 0x00 }; // SAK Select (cascade2) successful response (ULTRALITE) BYTE response3a[] = { 0x20, 0x00, 0x00 }; // SAK Select (cascade2) successful response (DESFire) ComputeCrc14443(CRC_14443_A, response3a, 1, &response3a[1], &response3a[2]); static const BYTE response5[] = { 0x00, 0x00, 0x00, 0x00 }; // Very random tag nonce BYTE *resp; int respLen; // Longest possible response will be 16 bytes + 2 CRC = 18 bytes // This will need // 144 data bits (18 * 8) // 18 parity bits // 2 Start and stop // 1 Correction bit (Answer in 1172 or 1236 periods, see FPGA) // 1 just for the case // ----------- + // 166 // // 166 bytes, since every bit that needs to be send costs us a byte // // Respond with card type BYTE *resp1 = (((BYTE *)BigBuf) + 800); int resp1Len; // Anticollision cascade1 - respond with uid BYTE *resp2 = (((BYTE *)BigBuf) + 970); int resp2Len; // Anticollision cascade2 - respond with 2nd half of uid if asked // we're only going to be asked if we set the 1st byte of the UID (during cascade1) to 0x88 BYTE *resp2a = (((BYTE *)BigBuf) + 1140); int resp2aLen; // Acknowledge select - cascade 1 BYTE *resp3 = (((BYTE *)BigBuf) + 1310); int resp3Len; // Acknowledge select - cascade 2 BYTE *resp3a = (((BYTE *)BigBuf) + 1480); int resp3aLen; // Response to a read request - not implemented atm BYTE *resp4 = (((BYTE *)BigBuf) + 1550); int resp4Len; // Authenticate response - nonce BYTE *resp5 = (((BYTE *)BigBuf) + 1720); int resp5Len; BYTE *receivedCmd = (BYTE *)BigBuf; int len; int i; int u; BYTE b; // To control where we are in the protocol int order = 0; int lastorder; // Just to allow some checks int happened = 0; int happened2 = 0; int cmdsRecvd = 0; BOOL fdt_indicator; memset(receivedCmd, 0x44, 400); // Prepare the responses of the anticollision phase // there will be not enough time to do this at the moment the reader sends it REQA // Answer to request CodeIso14443aAsTag(response1, sizeof(response1)); memcpy(resp1, ToSend, ToSendMax); resp1Len = ToSendMax; // Send our UID (cascade 1) CodeIso14443aAsTag(response2, sizeof(response2)); memcpy(resp2, ToSend, ToSendMax); resp2Len = ToSendMax; // Answer to select (cascade1) CodeIso14443aAsTag(response3, sizeof(response3)); memcpy(resp3, ToSend, ToSendMax); resp3Len = ToSendMax; // Send the cascade 2 2nd part of the uid CodeIso14443aAsTag(response2a, sizeof(response2a)); memcpy(resp2a, ToSend, ToSendMax); resp2aLen = ToSendMax; // Answer to select (cascade 2) CodeIso14443aAsTag(response3a, sizeof(response3a)); memcpy(resp3a, ToSend, ToSendMax); resp3aLen = ToSendMax; // Strange answer is an example of rare message size (3 bits) CodeStrangeAnswer(); memcpy(resp4, ToSend, ToSendMax); resp4Len = ToSendMax; // Authentication answer (random nonce) CodeIso14443aAsTag(response5, sizeof(response5)); memcpy(resp5, ToSend, ToSendMax); resp5Len = ToSendMax; // We need to listen to the high-frequency, peak-detected path. SetAdcMuxFor(GPIO_MUXSEL_HIPKD); FpgaSetupSsc(); cmdsRecvd = 0; LED_A_ON(); for(;;) { if(!GetIso14443aCommandFromReader(receivedCmd, &len, 100)) { DbpString("button press"); break; } // doob - added loads of debug strings so we can see what the reader is saying to us during the sim as hi14alist is not populated // Okay, look at the command now. lastorder = order; i = 1; // first byte transmitted if(receivedCmd[0] == 0x26) { // Received a REQUEST resp = resp1; respLen = resp1Len; order = 1; //DbpString("Hello request from reader:"); } else if(receivedCmd[0] == 0x52) { // Received a WAKEUP resp = resp1; respLen = resp1Len; order = 6; // //DbpString("Wakeup request from reader:"); } else if(receivedCmd[1] == 0x20 && receivedCmd[0] == 0x93) { // greg - cascade 1 anti-collision // Received request for