//----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // High frequency ISO14443B commands //----------------------------------------------------------------------------- #include #include #include #include #include #include "../common/iso14443crc.h" #include "proxmark3.h" #include "data.h" #include "graph.h" #include "ui.h" #include "cmdparser.h" #include "cmdhf14b.h" #include "cmdmain.h" static int CmdHelp(const char *Cmd); int CmdHF14BDemod(const char *Cmd) { int i, j, iold; int isum, qsum; int outOfWeakAt; bool negateI, negateQ; uint8_t data[256]; int dataLen = 0; // As received, the samples are pairs, correlations against I and Q // square waves. So estimate angle of initial carrier (or just // quadrant, actually), and then do the demod. // First, estimate where the tag starts modulating. for (i = 0; i < GraphTraceLen; i += 2) { if (abs(GraphBuffer[i]) + abs(GraphBuffer[i + 1]) > 40) { break; } } if (i >= GraphTraceLen) { PrintAndLog("too weak to sync"); return 0; } PrintAndLog("out of weak at %d", i); outOfWeakAt = i; // Now, estimate the phase in the initial modulation of the tag isum = 0; qsum = 0; for (; i < (outOfWeakAt + 16); i += 2) { isum += GraphBuffer[i + 0]; qsum += GraphBuffer[i + 1]; } negateI = (isum < 0); negateQ = (qsum < 0); // Turn the correlation pairs into soft decisions on the bit. j = 0; for (i = 0; i < GraphTraceLen / 2; i++) { int si = GraphBuffer[j]; int sq = GraphBuffer[j + 1]; if (negateI) si = -si; if (negateQ) sq = -sq; GraphBuffer[i] = si + sq; j += 2; } GraphTraceLen = i; i = outOfWeakAt / 2; while (GraphBuffer[i] > 0 && i < GraphTraceLen) i++; if (i >= GraphTraceLen) goto demodError; iold = i; while (GraphBuffer[i] < 0 && i < GraphTraceLen) i++; if (i >= GraphTraceLen) goto demodError; if ((i - iold) > 23) goto demodError; PrintAndLog("make it to demod loop"); for (;;) { iold = i; while (GraphBuffer[i] >= 0 && i < GraphTraceLen) i++; if (i >= GraphTraceLen) goto demodError; if ((i - iold) > 6) goto demodError; uint16_t shiftReg = 0; if (i + 20 >= GraphTraceLen) goto demodError; for (j = 0; j < 10; j++) { int soft = GraphBuffer[i] + GraphBuffer[i + 1]; if (abs(soft) < (abs(isum) + abs(qsum)) / 20) { PrintAndLog("weak bit"); } shiftReg >>= 1; if(GraphBuffer[i] + GraphBuffer[i+1] >= 0) { shiftReg |= 0x200; } i+= 2; } if ((shiftReg & 0x200) && !(shiftReg & 0x001)) { // valid data byte, start and stop bits okay PrintAndLog(" %02x", (shiftReg >> 1) & 0xff); data[dataLen++] = (shiftReg >> 1) & 0xff; if (dataLen >= sizeof(data)) { return 0; } } else if (shiftReg == 0x000) { // this is EOF break; } else { goto demodError; } } uint8_t first, second; ComputeCrc14443(CRC_14443_B, data, dataLen-2, &first, &second); PrintAndLog("CRC: %02x %02x (%s)\n", first, second, (first == data[dataLen-2] && second == data[dataLen-1]) ? "ok" : "****FAIL****"); RepaintGraphWindow(); return 0; demodError: PrintAndLog("demod error"); RepaintGraphWindow(); return 0; } int CmdHF14BList(const char *Cmd) { uint8_t got[960]; GetFromBigBuf(got,sizeof(got),0); WaitForResponse(CMD_ACK,NULL); PrintAndLog("recorded activity:"); PrintAndLog(" time :rssi: who bytes"); PrintAndLog("---------+----+----+-----------"); int i = 0; int prev = -1; for(;;) { if(i >= 900) { break; } bool isResponse; int