UID (cascade 1) resp = resp2; respLen = resp2Len; order = 2; // DbpString("UID (cascade 1) request from reader:"); // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); } else if(receivedCmd[1] == 0x20 && receivedCmd[0] ==0x95) { // greg - cascade 2 anti-collision // Received request for UID (cascade 2) resp = resp2a; respLen = resp2aLen; order = 20; // DbpString("UID (cascade 2) request from reader:"); // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x93) { // greg - cascade 1 select // Received a SELECT resp = resp3; respLen = resp3Len; order = 3; // DbpString("Select (cascade 1) request from reader:"); // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); } else if(receivedCmd[1] == 0x70 && receivedCmd[0] ==0x95) { // greg - cascade 2 select // Received a SELECT resp = resp3a; respLen = resp3aLen; order = 30; // DbpString("Select (cascade 2) request from reader:"); // DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); } else if(receivedCmd[0] == 0x30) { // Received a READ resp = resp4; respLen = resp4Len; order = 4; // Do nothing DbpString("Read request from reader:"); DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); } else if(receivedCmd[0] == 0x50) { // Received a HALT resp = resp1; respLen = 0; order = 5; // Do nothing DbpString("Reader requested we HALT!:"); } else if(receivedCmd[0] == 0x60) { // Received an authentication request resp = resp5; respLen = resp5Len; order = 7; DbpString("Authenticate request from reader:"); DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); } else if(receivedCmd[0] == 0xE0) { // Received a RATS request resp = resp1; respLen = 0;order = 70; DbpString("RATS request from reader:"); DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); } else { // Never seen this command before DbpString("Unknown command received from reader:"); DbpIntegers(receivedCmd[0], receivedCmd[1], receivedCmd[2]); DbpIntegers(receivedCmd[3], receivedCmd[4], receivedCmd[5]); DbpIntegers(receivedCmd[6], receivedCmd[7], receivedCmd[8]); // Do not respond resp = resp1; respLen = 0; order = 0; } // Count number of wakeups received after a halt if(order == 6 && lastorder == 5) { happened++; } // Count number of other messages after a halt if(order != 6 && lastorder == 5) { happened2++; } // Look at last parity bit to determine timing of answer if((Uart.parityBits & 0x01) || receivedCmd[0] == 0x52) { // 1236, so correction bit needed i = 0; } memset(receivedCmd, 0x44, 32); if(cmdsRecvd > 999) { DbpString("1000 commands later..."); break; } else { cmdsRecvd++; } if(respLen <= 0) continue; // Modulate Manchester FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_MOD); AT91C_BASE_SSC->SSC_THR = 0x00; FpgaSetupSsc(); // ### Transmit the response ### u = 0; b = 0x00; fdt_indicator = FALSE; for(;;) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { volatile BYTE b = (BYTE)AT91C_BASE_SSC->SSC_RHR; (void)b; } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { if(i > respLen) { b = 0x00; u++; } else { b = resp[i]; i++; } AT91C_BASE_SSC->SSC_THR = b; if(u > 4) { break; } } if(BUTTON_PRESS()) { break; } } } DbpIntegers(happened, happened2, cmdsRecvd); LED_A_OFF(); } //----------------------------------------------------------------------------- // Transmit the command (to the tag) that was placed in ToSend[]. //----------------------------------------------------------------------------- static void TransmitFor14443a(const BYTE *cmd, int len, int *samples, int *wait) { int c; FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); if(*wait < 10) { *wait = 10; } for(c = 0; c < *wait;) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! c++; } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { volatile DWORD r = AT91C_BASE_SSC->SSC_RHR; (void)r; } WDT_HIT(); } c = 0; for(;;) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = cmd[c]; c++; if(c >= len) { break; } } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { volatile DWORD r = AT91C_BASE_SSC->SSC_RHR; (void)r; } WDT_HIT(); } *samples = (c + *wait) << 3; } //----------------------------------------------------------------------------- // To generate an arbitrary stream from reader // //----------------------------------------------------------------------------- void ArbitraryFromReader(const BYTE *cmd, int parity, int len) { int i; int j; int last; BYTE b; ToSendReset(); // Start of Communication (Seq. Z) Sequence(SEC_Z); last = 0; for(i = 0; i < len; i++) { // Data bits b = cmd[i]; for(j = 0; j < 8; j++) { if(b & 1) { // Sequence X Sequence(SEC_X); last = 1; } else { if(last == 0) { // Sequence Z Sequence(SEC_Z); } else { // Sequence Y Sequence(SEC_Y); last = 0; } } b >>= 1; } // Predefined parity bit, the flipper flips when needed, because of flips in byte sent if(((parity >> (len - i - 1)) & 1)) { // Sequence X Sequence(SEC_X); last = 1; } else { if(last == 0) { // Sequence Z Sequence(SEC_Z); } else { // Sequence Y Sequence(SEC_Y); last = 0; } } } // End of Communication if(last == 0) { // Sequence Z Sequence(SEC_Z); } else { // Sequence Y Sequence(SEC_Y); last = 0; } // Sequence Y Sequence(SEC_Y); // Just to be sure! Sequence(SEC_Y); Sequence(SEC_Y); Sequence(SEC_Y); // Convert from last character reference to length ToSendMax++; } //----------------------------------------------------------------------------- // Code a 7-bit command without parity bit // This is especially for 0x26 and 0x52 (REQA and WUPA) //----------------------------------------------------------------------------- void ShortFrameFromReader(const BYTE *cmd) { int j; int last; BYTE b; ToSendReset(); // Start of Communication (Seq. Z) Sequence(SEC_Z); last = 0; b = cmd[0]; for(j = 0; j < 7; j++) { if(b & 1) { // Sequence X Sequence(SEC_X); last = 1; } else { if(last == 0) { // Sequence Z Sequence(SEC_Z); } else { // Sequence Y Sequence(SEC_Y); last = 0; } } b >>= 1; } // End of Communication if(last == 0) { // Sequence Z Sequence(SEC_Z); } else { // Sequence Y Sequence(SEC_Y); last = 0; } // Sequence Y Sequence(SEC_Y); // Just to be sure! Sequence(SEC_Y); Sequence(SEC_Y); Sequence(SEC_Y); // Convert from last character reference to length ToSendMax++; } //----------------------------------------------------------------------------- // Prepare reader command to send to FPGA // //----------------------------------------------------------------------------- void CodeIso14443aAsReader(const BYTE *cmd, int len) { int i, j; int last; int oddparity; BYTE b; ToSendReset(); // Start of Communication (Seq. Z) Sequence(SEC_Z); last = 0; for(i = 0; i < len; i++) { // Data bits b = cmd[i]; oddparity = 0x01; for(j = 0; j < 8; j++) { oddparity ^= (b & 1); if(b & 1) { // Sequence X Sequence(SEC_X); last = 1; } else { if(last == 0) { // Sequence Z Sequence(SEC_Z); } else { // Sequence Y Sequence(SEC_Y); last = 0; } } b >>= 1; } // Parity bit if(oddparity) { // Sequence X Sequence(SEC_X); last = 1; } else { if(last == 0) { // Sequence Z Sequence(SEC_Z); } else { // Sequence Y Sequence(SEC_Y); last = 0; } } } // End of Communication if(last == 0) { // Sequence Z Sequence(SEC_Z); } else { // Sequence Y Sequence(SEC_Y); last = 0; } // Sequence Y Sequence(SEC_Y); // Just to be sure! Sequence(SEC_Y); Sequence(SEC_Y); Sequence(SEC_Y); // Convert from last character reference to length ToSendMax++; } //----------------------------------------------------------------------------- // Wait a certain time for tag response // If a response is captured return TRUE // If it takes to long return FALSE //----------------------------------------------------------------------------- static BOOL GetIso14443aAnswerFromTag(BYTE *receivedResponse, int maxLen, int *samples, int *elapsed) //BYTE *buffer { // buffer needs to be 512 bytes int c; // Set FPGA mode to "reader listen mode", no modulation (listen // only, since we are receiving, not transmitting). // Signal field is on with the appropriate LED LED_D_ON(); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); // Now get the answer from the card Demod.output = receivedResponse; Demod.len = 0; Demod.state = DEMOD_UNSYNCD; BYTE b; *elapsed = 0; c = 0; for(;;) { WDT_HIT(); if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! (*elapsed)++; } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { if(c < 512) { c++; } else { return FALSE; } b = (BYTE)AT91C_BASE_SSC->SSC_RHR; if(ManchesterDecoding((b & 0xf0) >> 4)) { *samples = ((c - 1) << 3) + 4; return TRUE; } if(ManchesterDecoding(b & 0x0f)) { *samples = c << 3; return TRUE; } } } } //----------------------------------------------------------------------------- // Read an ISO 14443a tag. Send out commands and store answers. // //----------------------------------------------------------------------------- void ReaderIso14443a(DWORD parameter) { // Anticollision static const BYTE cmd1[] = { 0x52 }; // or 0x26 static const BYTE cmd2[] = { 0x93,0x20 }; // UID = 0x2a,0x69,0x8d,0x43,0x8d, last two bytes are CRC bytes BYTE cmd3[] = { 0x93,0x70,0x2a,0x69,0x8d,0x43,0x8d,0x52,0x55 }; // For Ultralight add an extra anticollission layer -> 95 20 and then 95 70 // greg - here we will add our cascade level 2 anticolission and select functions to deal with ultralight // and 7-byte UIDs in generall... BYTE cmd4[] = {0x95,0x20}; // ask for cascade 2 select // 95 20 //BYTE cmd3a[] = { 0x95,0x70,0x2a,0x69,0x8d,0x43,0x8d,0x52,0x55 }; // 95 70 // cascade 2 select BYTE cmd5[] = { 0x95,0x70,0x2a,0x69,0x8d,0x43,0x8d,0x52,0x55 }; // RATS (request for answer to select) //BYTE cmd6[] = { 0xe0,0x50,0xbc,0xa5 }; // original RATS BYTE cmd6[] = { 0xe0,0x21,0xb2,0xc7 }; // Desfire RATS // Mifare AUTH BYTE cmd7[] = { 0x60, 0x00, 0x00, 0x00 }; int reqaddr = 2024; // was 2024 - tied to other size changes int reqsize = 60; BYTE *req1 = (((BYTE *)BigBuf) + reqaddr); int req1Len; BYTE *req2 = (((BYTE *)BigBuf) + reqaddr + reqsize); int req2Len; BYTE *req3 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 2)); int req3Len; // greg added req 4 & 5 to deal with cascade 2 section BYTE *req4 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 3)); int req4Len; BYTE *req5 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 4)); int req5Len; BYTE *req6 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 5)); int req6Len; BYTE *req7 = (((BYTE *)BigBuf) + reqaddr + (reqsize * 6)); int req7Len; BYTE *receivedAnswer = (((BYTE *)BigBuf) + 3560); // was 3560 - tied to other size changes BYTE *trace = (BYTE *)BigBuf; int traceLen = 0; int rsamples = 0; memset(trace, 0x44, 2000); // was 2000 - tied to oter size chnages // setting it to 3000 causes no tag responses to be detected (2900 is ok) // setting it to 1000 causes no tag responses to be detected // Prepare some commands! ShortFrameFromReader(cmd1); memcpy(req1, ToSend, ToSendMax); req1Len = ToSendMax; CodeIso14443aAsReader(cmd2, sizeof(cmd2)); memcpy(req2, ToSend, ToSendMax); req2Len = ToSendMax; CodeIso14443aAsReader(cmd3, sizeof(cmd3)); memcpy(req3, ToSend, ToSendMax); req3Len = ToSendMax; CodeIso14443aAsReader(cmd4, sizeof(cmd4)); // 4 is cascade 2 request memcpy(req4, ToSend, ToSendMax); req4Len = ToSendMax; CodeIso14443aAsReader(cmd5, sizeof(cmd5)); // 5 is cascade 2 select memcpy(req5, ToSend, ToSendMax); req5Len = ToSendMax; CodeIso14443aAsReader(cmd6, sizeof(cmd6)); memcpy(req6, ToSend, ToSendMax); req6Len = ToSendMax; // Setup SSC FpgaSetupSsc(); // Start from off (no field generated) // Signal field is off with the appropriate LED LED_D_OFF(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(200); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); FpgaSetupSsc(); // Now give it time to spin up. // Signal field is on with the appropriate LED LED_D_ON(); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); SpinDelay(200); LED_A_ON(); LED_B_OFF(); LED_C_OFF(); int samples = 0; int tsamples = 0; int wait = 0; int elapsed = 0; for(;;) { // Send WUPA (or REQA) TransmitFor14443a(req1, req1Len, &tsamples, &wait); // Store answer in buffer trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 1; memcpy(trace+traceLen, cmd1, 1); traceLen += 1; if(traceLen > TRACE_LENGTH) goto done; while(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) { if(BUTTON_PRESS()) goto done; // No answer, just continue polling TransmitFor14443a(req1, req1Len, &tsamples, &wait); // Store answer in buffer trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 1; memcpy(trace+traceLen, cmd1, 1); traceLen += 1; if(traceLen > TRACE_LENGTH) goto done; } // Store answer in buffer rsamples = rsamples + (samples - Demod.samples); trace[traceLen++] = ((rsamples >> 0) & 0xff); trace[traceLen++] = ((rsamples >> 8) & 0xff); trace[traceLen++] = ((rsamples >> 16) & 0xff); trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff); trace[traceLen++] = Demod.len; memcpy(trace+traceLen, receivedAnswer, Demod.len); traceLen += Demod.len; if(traceLen > TRACE_LENGTH) goto done; // Ask for card UID TransmitFor14443a(req2, req2Len, &tsamples, &wait); // Store answer in buffer trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 2; memcpy(trace+traceLen, cmd2, 2); traceLen += 2; if(traceLen > TRACE_LENGTH) goto done; if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) { continue; } // Store answer in buffer rsamples = rsamples + (samples - Demod.samples); trace[traceLen++] = ((rsamples >> 0) & 0xff); trace[traceLen++] = ((rsamples >> 8) & 0xff); trace[traceLen++] = ((rsamples >> 16) & 0xff); trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff); trace[traceLen++] = Demod.len; memcpy(trace+traceLen, receivedAnswer, Demod.len); traceLen += Demod.len; if(traceLen > TRACE_LENGTH) goto done; // Construct SELECT UID command // First copy the 5 bytes (Mifare Classic) after the 93 70 memcpy(cmd3+2,receivedAnswer,5); // Secondly compute the two CRC bytes at the end ComputeCrc14443(CRC_14443_A, cmd3, 7, &cmd3[7], &cmd3[8]); // Prepare the bit sequence to modulate the subcarrier // Store answer in buffer trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 9; memcpy(trace+traceLen, cmd3, 9); traceLen += 9; if(traceLen > TRACE_LENGTH) goto done; CodeIso14443aAsReader(cmd3, sizeof(cmd3)); memcpy(req3, ToSend, ToSendMax); req3Len = ToSendMax; // Select the card TransmitFor14443a(req3, req3Len, &samples, &wait); if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) { continue; } // Store answer in buffer rsamples = rsamples + (samples - Demod.samples); trace[traceLen++] = ((rsamples >> 0) & 0xff); trace[traceLen++] = ((rsamples >> 8) & 0xff); trace[traceLen++] = ((rsamples >> 16) & 0xff); trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff); trace[traceLen++] = Demod.len; memcpy(trace+traceLen, receivedAnswer, Demod.len); traceLen += Demod.len; if(traceLen > TRACE_LENGTH) goto done; // OK we have selected at least at cascade 1, lets see if first byte of UID was 0x88 in // which case we need to make a cascade 2 request and select - this is a long UID if (receivedAnswer[0] == 0x88) { // Do cascade level 2 stuff /////////////////////////////////////////////////////////////////// // First issue a '95 20' identify request // Ask for card UID (part 2) TransmitFor14443a(req4, req4Len, &tsamples, &wait); // Store answer in buffer trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 2; memcpy(trace+traceLen, cmd4, 2); traceLen += 2; if(traceLen > TRACE_LENGTH) { DbpString("Bugging out, just popped tracelength"); goto done;} if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) { continue; } // Store answer in buffer rsamples = rsamples + (samples - Demod.samples); trace[traceLen++] = ((rsamples >> 0) & 0xff); trace[traceLen++] = ((rsamples >> 8) & 0xff); trace[traceLen++] = ((rsamples >> 16) & 0xff); trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff); trace[traceLen++] = Demod.len; memcpy(trace+traceLen, receivedAnswer, Demod.len); traceLen += Demod.len; if(traceLen > TRACE_LENGTH) goto done; ////////////////////////////////////////////////////////////////// // Then Construct SELECT UID (cascasde 2) command DbpString("Just about to copy the UID out of the cascade 2 id req"); // First copy the 5 bytes (Mifare Classic) after the 95 70 memcpy(cmd5+2,receivedAnswer,5); // Secondly compute the two CRC bytes at the end ComputeCrc14443(CRC_14443_A, cmd4, 7, &cmd5[7], &cmd5[8]); // Prepare the bit sequence to modulate the subcarrier // Store answer in buffer trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 9; memcpy(trace+traceLen, cmd5, 9); traceLen += 9; if(traceLen > TRACE_LENGTH) goto done; CodeIso14443aAsReader(cmd5, sizeof(cmd5)); memcpy(req5, ToSend, ToSendMax); req5Len = ToSendMax; // Select the card TransmitFor14443a(req4, req4Len, &samples, &wait); if(!GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) { continue; } // Store answer in buffer rsamples = rsamples + (samples - Demod.samples); trace[traceLen++] = ((rsamples >> 0) & 0xff); trace[traceLen++] = ((rsamples >> 8) & 0xff); trace[traceLen++] = ((rsamples >> 16) & 0xff); trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff); trace[traceLen++] = Demod.len; memcpy(trace+traceLen, receivedAnswer, Demod.len); traceLen += Demod.len; if(traceLen > TRACE_LENGTH) goto done; } // Secondly compute the two CRC bytes at the end ComputeCrc14443(CRC_14443_A, cmd7, 2, &cmd7[2], &cmd7[3]); CodeIso14443aAsReader(cmd7, sizeof(cmd7)); memcpy(req7, ToSend, ToSendMax); req7Len = ToSendMax; // Send authentication request (Mifare Classic) TransmitFor14443a(req7, req7Len, &samples, &wait); trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 0; trace[traceLen++] = 4; memcpy(trace+traceLen, cmd7, 4); traceLen += 4; if(traceLen > TRACE_LENGTH) goto done; if(GetIso14443aAnswerFromTag(receivedAnswer, 100, &samples, &elapsed)) { rsamples++; // We received probably a random, continue and trace! } else { // Received nothing continue; } // Trace the random, i'm curious rsamples = rsamples + (samples - Demod.samples); trace[traceLen++] = ((rsamples >> 0) & 0xff); trace[traceLen++] = ((rsamples >> 8) & 0xff); trace[traceLen++] = ((rsamples >> 16) & 0xff); trace[traceLen++] = 0x80 | ((rsamples >> 24) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 0) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 8) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 16) & 0xff); trace[traceLen++] = ((Demod.parityBits >> 24) & 0xff); trace[traceLen++] = Demod.len; memcpy(trace+traceLen, receivedAnswer, Demod.len); traceLen += Demod.len; if(traceLen > TRACE_LENGTH) goto done; // Thats it... } done: FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); DbpIntegers(rsamples, 0xCC, 0xCC); DbpString("ready.."); }