timestamp = *((uint32_t *)(got+i)); if(timestamp & 0x80000000) { timestamp &= 0x7fffffff; isResponse = 1; } else { isResponse = 0; } int metric = *((uint32_t *)(got+i+4)); int len = got[i+8]; if(len > 100) { break; } if(i + len >= 900) { break; } uint8_t *frame = (got+i+9); // Break and stick with current result if buffer was not completely full if (frame[0] == 0x44 && frame[1] == 0x44 && frame[2] == 0x44 && frame[3] == 0x44) break; char line[1000] = ""; int j; for(j = 0; j < len; j++) { sprintf(line+(j*3), "%02x ", frame[j]); } char *crc; if(len > 2) { uint8_t b1, b2; ComputeCrc14443(CRC_14443_B, frame, len-2, &b1, &b2); if(b1 != frame[len-2] || b2 != frame[len-1]) { crc = "**FAIL CRC**"; } else { crc = ""; } } else { crc = "(SHORT)"; } char metricString[100]; if(isResponse) { sprintf(metricString, "%3d", metric); } else { strcpy(metricString, " "); } PrintAndLog(" +%7d: %s: %s %s %s", (prev < 0 ? 0 : timestamp - prev), metricString, (isResponse ? "TAG" : " "), line, crc); prev = timestamp; i += (len + 9); } return 0; } int CmdHF14BRead(const char *Cmd) { UsbCommand c = {CMD_ACQUIRE_RAW_ADC_SAMPLES_ISO_14443, {strtol(Cmd, NULL, 0), 0, 0}}; SendCommand(&c); return 0; } int CmdHF14Sim(const char *Cmd) { UsbCommand c={CMD_SIMULATE_TAG_ISO_14443}; SendCommand(&c); return 0; } int CmdHFSimlisten(const char *Cmd) { UsbCommand c = {CMD_SIMULATE_TAG_HF_LISTEN}; SendCommand(&c); return 0; } int CmdHF14BSnoop(const char *Cmd) { UsbCommand c = {CMD_SNOOP_ISO_14443}; SendCommand(&c); return 0; } /* New command to read the contents of a SRI512 tag * SRI512 tags are ISO14443-B modulated memory tags, * this command just dumps the contents of the memory */ int CmdSri512Read(const char *Cmd) { UsbCommand c = {CMD_READ_SRI512_TAG, {strtol(Cmd, NULL, 0), 0, 0}}; SendCommand(&c); return 0; } /* New command to read the contents of a SRIX4K tag * SRIX4K tags are ISO14443-B modulated memory tags, * this command just dumps the contents of the memory/ */ int CmdSrix4kRead(const char *Cmd) { UsbCommand c = {CMD_READ_SRIX4K_TAG, {strtol(Cmd, NULL, 0), 0, 0}}; SendCommand(&c); return 0; } int CmdHF14BCmdRaw (const char *cmd) { UsbCommand resp; uint8_t *recv; UsbCommand c = {CMD_ISO_14443B_COMMAND, {0, 0, 0}}; // len,recv? uint8_t reply=1; uint8_t crc=0; uint8_t power=0; char buf[5]=""; int i=0; uint8_t data[100]; unsigned int datalen=0, temp; char *hexout; if (strlen(cmd)<3) { PrintAndLog("Usage: hf 14b raw [-r] [-c] [-p] <0A 0B 0C ... hex>"); PrintAndLog(" -r do not read response"); PrintAndLog(" -c calculate and append CRC"); PrintAndLog(" -p leave the field on after receive"); return 0; } // strip while (*cmd==' ' || *cmd=='\t') cmd++; while (cmd[i]!='\0') { if (cmd[i]==' ' || cmd[i]=='\t') { i++; continue; } if (cmd[i]=='-') { switch (cmd[i+1]) { case 'r': case 'R': reply=0; break; case 'c': case 'C': crc=1; break; case 'p': case 'P': power=1; break; default: PrintAndLog("Invalid option"); return 0; } i+=2; continue; } if ((cmd[i]>='0' && cmd[i]<='9') || (cmd[i]>='a' && cmd[i]<='f') || (cmd[i]>='A' && cmd[i]<='F') ) { buf[strlen(buf)+1]=0; buf[strlen(buf)]=cmd[i]; i++; if (strlen(buf)>=2) { sscanf(buf,"%x",&temp); data[datalen]=(uint8_t)(temp & 0xff); datalen++; *buf=0; } continue; } PrintAndLog("Invalid char on input"); return 0; } if (datalen == 0) { PrintAndLog("Missing data input"); return 0; } if(crc) { uint8_t first, second; ComputeCrc14443(CRC_14443_B, data, datalen, &first, &second); data[datalen++] = first; data[datalen++] = second; } c.arg[0] = datalen; c.arg[1] = reply; c.arg[2] = power; memcpy(c.d.asBytes,data,datalen); SendCommand(&c); if (reply) { if (WaitForResponseTimeout(CMD_ACK,&resp,1000)) { recv = resp.d.asBytes; PrintAndLog("received %i octets",resp.arg[0]); if(!resp.arg[0]) return 0; hexout = (char *)malloc(resp.arg[0] * 3 + 1); if (hexout != NULL) { uint8_t first, second; for (int i = 0; i < resp.arg[0]; i++) { // data in hex sprintf(&hexout[i * 3], "%02X ", recv[i]); } PrintAndLog("%s", hexout); free(hexout); ComputeCrc14443(CRC_14443_B, recv, resp.arg[0]-2, &first, &second); if(recv[resp.arg[0]-2]==first && recv[resp.arg[0]-1]==second) { PrintAndLog("CRC OK"); } else { PrintAndLog("CRC failed"); } } else { PrintAndLog("malloc failed your client has low memory?"); } } else { PrintAndLog("timeout while waiting for reply."); } } // if reply return 0; } int CmdHF14BWrite( const char *Cmd){ /* * For SRIX4K blocks 00 - 7F * hf 14b raw -c -p 09 $srix4kwblock $srix4kwdata * * For SR512 blocks 00 - 0F * hf 14b raw -c -p 09 $sr512wblock $sr512wdata * * Special block FF = otp_lock_reg block. * Data len 4 bytes- */ char cmdp = param_getchar(Cmd, 0); uint8_t blockno = -1; uint8_t data[4] = {0x00}; bool isSrix4k = true; char str[20]; if (cmdp == 'h' || cmdp == 'H') { PrintAndLog("Usage: hf 14b write <1|2> "); PrintAndLog(""); PrintAndLog(" sample: hf 14b write 1 127 11223344"); PrintAndLog(" sample: hf 14b write 1 255 11223344"); PrintAndLog(" sample: hf 14b write 2 15 11223344"); PrintAndLog(" sample: hf 14b write 2 255 11223344"); return 0; } if ( param_getchar(Cmd, 0) == '2' ) isSrix4k = false; blockno = param_get8(Cmd, 1); if ( isSrix4k ){ if ( blockno > 0x7f && blockno != 0xff ){ PrintAndLog("Block number out of range"); return 0; } } else { if ( blockno > 0x0f && blockno != 0xff ){ PrintAndLog("Block number out of range"); return 0; } } if (param_gethex(Cmd, 2, data, 8)) { PrintAndLog("Data must include 8 HEX symbols"); return 0; } if ( blockno == 0xff) PrintAndLog("Writing to special block %02X [ %s]", blockno, sprint_hex(data,4) ); else PrintAndLog("Writing to block %02X [ %s]", blockno, sprint_hex(data,4) ); sprintf(str, "-c -p 09 %02x %02x%02x%02x%02x", blockno, data[0], data[1], data[2], data[3]); CmdHF14BCmdRaw(str); return 0; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"demod", CmdHF14BDemod, 1, "Demodulate ISO14443 Type B from tag"}, {"list", CmdHF14BList, 0, "List ISO 14443 history"}, {"read", CmdHF14BRead, 0, "Read HF tag (ISO 14443)"}, {"sim", CmdHF14Sim, 0, "Fake ISO 14443 tag"}, {"simlisten", CmdHFSimlisten, 0, "Get HF samples as fake tag"}, {"snoop", CmdHF14BSnoop, 0, "Eavesdrop ISO 14443"}, {"sri512read", CmdSri512Read, 0, "Read contents of a SRI512 tag"}, {"srix4kread", CmdSrix4kRead, 0, "Read contents of a SRIX4K tag"}, {"raw", CmdHF14BCmdRaw, 0, "Send raw hex data to tag"}, {"write", CmdHF14BWrite, 0, "Write data to a SRI512 | SRIX4K tag"}, {NULL, NULL, 0, NULL} }; int CmdHF14B(const char *Cmd) { CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }