//----------------------------------------------------------------------------- // Copyright (C) Jonathan Westhues, Nov 2006 // Copyright (C) Greg Jones, Jan 2009 // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // See LICENSE.txt for the text of the license. //----------------------------------------------------------------------------- // Routines to support ISO 15693. This includes both the reader software and // the `fake tag' modes. //----------------------------------------------------------------------------- // The ISO 15693 describes two transmission modes from reader to tag, and four // transmission modes from tag to reader. As of Oct 2018 this code supports // both reader modes and the high speed variant with one subcarrier from card to reader. // As long as the card fully support ISO 15693 this is no problem, since the // reader chooses both data rates, but some non-standard tags do not. // For card simulation, the code supports both high and low speed modes with one subcarrier. // // VCD (reader) -> VICC (tag) // 1 out of 256: // data rate: 1,66 kbit/s (fc/8192) // used for long range // 1 out of 4: // data rate: 26,48 kbit/s (fc/512) // used for short range, high speed // // VICC (tag) -> VCD (reader) // Modulation: // ASK / one subcarrier (423,75 kHz) // FSK / two subcarriers (423,75 kHz && 484,28 kHz) // Data Rates / Modes: // low ASK: 6,62 kbit/s // low FSK: 6.67 kbit/s // high ASK: 26,48 kbit/s // high FSK: 26,69 kbit/s //----------------------------------------------------------------------------- // added "1 out of 256" mode (for VCD->PICC) - atrox 20100911 // Random Remarks: // *) UID is always used "transmission order" (LSB), which is reverse to display order // TODO / BUGS / ISSUES: // *) signal decoding is unable to detect collisions. // *) add anti-collision support for inventory-commands // *) read security status of a block // *) simulation do not support two subcarrier modes. // *) remove or refactor code under "deprecated" // *) document all the functions #include "iso15693.h" #include "proxmark3_arm.h" #include "util.h" #include "string.h" #include "iso15693tools.h" #include "protocols.h" #include "cmd.h" #include "appmain.h" #include "dbprint.h" #include "fpgaloader.h" #include "commonutil.h" #include "ticks.h" #include "BigBuf.h" #include "crc16.h" // Delays in SSP_CLK ticks. // SSP_CLK runs at 13,56MHz / 32 = 423.75kHz when simulating a tag #define DELAY_READER_TO_ARM 8 #define DELAY_ARM_TO_READER 0 //SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when acting as reader. All values should be multiples of 16 #define DELAY_ARM_TO_TAG 16 #define DELAY_TAG_TO_ARM 32 //SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when sniffing. All values should be multiples of 16 #define DELAY_TAG_TO_ARM_SNIFF 32 #define DELAY_READER_TO_ARM_SNIFF 32 // times in samples @ 212kHz when acting as reader #define ISO15693_READER_TIMEOUT 330 // 330/212kHz = 1558us #define ISO15693_READER_TIMEOUT_WRITE 4700 // 4700/212kHz = 22ms, nominal 20ms // iceman: This defines below exists in the header file, just here for my easy reading // Delays in SSP_CLK ticks. // SSP_CLK runs at 13,56MHz / 32 = 423.75kHz when simulating a tag //#define DELAY_ISO15693_VCD_TO_VICC_SIM 132 // 132/423.75kHz = 311.5us from end of command EOF to start of tag response //SSP_CLK runs at 13.56MHz / 4 = 3,39MHz when acting as reader. All values should be multiples of 16 //#define DELAY_ISO15693_VCD_TO_VICC_READER 1056 // 1056/3,39MHz = 311.5us from end of command EOF to start of tag response //#define DELAY_ISO15693_VICC_TO_VCD_READER 1024 // 1024/3.39MHz = 302.1us between end of tag response and next reader command /////////////////////////////////////////////////////////////////////// // ISO 15693 Part 2 - Air Interface // This section basically contains transmission and receiving of bits /////////////////////////////////////////////////////////////////////// // buffers #define ISO15693_MAX_RESPONSE_LENGTH 36 // allows read single block with the maximum block size of 256bits. Read multiple blocks not supported yet #define ISO15693_MAX_COMMAND_LENGTH 45 // allows write single block with the maximum block size of 256bits. Write multiple blocks not supported yet // 32 + 2 crc + 1 #define ISO15_MAX_FRAME 35 #define CMD_ID_RESP 5 #define CMD_READ_RESP 13 #define CMD_INV_RESP 12 #define CMD_SYSINFO_RESP 17 //#define Crc(data, len) Crc(CRC_15693, (data), (len)) #define CheckCrc15(data, len) check_crc(CRC_15693, (data), (len)) #define AddCrc15(data, len) compute_crc(CRC_15693, (data), (len), (data)+(len), (data)+(len)+1) static void BuildIdentifyRequest(uint8_t *cmd); // --------------------------- // Signal Processing // --------------------------- // prepare data using "1 out of 4" code for later transmission // resulting data rate is 26.48 kbit/s (fc/512) // cmd ... data // n ... length of data static uint8_t encode15_lut[] = { 0x40, // 01000000 0x10, // 00010000 0x04, // 00000100 0x01 // 00000001 }; void CodeIso15693AsReader(const uint8_t *cmd, int n) { tosend_reset(); tosend_t *ts = get_tosend(); // SOF for 1of4 ts->buf[++ts->max] = 0x84; //10000100 // data for (int i = 0; i < n; i++) { volatile uint8_t b = (cmd[i] >> 0) & 0x03; ts->buf[++ts->max] = encode15_lut[b]; b = (cmd[i] >> 2) & 0x03; ts->buf[++ts->max] = encode15_lut[b]; b = (cmd[i] >> 4) & 0x03; ts->buf[++ts->max] = encode15_lut[b]; b = (cmd[i] >> 6) & 0x03; ts->buf[++ts->max] = encode15_lut[b]; } // EOF ts->buf[++ts->max] = 0x20; //0010 + 0000 padding ts->max++; } // Encode EOF only static void CodeIso15693AsReaderEOF(void) { tosend_reset(); tosend_t *ts = get_tosend(); ts->buf[++ts->max] = 0x20; ts->max++; } // encode data using "1 out of 256" scheme // data rate is 1,66 kbit/s (fc/8192) // is designed for more robust communication over longer distances static void CodeIso15693AsReader256(const uint8_t *cmd, int n) { tosend_reset(); tosend_t *ts = get_tosend(); // SOF for 1of256 ts->buf[++ts->max] = 0x81; //10000001 // data for (int i = 0; i < n; i++) { for (int j = 0; j <= 255; j++) { if (cmd[i] == j) { tosend_stuffbit(0); tosend_stuffbit(1); } else { tosend_stuffbit(0); tosend_stuffbit(0); } } } // EOF ts->buf[++ts->max] = 0x20; //0010 + 0000 padding ts->max++; } static const uint8_t encode_4bits[16] = { // 0 1 2 3 0xaa, 0x6a, 0x9a, 0x5a, // 4 5 6 7 0xa6, 0x66, 0x96, 0x56, // 8 9 A B 0xa9, 0x69, 0x99, 0x59, // C D E F 0xa5, 0x65, 0x95, 0x55 }; void CodeIso15693AsTag(const uint8_t *cmd, size_t len) { /* * SOF comprises 3 parts; * * An unmodulated time of 56.64 us * * 24 pulses of 423.75 kHz (fc/32) * * A logic 1, which starts with an unmodulated time of 18.88us * followed by 8 pulses of 423.75kHz (fc/32) * * EOF comprises 3 parts: * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated * time of 18.88us. * - 24 pulses of fc/32 * - An unmodulated time of 56.64 us * * A logic 0 starts with 8 pulses of fc/32 * followed by an unmodulated time of 256/fc (~18,88us). * * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by * 8 pulses of fc/32 (also 18.88us) * * A bit here becomes 8 pulses of fc/32. Therefore: * The SOF can be written as 00011101 = 0x1D * The EOF can be written as 10111000 = 0xb8 * A logic 1 is 01 * A logic 0 is 10 * * */ tosend_reset(); tosend_t *ts = get_tosend(); // SOF ts->buf[++ts->max] = 0x1D; // 00011101 // data for (size_t i = 0; i < len; i ++) { ts->buf[++ts->max] = encode_4bits[cmd[i] & 0xF]; ts->buf[++ts->max] = encode_4bits[cmd[i] >> 4]; } // EOF ts->buf[++ts->max] = 0xB8; // 10111000 ts->max++; } // Transmit the command (to the tag) that was placed in cmd[]. void TransmitTo15693Tag(const uint8_t *cmd, int len, uint32_t *start_time) { FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_FULL_MOD); if (*start_time < DELAY_ARM_TO_TAG) { *start_time = DELAY_ARM_TO_TAG; } *start_time = (*start_time - DELAY_ARM_TO_TAG) & 0xfffffff0; if (GetCountSspClk() > *start_time) { // we may miss the intended time *start_time = (GetCountSspClk() + 16) & 0xfffffff0; // next possible time } // wait while (GetCountSspClk() < *start_time) ; LED_B_ON(); for (int c = 0; c < len; c++) { volatile uint8_t data = cmd[c]; for (uint8_t i = 0; i < 8; i++) { uint16_t send_word = (data & 0x80) ? 0xffff : 0x0000; while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ; AT91C_BASE_SSC->SSC_THR = send_word; while (!(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY))) ; AT91C_BASE_SSC->SSC_THR = send_word; data <<= 1; } WDT_HIT(); } LED_B_OFF(); *start_time = *start_time + DELAY_ARM_TO_TAG; FpgaDisableTracing(); } //----------------------------------------------------------------------------- // Transmit the tag response (to the reader) that was placed in cmd[]. //----------------------------------------------------------------------------- void TransmitTo15693Reader(const uint8_t *cmd, size_t len, uint32_t *start_time, uint32_t slot_time, bool slow) { // don't use the FPGA_HF_SIMULATOR_MODULATE_424K_8BIT minor mode. It would spoil GetCountSspClk() FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_424K); uint32_t modulation_start_time = *start_time - DELAY_ARM_TO_READER + 3 * 8; // no need to transfer the unmodulated start of SOF while (GetCountSspClk() > (modulation_start_time & 0xfffffff8) + 3) { // we will miss the intended time if (slot_time) { modulation_start_time += slot_time; // use next available slot } else { modulation_start_time = (modulation_start_time & 0xfffffff8) + 8; // next possible time } } // wait while (GetCountSspClk() < (modulation_start_time & 0xfffffff8)) ; uint8_t shift_delay = modulation_start_time & 0x00000007; *start_time = modulation_start_time + DELAY_ARM_TO_READER - 3 * 8; LED_C_ON(); uint8_t bits_to_shift = 0x00; uint8_t bits_to_send = 0x00; for (size_t c = 0; c < len; c++) { for (int i = (c == 0 ? 4 : 7); i >= 0; i--) { uint8_t cmd_bits = ((cmd[c] >> i) & 0x01) ? 0xff : 0x00; for (int j = 0; j < (slow ? 4 : 1);) { if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { bits_to_send = bits_to_shift << (8 - shift_delay) | cmd_bits >> shift_delay; AT91C_BASE_SSC->SSC_THR = bits_to_send; bits_to_shift = cmd_bits; j++; } } } WDT_HIT(); } // send the remaining bits, padded with 0: bits_to_send = bits_to_shift << (8 - shift_delay); if (bits_to_send) { for (; ;) { if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { AT91C_BASE_SSC->SSC_THR = bits_to_send; break; } } } LED_C_OFF(); } //============================================================================= // An ISO 15693 decoder for tag responses (one subcarrier only). // Uses cross correlation to identify each bit and EOF. // This function is called 8 times per bit (every 2 subcarrier cycles). // Subcarrier frequency fs is 424kHz, 1/fs = 2,36us, // i.e. function is called every 4,72us // LED handling: // LED C -> ON once we have received the SOF and are expecting the rest. // LED C -> OFF once we have received EOF or are unsynced // // Returns: true if we received a EOF // false if we are still waiting for some more //============================================================================= #define NOISE_THRESHOLD 80 // don't try to correlate noise #define MAX_PREVIOUS_AMPLITUDE (-1 - NOISE_THRESHOLD) typedef struct { enum { STATE_TAG_SOF_LOW, STATE_TAG_SOF_RISING_EDGE, STATE_TAG_SOF_HIGH, STATE_TAG_SOF_HIGH_END, STATE_TAG_RECEIVING_DATA, STATE_TAG_EOF, STATE_TAG_EOF_TAIL } state; int bitCount; int posCount; enum { LOGIC0, LOGIC1, SOF_PART1, SOF_PART2 } lastBit; uint16_t shiftReg; uint16_t max_len; uint16_t len; int sum1; int sum2; int threshold_sof; int threshold_half; uint16_t previous_amplitude; uint8_t *output; } DecodeTag_t; //----------------------------------------------------------------------------- // DEMODULATE tag answer //----------------------------------------------------------------------------- static RAMFUNC int Handle15693SamplesFromTag(uint16_t amplitude, DecodeTag_t *tag, bool recv_speed) { switch (tag->state) { case STATE_TAG_SOF_LOW: { // waiting for a rising edge if (amplitude > NOISE_THRESHOLD + tag->previous_amplitude) { if (tag->posCount > 10) { tag->threshold_sof = amplitude - tag->previous_amplitude; // to be divided by 2 tag->threshold_half = 0; tag->state = STATE_TAG_SOF_RISING_EDGE; } else { tag->posCount = 0; } } else { tag->posCount++; tag->previous_amplitude = amplitude; } break; } case STATE_TAG_SOF_RISING_EDGE: { if (amplitude > tag->threshold_sof + tag->previous_amplitude) { // edge still rising if (amplitude > tag->threshold_sof + tag->threshold_sof) { // steeper edge, take this as time reference tag->posCount = 1; } else { tag->posCount = 2; } tag->threshold_sof = (amplitude - tag->previous_amplitude) / 2; } else { tag->posCount = 2; tag->threshold_sof = tag->threshold_sof / 2; } tag->state = STATE_TAG_SOF_HIGH; break; } case STATE_TAG_SOF_HIGH: { // waiting for 10 times high. Take average over the last 8 if (amplitude > tag->threshold_sof) { tag->posCount++; if (tag->posCount > 2) { tag->threshold_half += amplitude; // keep track of average high value } if (tag->posCount == (recv_speed ? 10 : 40)) { tag->threshold_half >>= 2; // (4 times 1/2 average) tag->state = STATE_TAG_SOF_HIGH_END; } } else { // high phase was too short tag->posCount = 1; tag->previous_amplitude = amplitude; tag->state = STATE_TAG_SOF_LOW; } break; } case STATE_TAG_SOF_HIGH_END: { // check for falling edge if (tag->posCount == (recv_speed ? 13 : 52) && amplitude < tag->threshold_sof) { tag->lastBit = SOF_PART1; // detected 1st part of SOF (12 samples low and 12 samples high) tag->shiftReg = 0; tag->bitCount = 0; tag->len = 0; tag->sum1 = amplitude; tag->sum2 = 0; tag->posCount = 2; tag->state = STATE_TAG_RECEIVING_DATA; LED_C_ON(); } else { tag->posCount++; if (tag->posCount > (recv_speed ? 13 : 52)) { // high phase too long tag->posCount = 0; tag->previous_amplitude = amplitude; tag->state = STATE_TAG_SOF_LOW; LED_C_OFF(); } } break; } case STATE_TAG_RECEIVING_DATA: { if (tag->posCount == 1) { tag->sum1 = 0; tag->sum2 = 0; } if (tag->posCount <= (recv_speed ? 4 : 16)) { tag->sum1 += amplitude; } else { tag->sum2 += amplitude; } if (tag->posCount == (recv_speed ? 8 : 32)) { if (tag->sum1 > tag->threshold_half && tag->sum2 > tag->threshold_half) { // modulation in both halves if (tag->lastBit == LOGIC0) { // this was already part of EOF tag->state = STATE_TAG_EOF; } else { tag->posCount = 0; tag->previous_amplitude = amplitude; tag->state = STATE_TAG_SOF_LOW; LED_C_OFF(); } } else if (tag->sum1 < tag->threshold_half && tag->sum2 > tag->threshold_half) { // modulation in second half // logic 1 if (tag->lastBit == SOF_PART1) { // still part of SOF tag->lastBit = SOF_PART2; // SOF completed } else { tag->lastBit = LOGIC1; tag->shiftReg >>= 1; tag->shiftReg |= 0x80; tag->bitCount++; if (tag->bitCount == 8) { tag->output[tag->len] = tag->shiftReg & 0xFF; tag->len++; if (tag->len > tag->max_len) { // buffer overflow, give up LED_C_OFF(); return true; } tag->bitCount = 0; tag->shiftReg = 0; } } } else if (tag->sum1 > tag->threshold_half && tag->sum2 < tag->threshold_half) { // modulation in first half // logic 0 if (tag->lastBit == SOF_PART1) { // incomplete SOF tag->posCount = 0; tag->previous_amplitude = amplitude; tag->state = STATE_TAG_SOF_LOW; LED_C_OFF(); } else { tag->lastBit = LOGIC0; tag->shiftReg >>= 1; tag->bitCount++; if (tag->bitCount == 8) { tag->output[tag->len] = (tag->shiftReg & 0xFF); tag->len++; if (tag->len > tag->max_len) { // buffer overflow, give up tag->posCount = 0; tag->previous_amplitude = amplitude; tag->state = STATE_TAG_SOF_LOW; LED_C_OFF(); } tag->bitCount = 0; tag->shiftReg = 0; } } } else { // no modulation if (tag->lastBit == SOF_PART2) { // only SOF (this is OK for iClass) LED_C_OFF(); return true; } else { tag->posCount = 0; tag->state = STATE_TAG_SOF_LOW; LED_C_OFF(); } } tag->posCount = 0; } tag->posCount++; break; } case STATE_TAG_EOF: { if (tag->posCount == 1) { tag->sum1 = 0; tag->sum2 = 0; } if (tag->posCount <= (recv_speed ? 4 : 16)) { tag->sum1 += amplitude; } else { tag->sum2 += amplitude; } if (tag->posCount == (recv_speed ? 8 : 32)) { if (tag->sum1 > tag->threshold_half && tag->sum2 < tag->threshold_half) { // modulation in first half tag->posCount = 0; tag->state = STATE_TAG_EOF_TAIL; } else { tag->posCount = 0; tag->previous_amplitude = amplitude; tag->state = STATE_TAG_SOF_LOW; LED_C_OFF(); } } tag->posCount++; break; } case STATE_TAG_EOF_TAIL: { if (tag->posCount == 1) { tag->sum1 = 0; tag->sum2 = 0; } if (tag->posCount <= (recv_speed ? 4 : 16)) { tag->sum1 += amplitude; } else { tag->sum2 += amplitude; } if (tag->posCount == (recv_speed ? 8 : 32)) { if (tag->sum1 < tag->threshold_half && tag->sum2 < tag->threshold_half) { // no modulation in both halves LED_C_OFF(); return true; } else { tag->posCount = 0; tag->previous_amplitude = amplitude; tag->state = STATE_TAG_SOF_LOW; LED_C_OFF(); } } tag->posCount++; break; } } return false; } static void DecodeTagReset(DecodeTag_t *tag) { tag->posCount = 0; tag->state = STATE_TAG_SOF_LOW; tag->previous_amplitude = MAX_PREVIOUS_AMPLITUDE; } static void DecodeTagInit(DecodeTag_t *tag, uint8_t *data, uint16_t max_len) { tag->output = data; tag->max_len = max_len; DecodeTagReset(tag); } //============================================================================= // An ISO 15693 decoder for tag responses in FSK (two subcarriers) mode. // Subcarriers frequencies are 424kHz and 484kHz (fc/32 and fc/28), // LED handling: // LED C -> ON once we have received the SOF and are expecting the rest. // LED C -> OFF once we have received EOF or are unsynced // // Returns: true if we received a EOF // false if we are still waiting for some more //============================================================================= //#define DEBUG 1 #define FREQ_IS_484(f) ((f & 1) == 1) //(f >= 26 && f <= 30) #define FREQ_IS_424(f) ((f & 2) == 2) //(f >= 30 && f <= 34) #define FREQ_IS_0(f) ((f & 3) == 0) // (f <= 24 || f >= 36) #define SEOF_COUNT(c, s) ((s) ? (c >= 11 && c <= 13) : (c >= 45 && c <= 51)) #define LOGIC_COUNT(c, s) ((s) ? (c >= 3 && c <= 6) : (c >= 14 && c <= 20)) #define MAX_COUNT(c, s) ((s) ? (c >= 13) : (c >= 52)) typedef struct DecodeTagFSK { enum { STATE_FSK_ERROR, STATE_FSK_BEFORE_SOF, STATE_FSK_SOF_484, STATE_FSK_SOF_424, STATE_FSK_SOF_END_484, STATE_FSK_SOF_END_424, STATE_FSK_RECEIVING_DATA_484, STATE_FSK_RECEIVING_DATA_424, STATE_FSK_EOF } state; enum { LOGIC0_PART1, LOGIC1_PART1, LOGIC0_PART2, LOGIC1_PART2, SOF } lastBit; uint8_t count; uint8_t bitCount; uint8_t shiftReg; uint16_t len; uint16_t max_len; uint8_t *output; } DecodeTagFSK_t; static void DecodeTagFSKReset(DecodeTagFSK_t *DecodeTag) { DecodeTag->state = STATE_FSK_BEFORE_SOF; DecodeTag->bitCount = 0; DecodeTag->len = 0; DecodeTag->shiftReg = 0; } static void DecodeTagFSKInit(DecodeTagFSK_t *DecodeTag, uint8_t *data, uint16_t max_len) { DecodeTag->output = data; DecodeTag->max_len = max_len; DecodeTagFSKReset(DecodeTag); } // Performances of this function are crutial for stability // as it is called in real time for every samples static int RAMFUNC Handle15693FSKSamplesFromTag(uint8_t freq, DecodeTagFSK_t *DecodeTag, bool recv_speed) { switch (DecodeTag->state) { case STATE_FSK_BEFORE_SOF: if (FREQ_IS_484(freq)) { // possible SOF starting DecodeTag->state = STATE_FSK_SOF_484; DecodeTag->lastBit = LOGIC0_PART1; DecodeTag->count = 1; } break; case STATE_FSK_SOF_484: //DbpString("STATE_FSK_SOF_484"); if (FREQ_IS_424(freq) && SEOF_COUNT(DecodeTag->count, recv_speed)) { // SOF part1 continue at 424 DecodeTag->state = STATE_FSK_SOF_424; DecodeTag->count = 1; } else if (FREQ_IS_484(freq) && !MAX_COUNT(DecodeTag->count, recv_speed)) { // still in SOF at 484 DecodeTag->count++; } else { // SOF failed, roll back DecodeTag->state = STATE_FSK_BEFORE_SOF; } break; case STATE_FSK_SOF_424: //DbpString("STATE_FSK_SOF_424"); if (FREQ_IS_484(freq) && SEOF_COUNT(DecodeTag->count, recv_speed)) { // SOF part 1 finished DecodeTag->state = STATE_FSK_SOF_END_484; DecodeTag->count = 1; } else if (FREQ_IS_424(freq) && !MAX_COUNT(DecodeTag->count, recv_speed)) // still in SOF at 424 DecodeTag->count++; else { // SOF failed, roll back #ifdef DEBUG if (DEBUG) Dbprintf("SOF_424 failed: freq=%d, count=%d, recv_speed=%d", freq, DecodeTag->count, recv_speed); #endif DecodeTag->state = STATE_FSK_BEFORE_SOF; } break; case STATE_FSK_SOF_END_484: if (FREQ_IS_424(freq) && LOGIC_COUNT(DecodeTag->count, recv_speed)) { DecodeTag->state = STATE_FSK_SOF_END_424; DecodeTag->count = 1; } else if (FREQ_IS_484(freq) && !MAX_COUNT(DecodeTag->count, recv_speed)) // still in SOF_END_484 DecodeTag->count++; else { // SOF failed, roll back #ifdef DEBUG if (DEBUG) Dbprintf("SOF_END_484 failed: freq=%d, count=%d, recv_speed=%d", freq, DecodeTag->count, recv_speed); #endif DecodeTag->state = STATE_FSK_BEFORE_SOF; } break; case STATE_FSK_SOF_END_424: if (FREQ_IS_484(freq) && LOGIC_COUNT(DecodeTag->count, recv_speed)) { // SOF finished at 484 DecodeTag->count = 1; DecodeTag->lastBit = SOF; DecodeTag->state = STATE_FSK_RECEIVING_DATA_484; LED_C_ON(); } else if (FREQ_IS_424(freq) && LOGIC_COUNT(DecodeTag->count - 2, recv_speed)) { // SOF finished at 424 (wait count+2 to be sure that next freq is 424) DecodeTag->count = 2; DecodeTag->lastBit = SOF; DecodeTag->state = STATE_FSK_RECEIVING_DATA_424; LED_C_ON(); } else if (FREQ_IS_424(freq) && !MAX_COUNT(DecodeTag->count, recv_speed)) // still in SOF_END_424 DecodeTag->count++; else { // SOF failed, roll back #ifdef DEBUG if (DEBUG) Dbprintf("SOF_END_424 failed: freq=%d, count=%d, recv_speed=%d", freq, DecodeTag->count, recv_speed); #endif DecodeTag->state = STATE_FSK_BEFORE_SOF; } break; case STATE_FSK_RECEIVING_DATA_424: if (FREQ_IS_484(freq) && LOGIC_COUNT(DecodeTag->count, recv_speed)) { if (DecodeTag->lastBit == LOGIC1_PART1) { // logic 1 finished, goto 484 DecodeTag->lastBit = LOGIC1_PART2; DecodeTag->shiftReg >>= 1; DecodeTag->shiftReg |= 0x80; DecodeTag->bitCount++; if (DecodeTag->bitCount == 8) { DecodeTag->output[DecodeTag->len++] = DecodeTag->shiftReg; if (DecodeTag->len > DecodeTag->max_len) { // buffer overflow, give up LED_C_OFF(); return true; } DecodeTag->bitCount = 0; DecodeTag->shiftReg = 0; } } else { // end of LOGIC0_PART1 DecodeTag->lastBit = LOGIC0_PART1; } DecodeTag->count = 1; DecodeTag->state = STATE_FSK_RECEIVING_DATA_484; } else if (FREQ_IS_424(freq) && LOGIC_COUNT(DecodeTag->count - 2, recv_speed) && DecodeTag->lastBit == LOGIC1_PART1) { // logic 1 finished, stay in 484 DecodeTag->lastBit = LOGIC1_PART2; DecodeTag->shiftReg >>= 1; DecodeTag->shiftReg |= 0x80; DecodeTag->bitCount++; if (DecodeTag->bitCount == 8) { DecodeTag->output[DecodeTag->len++] = DecodeTag->shiftReg; if (DecodeTag->len > DecodeTag->max_len) { // buffer overflow, give up LED_C_OFF(); return true; } DecodeTag->bitCount = 0; DecodeTag->shiftReg = 0; } DecodeTag->count = 2; } else if (FREQ_IS_424(freq) && !MAX_COUNT(DecodeTag->count, recv_speed)) // still at 424 DecodeTag->count++; else if (FREQ_IS_484(freq) && DecodeTag->lastBit == LOGIC0_PART2 && SEOF_COUNT(DecodeTag->count, recv_speed)) { // EOF has started #ifdef DEBUG if (DEBUG) Dbprintf("RECEIVING_DATA_424->EOF: freq=%d, count=%d, recv_speed=%d, lastbit=%d, state=%d", freq, DecodeTag->count, recv_speed, DecodeTag->lastBit, DecodeTag->state); #endif DecodeTag->count = 1; DecodeTag->state = STATE_FSK_EOF; LED_C_OFF(); } else { // error #ifdef DEBUG if (DEBUG) Dbprintf("RECEIVING_DATA_424 error: freq=%d, count=%d, recv_speed=%d, lastbit=%d, state=%d", freq, DecodeTag->count, recv_speed, DecodeTag->lastBit, DecodeTag->state); #endif DecodeTag->state = STATE_FSK_ERROR; LED_C_OFF(); return true; } break; case STATE_FSK_RECEIVING_DATA_484: if (FREQ_IS_424(freq) && LOGIC_COUNT(DecodeTag->count, recv_speed)) { if (DecodeTag->lastBit == LOGIC0_PART1) { // logic 0 finished, goto 424 DecodeTag->lastBit = LOGIC0_PART2; DecodeTag->shiftReg >>= 1; DecodeTag->bitCount++; if (DecodeTag->bitCount == 8) { DecodeTag->output[DecodeTag->len++] = DecodeTag->shiftReg; if (DecodeTag->len > DecodeTag->max_len) { // buffer overflow, give up LED_C_OFF(); return true; } DecodeTag->bitCount = 0; DecodeTag->shiftReg = 0; } } else { // end of LOGIC1_PART1 DecodeTag->lastBit = LOGIC1_PART1; } DecodeTag->count = 1; DecodeTag->state = STATE_FSK_RECEIVING_DATA_424; } else if (FREQ_IS_484(freq) && LOGIC_COUNT(DecodeTag->count - 2, recv_speed) && DecodeTag->lastBit == LOGIC0_PART1) { // logic 0 finished, stay in 424 DecodeTag->lastBit = LOGIC0_PART2; DecodeTag->shiftReg >>= 1; DecodeTag->bitCount++; if (DecodeTag->bitCount == 8) { DecodeTag->output[DecodeTag->len++] = DecodeTag->shiftReg; if (DecodeTag->len > DecodeTag->max_len) { // buffer overflow, give up LED_C_OFF(); return true; } DecodeTag->bitCount = 0; DecodeTag->shiftReg = 0; } DecodeTag->count = 2; } else if (FREQ_IS_484(freq) && !MAX_COUNT(DecodeTag->count, recv_speed)) // still at 484 DecodeTag->count++; else { // error #ifdef DEBUG if (DEBUG) Dbprintf("RECEIVING_DATA_484 error: freq=%d, count=%d, recv_speed=%d, lastbit=%d, state=%d", freq, DecodeTag->count, recv_speed, DecodeTag->lastBit, DecodeTag->state); #endif LED_C_OFF(); DecodeTag->state = STATE_FSK_ERROR; return true; } break; case STATE_FSK_EOF: if (FREQ_IS_484(freq) && !MAX_COUNT(DecodeTag->count, recv_speed)) { // still at 484 DecodeTag->count++; if (SEOF_COUNT(DecodeTag->count, recv_speed)) return true; // end of the transmission } else { // error #ifdef DEBUG if (DEBUG) Dbprintf("EOF error: freq=%d, count=%d, recv_speed=%d", freq, DecodeTag->count, recv_speed); #endif DecodeTag->state = STATE_FSK_ERROR; return true; } break; case STATE_FSK_ERROR: LED_C_OFF(); #ifdef DEBUG if (DEBUG) Dbprintf("FSK error: freq=%d, count=%d, recv_speed=%d", freq, DecodeTag->count, recv_speed); #endif return true; // error break; } return false; } /* * Receive and decode the tag response, also log to tracebuffer */ int GetIso15693AnswerFromTag(uint8_t *response, uint16_t max_len, uint16_t timeout, uint32_t *eof_time, bool fsk, bool recv_speed, uint16_t *resp_len) { int samples = 0, ret = PM3_SUCCESS; if (resp_len) { *resp_len = 0; } // the Decoder data structure DecodeTag_t dtm = { 0 }; DecodeTag_t *dt = &dtm; DecodeTagFSK_t dtfm = { 0 }; DecodeTagFSK_t *dtf = &dtfm; if (fsk) DecodeTagFSKInit(dtf, response, max_len); else DecodeTagInit(dt, response, max_len); // wait for last transfer to complete while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY)); // And put the FPGA in the appropriate mode FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_2SUBCARRIERS_424_484_KHZ | FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE); // Setup and start DMA. FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER); // The DMA buffer, used to stream samples from the FPGA dmabuf16_t *dma = get_dma16(); // Setup and start DMA. if (FpgaSetupSscDma((uint8_t *) dma->buf, DMA_BUFFER_SIZE) == false) { if (g_dbglevel > DBG_ERROR) Dbprintf("FpgaSetupSscDma failed. Exiting"); return PM3_EINIT; } uint32_t dma_start_time = 0; uint16_t *upTo = dma->buf; for (;;) { volatile uint16_t behindBy = ((uint16_t *)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (DMA_BUFFER_SIZE - 1); if (behindBy == 0) continue; samples++; if (samples == 1) { // DMA has transferred the very first data dma_start_time = GetCountSspClk() & 0xfffffff0; } volatile uint16_t tagdata = *upTo++; if (upTo >= dma->buf + DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content. upTo = dma->buf; // start reading the circular buffer from the beginning // DMA Counter Register had reached 0, already rotated. if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // primary buffer was stopped if (AT91C_BASE_PDC_SSC->PDC_RCR == false) { AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dma->buf; AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE; } // secondary buffer sets as primary, secondary buffer was stopped if (AT91C_BASE_PDC_SSC->PDC_RNCR == false) { AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dma->buf; AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; } WDT_HIT(); if (BUTTON_PRESS()) { break; } } } if (fsk) { if (Handle15693FSKSamplesFromTag(tagdata >> 14, dtf, recv_speed)) { *eof_time = dma_start_time + (samples * 16) - DELAY_TAG_TO_ARM; // end of EOF if (dtf->lastBit == SOF) { *eof_time -= (8 * 16); // needed 8 additional samples to confirm single SOF (iCLASS) } if (dtf->len > dtf->max_len) { ret = PM3_EOVFLOW; Dbprintf("overflow (%d > %d", dtf->len, dtf->max_len); } break; } // timeout if (samples > timeout && dtf->state < STATE_FSK_RECEIVING_DATA_484) { ret = PM3_ETIMEOUT; break; } } else { if (Handle15693SamplesFromTag(tagdata & 0x3FFF, dt, recv_speed)) { *eof_time = dma_start_time + (samples * 16) - DELAY_TAG_TO_ARM; // end of EOF if (dt->lastBit == SOF_PART2) { *eof_time -= (8 * 16); // needed 8 additional samples to confirm single SOF (iCLASS) } if (dt->len > dt->max_len) { ret = PM3_EOVFLOW; Dbprintf("overflow (%d > %d", dt->len, dt->max_len); } break; } // timeout if (samples > timeout && dt->state < STATE_TAG_RECEIVING_DATA) { ret = PM3_ETIMEOUT; break; } } } FpgaDisableSscDma(); FpgaDisableTracing(); uint32_t sof_time = *eof_time - (32 * 16); // time for SOF transfer if (fsk) { sof_time -= (dtf->len * 8 * 8 * 16) // time for byte transfers + (dtf->lastBit != SOF ? (32 * 16) : 0); // time for EOF transfer if (g_dbglevel >= DBG_EXTENDED) { Dbprintf("samples = %d, ret = %d, FSK Decoder: state = %d, lastBit = %d, len = %d, bitCount = %d, count = %d, maxlen = %u", samples, ret, dtf->state, dtf->lastBit, dtf->len, dtf->bitCount, dtf->count, dtf->max_len ); Dbprintf("timing: sof_time = %d, eof_time = %d", (sof_time * 4), (*eof_time * 4)); } } else { sof_time -= (dt->len * 8 * 8 * 16) // time for byte transfers + (dt->lastBit != SOF_PART2 ? (32 * 16) : 0); // time for EOF transfer if (g_dbglevel >= DBG_EXTENDED) { Dbprintf("samples = %d, ret = %d, Decoder: state = %d, lastBit = %d, len = %d, bitCount = %d, posCount = %d, maxlen = %u", samples, ret, dt->state, dt->lastBit, dt->len, dt->bitCount, dt->posCount, dt->max_len ); Dbprintf("timing: sof_time = %d, eof_time = %d", (sof_time * 4), (*eof_time * 4)); } } if (ret != PM3_SUCCESS) { *resp_len = 0; return ret; } if (fsk) { LogTrace_ISO15693(dtf->output, dtf->len, (sof_time * 4), (*eof_time * 4), NULL, false); *resp_len = dtf->len; } else { LogTrace_ISO15693(dt->output, dt->len, (sof_time * 4), (*eof_time * 4), NULL, false); *resp_len = dt->len; } return PM3_SUCCESS; } //============================================================================= // An ISO15693 decoder for reader commands. // // This function is called 4 times per bit (every 2 subcarrier cycles). // Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us // LED handling: // LED B -> ON once we have received the SOF and are expecting the rest. // LED B -> OFF once we have received EOF or are in error state or unsynced // // Returns: true if we received a EOF // false if we are still waiting for some more //============================================================================= typedef struct { enum { STATE_READER_UNSYNCD, STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF, STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF, STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF, STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF, STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4, STATE_READER_RECEIVE_DATA_1_OUT_OF_4, STATE_READER_RECEIVE_DATA_1_OUT_OF_256, STATE_READER_RECEIVE_JAMMING } state; enum { CODING_1_OUT_OF_4, CODING_1_OUT_OF_256 } Coding; uint8_t shiftReg; uint8_t bitCount; int byteCount; int byteCountMax; int posCount; int sum1, sum2; uint8_t *output; uint8_t jam_search_len; uint8_t *jam_search_string; } DecodeReader_t; static void DecodeReaderInit(DecodeReader_t *reader, uint8_t *data, uint16_t max_len, uint8_t jam_search_len, uint8_t *jam_search_string) { reader->output = data; reader->byteCountMax = max_len; reader->state = STATE_READER_UNSYNCD; reader->byteCount = 0; reader->bitCount = 0; reader->posCount = 1; reader->shiftReg = 0; reader->jam_search_len = jam_search_len; reader->jam_search_string = jam_search_string; } static void DecodeReaderReset(DecodeReader_t *reader) { reader->state = STATE_READER_UNSYNCD; } //static inline __attribute__((always_inline)) static int RAMFUNC Handle15693SampleFromReader(bool bit, DecodeReader_t *reader) { switch (reader->state) { case STATE_READER_UNSYNCD: // wait for unmodulated carrier if (bit) { reader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF; } break; case STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF: if (!bit) { // we went low, so this could be the beginning of a SOF reader->posCount = 1; reader->state = STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF; } break; case STATE_READER_AWAIT_1ST_RISING_EDGE_OF_SOF: reader->posCount++; if (bit) { // detected rising edge if (reader->posCount < 4) { // rising edge too early (nominally expected at 5) reader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF; } else { // SOF reader->state = STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF; } } else { if (reader->posCount > 5) { // stayed low for too long DecodeReaderReset(reader); } else { // do nothing, keep waiting } } break; case STATE_READER_AWAIT_2ND_FALLING_EDGE_OF_SOF: reader->posCount++; if (bit == false) { // detected a falling edge if (reader->posCount < 20) { // falling edge too early (nominally expected at 21 earliest) DecodeReaderReset(reader); } else if (reader->posCount < 23) { // SOF for 1 out of 4 coding reader->Coding = CODING_1_OUT_OF_4; reader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF; } else if (reader->posCount < 28) { // falling edge too early (nominally expected at 29 latest) DecodeReaderReset(reader); } else { // SOF for 1 out of 256 coding reader->Coding = CODING_1_OUT_OF_256; reader->state = STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF; } } else { if (reader->posCount > 29) { // stayed high for too long reader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF; } else { // do nothing, keep waiting } } break; case STATE_READER_AWAIT_2ND_RISING_EDGE_OF_SOF: reader->posCount++; if (bit) { // detected rising edge if (reader->Coding == CODING_1_OUT_OF_256) { if (reader->posCount < 32) { // rising edge too early (nominally expected at 33) reader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF; } else { reader->posCount = 1; reader->bitCount = 0; reader->byteCount = 0; reader->sum1 = 1; reader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_256; LED_B_ON(); } } else { // CODING_1_OUT_OF_4 if (reader->posCount < 24) { // rising edge too early (nominally expected at 25) reader->state = STATE_READER_AWAIT_1ST_FALLING_EDGE_OF_SOF; } else { reader->posCount = 1; reader->state = STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4; } } } else { if (reader->Coding == CODING_1_OUT_OF_256) { if (reader->posCount > 34) { // signal stayed low for too long DecodeReaderReset(reader); } else { // do nothing, keep waiting } } else { // CODING_1_OUT_OF_4 if (reader->posCount > 26) { // signal stayed low for too long DecodeReaderReset(reader); } else { // do nothing, keep waiting } } } break; case STATE_READER_AWAIT_END_OF_SOF_1_OUT_OF_4: reader->posCount++; if (bit) { if (reader->posCount == 9) { reader->posCount = 1; reader->bitCount = 0; reader->byteCount = 0; reader->sum1 = 1; reader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_4; LED_B_ON(); } else { // do nothing, keep waiting } } else { // unexpected falling edge DecodeReaderReset(reader); } break; case STATE_READER_RECEIVE_DATA_1_OUT_OF_4: reader->posCount++; if (reader->posCount == 1) { reader->sum1 = bit ? 1 : 0; } else if (reader->posCount <= 4) { if (bit) reader->sum1++; } else if (reader->posCount == 5) { reader->sum2 = bit ? 1 : 0; } else { if (bit) reader->sum2++; } if (reader->posCount == 8) { reader->posCount = 0; if (reader->sum1 <= 1 && reader->sum2 >= 3) { // EOF LED_B_OFF(); // Finished receiving DecodeReaderReset(reader); if (reader->byteCount != 0) { return true; } } else if (reader->sum1 >= 3 && reader->sum2 <= 1) { // detected a 2bit position reader->shiftReg >>= 2; reader->shiftReg |= (reader->bitCount << 6); } if (reader->bitCount == 15) { // we have a full byte reader->output[reader->byteCount++] = reader->shiftReg; if (reader->byteCount > reader->byteCountMax) { // buffer overflow, give up LED_B_OFF(); DecodeReaderReset(reader); } reader->bitCount = 0; reader->shiftReg = 0; if (reader->byteCount == reader->jam_search_len) { if (!memcmp(reader->output, reader->jam_search_string, reader->jam_search_len)) { LED_D_ON(); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_JAM); reader->state = STATE_READER_RECEIVE_JAMMING; } } } else { reader->bitCount++; } } break; case STATE_READER_RECEIVE_DATA_1_OUT_OF_256: reader->posCount++; if (reader->posCount == 1) { reader->sum1 = bit ? 1 : 0; } else if (reader->posCount <= 4) { if (bit) reader->sum1++; } else if (reader->posCount == 5) { reader->sum2 = bit ? 1 : 0; } else if (bit) { reader->sum2++; } if (reader->posCount == 8) { reader->posCount = 0; if (reader->sum1 <= 1 && reader->sum2 >= 3) { // EOF LED_B_OFF(); // Finished receiving DecodeReaderReset(reader); if (reader->byteCount != 0) { return true; } } else if (reader->sum1 >= 3 && reader->sum2 <= 1) { // detected the bit position reader->shiftReg = reader->bitCount; } if (reader->bitCount == 255) { // we have a full byte reader->output[reader->byteCount++] = reader->shiftReg; if (reader->byteCount > reader->byteCountMax) { // buffer overflow, give up LED_B_OFF(); DecodeReaderReset(reader); } if (reader->byteCount == reader->jam_search_len) { if (!memcmp(reader->output, reader->jam_search_string, reader->jam_search_len)) { LED_D_ON(); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_JAM); reader->state = STATE_READER_RECEIVE_JAMMING; } } } reader->bitCount++; } break; case STATE_READER_RECEIVE_JAMMING: reader->posCount++; if (reader->Coding == CODING_1_OUT_OF_4) { if (reader->posCount == 7 * 16) { // 7 bits jammed FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SNIFF_AMPLITUDE); // stop jamming // FpgaDisableTracing(); LED_D_OFF(); } else if (reader->posCount == 8 * 16) { reader->posCount = 0; reader->output[reader->byteCount++] = 0x00; reader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_4; } } else { if (reader->posCount == 7 * 256) { // 7 bits jammend FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SNIFF_AMPLITUDE); // stop jamming LED_D_OFF(); } else if (reader->posCount == 8 * 256) { reader->posCount = 0; reader->output[reader->byteCount++] = 0x00; reader->state = STATE_READER_RECEIVE_DATA_1_OUT_OF_256; } } break; default: LED_B_OFF(); DecodeReaderReset(reader); break; } return false; } //----------------------------------------------------------------------------- // Receive a command (from the reader to us, where we are the simulated tag), // and store it in the given buffer, up to the given maximum length. Keeps // spinning, waiting for a well-framed command, until either we get one // (returns len) or someone presses the pushbutton on the board (returns -1). // // Assume that we're called with the SSC (to the FPGA) and ADC path set // correctly. //----------------------------------------------------------------------------- int GetIso15693CommandFromReader(uint8_t *received, size_t max_len, uint32_t *eof_time) { int samples = 0; bool gotFrame = false; // the decoder data structure DecodeReader_t *dr = (DecodeReader_t *)BigBuf_malloc(sizeof(DecodeReader_t)); DecodeReaderInit(dr, received, max_len, 0, NULL); // wait for last transfer to complete while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY)); LED_D_OFF(); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION); // clear receive register and wait for next transfer uint32_t temp = AT91C_BASE_SSC->SSC_RHR; (void) temp; while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) ; // Setup and start DMA. dmabuf8_t *dma = get_dma8(); if (FpgaSetupSscDma(dma->buf, DMA_BUFFER_SIZE) == false) { if (g_dbglevel > DBG_ERROR) Dbprintf("FpgaSetupSscDma failed. Exiting"); return -4; } uint8_t *upTo = dma->buf; uint32_t dma_start_time = GetCountSspClk() & 0xfffffff8; for (;;) { volatile uint16_t behindBy = ((uint8_t *)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (DMA_BUFFER_SIZE - 1); if (behindBy == 0) continue; if (samples == 0) { // DMA has transferred the very first data dma_start_time = GetCountSspClk() & 0xfffffff0; } volatile uint8_t b = *upTo++; if (upTo >= dma->buf + DMA_BUFFER_SIZE) { // we have read all of the DMA buffer content. upTo = dma->buf; // start reading the circular buffer from the beginning if (behindBy > (9 * DMA_BUFFER_SIZE / 10)) { Dbprintf("About to blow circular buffer - aborted! behindBy %d", behindBy); break; } } if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // DMA Counter Register had reached 0, already rotated. AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dma->buf; // refresh the DMA Next Buffer and AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; // DMA Next Counter registers } for (int i = 7; i >= 0; i--) { if (Handle15693SampleFromReader((b >> i) & 0x01, dr)) { *eof_time = dma_start_time + samples - DELAY_READER_TO_ARM; // end of EOF gotFrame = true; break; } samples++; } if (gotFrame) { break; } if (BUTTON_PRESS()) { dr->byteCount = -1; break; } WDT_HIT(); } FpgaDisableSscDma(); if (g_dbglevel >= DBG_EXTENDED) { Dbprintf("samples = %d, gotFrame = %d, Decoder: state = %d, len = %d, bitCount = %d, posCount = %d", samples, gotFrame, dr->state, dr->byteCount, dr->bitCount, dr->posCount); } if (dr->byteCount >= 0) { uint32_t sof_time = *eof_time - dr->byteCount * (dr->Coding == CODING_1_OUT_OF_4 ? 128 : 2048) // time for byte transfers - 32 // time for SOF transfer - 16; // time for EOF transfer LogTrace_ISO15693(dr->output, dr->byteCount, (sof_time * 32), (*eof_time * 32), NULL, true); } return dr->byteCount; } //----------------------------------------------------------------------------- // Start to read an ISO 15693 tag. We send an identify request, then wait // for the response. The response is not demodulated, just left in the buffer // so that it can be downloaded to a PC and processed there. //----------------------------------------------------------------------------- void AcquireRawAdcSamplesIso15693(void) { LEDsoff(); DbpString("Starting to acquire data..."); FpgaDownloadAndGo(FPGA_BITSTREAM_HF_15); BigBuf_free(); clear_trace(); // Start from off (no field generated) FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(10); uint8_t cmd[5]; BuildIdentifyRequest(cmd); CodeIso15693AsReader(cmd, sizeof(cmd)); LED_A_ON(); uint8_t *dest = BigBuf_malloc(4000); // switch field on FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER); LED_D_ON(); // initialize SSC and select proper AD input FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); StartCountSspClk(); // Give the tags time to energize SpinDelay(250); // Now send the command tosend_t *ts = get_tosend(); uint32_t start_time = 0; TransmitTo15693Tag(ts->buf, ts->max, &start_time); // wait for last transfer to complete while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXEMPTY)) ; FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_424_KHZ | FPGA_HF_READER_MODE_RECEIVE_AMPLITUDE); for (int c = 0; c < 4000;) { if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { uint16_t r = AT91C_BASE_SSC->SSC_RHR; dest[c++] = r >> 5; } } FpgaDisableSscDma(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); } void SniffIso15693(uint8_t jam_search_len, uint8_t *jam_search_string, bool iclass) { LEDsoff(); LED_A_ON(); FpgaDownloadAndGo(FPGA_BITSTREAM_HF_15); DbpString("Starting to sniff. Press to stop"); BigBuf_free(); clear_trace(); set_tracing(true); DecodeTag_t dtag = {0}; uint8_t response[ISO15693_MAX_RESPONSE_LENGTH] = {0}; DecodeTagInit(&dtag, response, sizeof(response)); DecodeTagFSK_t dtagfsk = {0}; uint8_t response2[ISO15693_MAX_RESPONSE_LENGTH] = {0}; DecodeTagFSKInit(&dtagfsk, response2, sizeof(response2)); DecodeReader_t dreader = {0}; uint8_t cmd[ISO15693_MAX_COMMAND_LENGTH] = {0}; DecodeReaderInit(&dreader, cmd, sizeof(cmd), jam_search_len, jam_search_string); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SNIFF_AMPLITUDE | FPGA_HF_READER_2SUBCARRIERS_424_484_KHZ); LED_D_OFF(); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER); StartCountSspClk(); // The DMA buffer, used to stream samples from the FPGA dmabuf16_t *dma = get_dma16(); // Setup and start DMA. if (FpgaSetupSscDma((uint8_t *) dma->buf, DMA_BUFFER_SIZE) == false) { if (g_dbglevel > DBG_ERROR) DbpString("FpgaSetupSscDma failed. Exiting"); switch_off(); return; } bool tag_is_active = false; bool reader_is_active = false; bool expect_tag_answer = false; bool expect_fsk_answer = false; bool expect_fast_answer = true; // default to true is required for iClass int dma_start_time = 0; // Count of samples received so far, so that we can include timing int samples = 0; uint16_t *upTo = dma->buf; for (;;) { volatile int behind_by = ((uint16_t *)AT91C_BASE_PDC_SSC->PDC_RPR - upTo) & (DMA_BUFFER_SIZE - 1); if (behind_by < 1) continue; samples++; if (samples == 1) { // DMA has transferred the very first data dma_start_time = GetCountSspClk() & 0xfffffff0; } volatile uint16_t sniffdata = 0; volatile uint16_t sniffdata_prev = sniffdata; sniffdata = *upTo++; // we have read all of the DMA buffer content if (upTo >= dma->buf + DMA_BUFFER_SIZE) { // start reading the circular buffer from the beginning upTo = dma->buf; // DMA Counter Register had reached 0, already rotated. if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_ENDRX)) { // primary buffer was stopped if (AT91C_BASE_PDC_SSC->PDC_RCR == false) { AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dma->buf; AT91C_BASE_PDC_SSC->PDC_RCR = DMA_BUFFER_SIZE; } // secondary buffer sets as primary, secondary buffer was stopped if (AT91C_BASE_PDC_SSC->PDC_RNCR == false) { AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dma->buf; AT91C_BASE_PDC_SSC->PDC_RNCR = DMA_BUFFER_SIZE; } WDT_HIT(); if (BUTTON_PRESS()) { break; } } } // no need to try decoding reader data if the tag is sending if (!tag_is_active) { if (Handle15693SampleFromReader((sniffdata & 0x02) >> 1, &dreader)) { uint32_t eof_time = dma_start_time + (samples * 16) + 8 - DELAY_READER_TO_ARM_SNIFF; // end of EOF if (dreader.byteCount > 0) { uint32_t sof_time = eof_time - dreader.byteCount * (dreader.Coding == CODING_1_OUT_OF_4 ? 128 * 16 : 2048 * 16) // time for byte transfers - 32 * 16 // time for SOF transfer - 16 * 16; // time for EOF transfer LogTrace_ISO15693(dreader.output, dreader.byteCount, (sof_time * 4), (eof_time * 4), NULL, true); if (!iclass) { // Those flags don't exist in iClass expect_fsk_answer = dreader.output[0] & ISO15_REQ_SUBCARRIER_TWO; expect_fast_answer = dreader.output[0] & ISO15_REQ_DATARATE_HIGH; } } // And ready to receive another command. //DecodeReaderReset(&dreader); // already reseted DecodeTagReset(&dtag); DecodeTagFSKReset(&dtagfsk); reader_is_active = false; expect_tag_answer = true; } else if (Handle15693SampleFromReader(sniffdata & 0x01, &dreader)) { uint32_t eof_time = dma_start_time + (samples * 16) + 16 - DELAY_READER_TO_ARM_SNIFF; // end of EOF if (dreader.byteCount > 0) { uint32_t sof_time = eof_time - dreader.byteCount * (dreader.Coding == CODING_1_OUT_OF_4 ? 128 * 16 : 2048 * 16) // time for byte transfers - 32 * 16 // time for SOF transfer - 16 * 16; // time for EOF transfer LogTrace_ISO15693(dreader.output, dreader.byteCount, (sof_time * 4), (eof_time * 4), NULL, true); if (!iclass) { // Those flags don't exist in iClass expect_fsk_answer = dreader.output[0] & ISO15_REQ_SUBCARRIER_TWO; expect_fast_answer = dreader.output[0] & ISO15_REQ_DATARATE_HIGH; } } // And ready to receive another command //DecodeReaderReset(&dreader); // already reseted DecodeTagReset(&dtag); DecodeTagFSKReset(&dtagfsk); reader_is_active = false; expect_tag_answer = true; } else { reader_is_active = (dreader.state >= STATE_READER_RECEIVE_DATA_1_OUT_OF_4); } } if (!reader_is_active && expect_tag_answer) { // no need to try decoding tag data if the reader is currently sending or no answer expected yet if (!expect_fsk_answer) { if (Handle15693SamplesFromTag((sniffdata >> 4) << 2, &dtag, expect_fast_answer)) { uint32_t eof_time = dma_start_time + (samples * 16) - DELAY_TAG_TO_ARM_SNIFF; // end of EOF if (dtag.lastBit == SOF_PART2) { eof_time -= (8 * 16); // needed 8 additional samples to confirm single SOF (iCLASS) } uint32_t sof_time = eof_time - dtag.len * 8 * 8 * 16 // time for byte transfers - (32 * 16) // time for SOF transfer - (dtag.lastBit != SOF_PART2 ? (32 * 16) : 0); // time for EOF transfer LogTrace_ISO15693(dtag.output, dtag.len, (sof_time * 4), (eof_time * 4), NULL, false); // And ready to receive another response. DecodeTagReset(&dtag); DecodeTagFSKReset(&dtagfsk); DecodeReaderReset(&dreader); expect_tag_answer = false; tag_is_active = false; } else { tag_is_active = (dtag.state >= STATE_TAG_RECEIVING_DATA); } } else { if (FREQ_IS_0((sniffdata >> 2) & 0x3)) // tolerate 1 00 sniffdata = sniffdata_prev; if (Handle15693FSKSamplesFromTag((sniffdata >> 2) & 0x3, &dtagfsk, expect_fast_answer)) { expect_fsk_answer = false; } else { tag_is_active = (dtagfsk.state >= STATE_FSK_RECEIVING_DATA_484); } if (!expect_fsk_answer) { // FSK answer no more expected: switch back to ASK if (dtagfsk.len > 0) { uint32_t eof_time = dma_start_time + (samples * 16) - DELAY_TAG_TO_ARM_SNIFF; // end of EOF if (dtagfsk.lastBit == SOF) { eof_time -= (8 * 16); // needed 8 additional samples to confirm single SOF (iCLASS) } uint32_t sof_time = eof_time - dtagfsk.len * 8 * 8 * 16 // time for byte transfers - (32 * 16) // time for SOF transfer - (dtagfsk.lastBit != SOF ? (32 * 16) : 0); // time for EOF transfer LogTrace_ISO15693(dtagfsk.output, dtagfsk.len, (sof_time * 4), (eof_time * 4), NULL, false); } DecodeTagFSKReset(&dtagfsk); DecodeReaderReset(&dreader); expect_tag_answer = false; tag_is_active = false; } } } } FpgaDisableTracing(); switch_off(); DbpString(""); DbpString(_CYAN_("Sniff statistics")); DbpString("================================="); Dbprintf(" DecodeTag State........%d", dtag.state); Dbprintf(" DecodeTag byteCnt......%d", dtag.len); Dbprintf(" DecodeTag posCount.....%d", dtag.posCount); Dbprintf(" DecodeTagFSK State.....%d", dtagfsk.state); Dbprintf(" DecodeTagFSK byteCnt...%d", dtagfsk.len); Dbprintf(" DecodeTagFSK count.....%d", dtagfsk.count); Dbprintf(" DecodeReader State.....%d", dreader.state); Dbprintf(" DecodeReader byteCnt...%d", dreader.byteCount); Dbprintf(" DecodeReader posCount..%d", dreader.posCount); Dbprintf(" Trace length..........." _YELLOW_("%d"), BigBuf_get_traceLen()); DbpString(""); } // Initialize Proxmark3 as ISO15693 reader void Iso15693InitReader(void) { LEDsoff(); FpgaDownloadAndGo(FPGA_BITSTREAM_HF_15); // Start from off (no field generated) FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(10); // switch field on FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER); LED_D_ON(); // initialize SSC and select proper AD input FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); set_tracing(true); // give tags some time to energize SpinDelay(250); StartCountSspClk(); } /////////////////////////////////////////////////////////////////////// // ISO 15693 Part 3 - Air Interface // This section basically contains transmission and receiving of bits /////////////////////////////////////////////////////////////////////// // Encode an identify request, which is the first // thing that you must send to a tag to get a response. // It expects "cmdout" to be at least CMD_ID_RESP large // When READER: static void BuildIdentifyRequest(uint8_t *cmd) { // flags cmd[0] = ISO15_REQ_SUBCARRIER_SINGLE | ISO15_REQ_DATARATE_HIGH | ISO15_REQ_INVENTORY | ISO15_REQINV_SLOT1; // inventory command code cmd[1] = ISO15693_INVENTORY; // no mask cmd[2] = 0x00; // CRC AddCrc15(cmd, 3); } // Universal Method for sending to and recv bytes from a tag // init ... should we initialize the reader? // speed ... 0 low speed, 1 hi speed // **recv will return you a pointer to the received data // If you do not need the answer use NULL for *recv[] // return: length of received data // logging enabled int SendDataTag(uint8_t *send, int sendlen, bool init, bool speed_fast, uint8_t *recv, uint16_t max_recv_len, uint32_t start_time, uint16_t timeout, uint32_t *eof_time, uint16_t *resp_len) { if (init) { Iso15693InitReader(); start_time = GetCountSspClk(); } if (speed_fast) { // high speed (1 out of 4) CodeIso15693AsReader(send, sendlen); } else { // low speed (1 out of 256) CodeIso15693AsReader256(send, sendlen); } tosend_t *ts = get_tosend(); TransmitTo15693Tag(ts->buf, ts->max, &start_time); if (tearoff_hook() == PM3_ETEAROFF) { // tearoff occurred *resp_len = 0; return PM3_ETEAROFF; } else { int res = PM3_SUCCESS; *eof_time = start_time + 32 * ((8 * ts->max) - 4); // subtract the 4 padding bits after EOF LogTrace_ISO15693(send, sendlen, (start_time * 4), (*eof_time * 4), NULL, true); if (recv != NULL) { bool fsk = send[0] & ISO15_REQ_SUBCARRIER_TWO; bool recv_speed = send[0] & ISO15_REQ_DATARATE_HIGH; res = GetIso15693AnswerFromTag(recv, max_recv_len, timeout, eof_time, fsk, recv_speed, resp_len); } return res; } } int SendDataTagEOF(uint8_t *recv, uint16_t max_recv_len, uint32_t start_time, uint16_t timeout, uint32_t *eof_time, bool fsk, bool recv_speed, uint16_t *resp_len) { CodeIso15693AsReaderEOF(); tosend_t *ts = get_tosend(); TransmitTo15693Tag(ts->buf, ts->max, &start_time); uint32_t end_time = start_time + 32 * (8 * ts->max - 4); // subtract the 4 padding bits after EOF LogTrace_ISO15693(NULL, 0, (start_time * 4), (end_time * 4), NULL, true); int res = PM3_SUCCESS; if (recv) { res = GetIso15693AnswerFromTag(recv, max_recv_len, timeout, eof_time, fsk, recv_speed, resp_len); } return res; } // -------------------------------------------------------------------- // Debug Functions // -------------------------------------------------------------------- // Decodes a message from a tag and displays its metadata and content #define DBD15STATLEN 48 static void DbdecodeIso15693Answer(int len, uint8_t *d) { if (len > 3) { char status[DBD15STATLEN + 1] = {0}; if (d[0] & ISO15_RES_EXT) strncat(status, "ProtExt ", DBD15STATLEN - strlen(status)); if (d[0] & ISO15_RES_ERROR) { // error strncat(status, "Error ", DBD15STATLEN - strlen(status)); switch (d[1]) { case 0x01: strncat(status, "01: not supported", DBD15STATLEN - strlen(status)); break; case 0x02: strncat(status, "02: not recognized", DBD15STATLEN - strlen(status)); break; case 0x03: strncat(status, "03: opt not supported", DBD15STATLEN - strlen(status)); break; case 0x0f: strncat(status, "0F: no info", DBD15STATLEN - strlen(status)); break; case 0x10: strncat(status, "10: don't exist", DBD15STATLEN - strlen(status)); break; case 0x11: strncat(status, "11: lock again", DBD15STATLEN - strlen(status)); break; case 0x12: strncat(status, "12: locked", DBD15STATLEN - strlen(status)); break; case 0x13: strncat(status, "13: program error", DBD15STATLEN - strlen(status)); break; case 0x14: strncat(status, "14: lock error", DBD15STATLEN - strlen(status)); break; default: strncat(status, "unknown error", DBD15STATLEN - strlen(status)); } strncat(status, " ", DBD15STATLEN - strlen(status)); } else { strncat(status, "No error ", DBD15STATLEN - strlen(status)); } if (CheckCrc15(d, len)) strncat(status, "[+] crc ( " _GREEN_("ok") " )", DBD15STATLEN - strlen(status)); else strncat(status, "[!] crc ( " _RED_("fail") " )", DBD15STATLEN - strlen(status)); if (g_dbglevel >= DBG_ERROR) Dbprintf("%s", status); } } /////////////////////////////////////////////////////////////////////// // Functions called via USB/Client /////////////////////////////////////////////////////////////////////// //----------------------------------------------------------------------------- // Act as ISO15693 reader, perform anti-collision and then attempt to read a sector // all demodulation performed in arm rather than host. - greg //----------------------------------------------------------------------------- void ReaderIso15693(iso15_card_select_t *p_card) { LED_A_ON(); set_tracing(true); uint8_t *answer = BigBuf_malloc(ISO15693_MAX_RESPONSE_LENGTH); memset(answer, 0x00, ISO15693_MAX_RESPONSE_LENGTH); // FIRST WE RUN AN INVENTORY TO GET THE TAG UID // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME // Send the IDENTIFY command uint8_t cmd[5] = {0}; BuildIdentifyRequest(cmd); uint32_t start_time = 0; uint32_t eof_time; uint16_t recvlen = 0; int res = SendDataTag(cmd, sizeof(cmd), true, true, answer, ISO15693_MAX_RESPONSE_LENGTH, start_time, ISO15693_READER_TIMEOUT, &eof_time, &recvlen); if (res == PM3_ETEAROFF) { // tearoff occurred reply_ng(CMD_HF_ISO15693_READER, res, NULL, 0); } else { //start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER; // we should do a better check than this if (recvlen >= 12) { uint8_t uid[8]; uid[0] = answer[9]; // always E0 uid[1] = answer[8]; // IC Manufacturer code uid[2] = answer[7]; uid[3] = answer[6]; uid[4] = answer[5]; uid[5] = answer[4]; uid[6] = answer[3]; uid[7] = answer[2]; if (p_card != NULL) { memcpy(p_card->uid, uid, 8); p_card->uidlen = 8; } if (g_dbglevel >= DBG_EXTENDED) { Dbprintf("[+] UID = %02X%02X%02X%02X%02X%02X%02X%02X", uid[0], uid[1], uid[2], uid[3], uid[4], uid[5], uid[5], uid[6] ); } // send UID back to client. // arg0 = 1 = OK // arg1 = len of response (12 bytes) // arg2 = rtf // asbytes = uid. reply_ng(CMD_HF_ISO15693_READER, PM3_SUCCESS, uid, sizeof(uid)); if (g_dbglevel >= DBG_EXTENDED) { Dbprintf("[+] %d octets read from IDENTIFY request:", recvlen); DbdecodeIso15693Answer(recvlen, answer); Dbhexdump(recvlen, answer, true); } } else { p_card->uidlen = 0; DbpString("Failed to select card"); reply_ng(CMD_HF_ISO15693_READER, PM3_EFAILED, NULL, 0); } } switch_off(); BigBuf_free(); } // When SIM: initialize the Proxmark3 as ISO15693 tag void Iso15693InitTag(void) { FpgaDownloadAndGo(FPGA_BITSTREAM_HF_15); // Start from off (no field generated) FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); SpinDelay(10); // switch simulation FPGA FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION); // initialize SSC and select proper AD input FpgaSetupSsc(FPGA_MAJOR_MODE_HF_SIMULATOR); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); clear_trace(); set_tracing(true); StartCountSspClk(); } void EmlClearIso15693(void) { // Resetting the bitstream also frees the BigBuf memory, so we do this here to prevent // an inconvenient reset in the future by Iso15693InitTag FpgaDownloadAndGo(FPGA_BITSTREAM_HF_15); BigBuf_Clear_EM(); reply_ng(CMD_HF_ISO15693_EML_CLEAR, PM3_SUCCESS, NULL, 0); } void EmlSetMemIso15693(uint8_t count, uint8_t *data, uint32_t offset) { uint8_t *emCARD = BigBuf_get_EM_addr(); memcpy(emCARD + offset, data, count); } void EmlGetMemIso15693(uint8_t count, uint8_t *output, uint32_t offset) { uint8_t *emCARD = BigBuf_get_EM_addr(); memcpy(output, emCARD + offset, count); } // Simulate an ISO15693 TAG, perform anti-collision and then print any reader commands // all demodulation performed in arm rather than host. - greg void SimTagIso15693(uint8_t *uid, uint8_t block_size) { // free eventually allocated BigBuf memory BigBuf_free_keep_EM(); Iso15693InitTag(); LED_A_ON(); Dbprintf("ISO-15963 Simulating uid: %02X%02X%02X%02X%02X%02X%02X%02X block size %d", uid[0], uid[1], uid[2], uid[3], uid[4], uid[5], uid[6], uid[7], block_size); LED_C_ON(); enum { NO_FIELD, IDLE, ACTIVATED, SELECTED, HALTED } chip_state = NO_FIELD; bool button_pressed = false; int vHf; // in mV bool exit_loop = false; while (exit_loop == false) { button_pressed = BUTTON_PRESS(); if (button_pressed || data_available()) break; WDT_HIT(); // find reader field if (chip_state == NO_FIELD) { vHf = (MAX_ADC_HF_VOLTAGE * SumAdc(ADC_CHAN_HF, 32)) >> 15; if (vHf > MF_MINFIELDV) { chip_state = IDLE; LED_A_ON(); } else { continue; } } // Listen to reader uint8_t cmd[ISO15693_MAX_COMMAND_LENGTH]; uint32_t reader_eof_time = 0; int cmd_len = GetIso15693CommandFromReader(cmd, sizeof(cmd), &reader_eof_time); if (cmd_len < 0) { button_pressed = true; break; } // TODO: check more flags if ((cmd_len >= 5) && (cmd[0] & ISO15_REQ_INVENTORY) && (cmd[1] == ISO15693_INVENTORY)) { bool slow = !(cmd[0] & ISO15_REQ_DATARATE_HIGH); uint32_t response_time = reader_eof_time + DELAY_ISO15693_VCD_TO_VICC_SIM; // Build INVENTORY command uint8_t resp_inv[CMD_INV_RESP] = {0}; resp_inv[0] = 0; // No error, no protocol format extension resp_inv[1] = 0; // DSFID (data storage format identifier). 0x00 = not supported // 64-bit UID resp_inv[2] = uid[7]; resp_inv[3] = uid[6]; resp_inv[4] = uid[5]; resp_inv[5] = uid[4]; resp_inv[6] = uid[3]; resp_inv[7] = uid[2]; resp_inv[8] = uid[1]; resp_inv[9] = uid[0]; // CRC AddCrc15(resp_inv, 10); CodeIso15693AsTag(resp_inv, CMD_INV_RESP); tosend_t *ts = get_tosend(); TransmitTo15693Reader(ts->buf, ts->max, &response_time, 0, slow); LogTrace_ISO15693(resp_inv, CMD_INV_RESP, response_time * 32, (response_time * 32) + (ts->max * 32 * 64), NULL, false); chip_state = SELECTED; } // GET_SYSTEM_INFO if ((cmd[1] == ISO15693_GET_SYSTEM_INFO)) { bool slow = !(cmd[0] & ISO15_REQ_DATARATE_HIGH); uint32_t response_time = reader_eof_time + DELAY_ISO15693_VCD_TO_VICC_SIM; // Build GET_SYSTEM_INFO response uint8_t resp_sysinfo[CMD_SYSINFO_RESP] = {0}; resp_sysinfo[0] = 0; // Response flags. resp_sysinfo[1] = 0x0F; // Information flags (0x0F - DSFID, AFI, Mem size, IC) // 64-bit UID resp_sysinfo[2] = uid[7]; resp_sysinfo[3] = uid[6]; resp_sysinfo[4] = uid[5]; resp_sysinfo[5] = uid[4]; resp_sysinfo[6] = uid[3]; resp_sysinfo[7] = uid[2]; resp_sysinfo[8] = uid[1]; resp_sysinfo[9] = uid[0]; resp_sysinfo[10] = 0; // DSFID resp_sysinfo[11] = 0; // AFI resp_sysinfo[12] = 0x1F; // Block count resp_sysinfo[13] = block_size - 1; // Block size. resp_sysinfo[14] = 0x01; // IC reference. // CRC AddCrc15(resp_sysinfo, 15); CodeIso15693AsTag(resp_sysinfo, CMD_SYSINFO_RESP); tosend_t *ts = get_tosend(); TransmitTo15693Reader(ts->buf, ts->max, &response_time, 0, slow); LogTrace_ISO15693(resp_sysinfo, CMD_SYSINFO_RESP, response_time * 32, (response_time * 32) + (ts->max * 32 * 64), NULL, false); } // READ_BLOCK and READ_MULTI_BLOCK if ((cmd[1] == ISO15693_READBLOCK) || (cmd[1] == ISO15693_READ_MULTI_BLOCK)) { bool slow = !(cmd[0] & ISO15_REQ_DATARATE_HIGH); bool addressed = cmd[0] & ISO15_REQ_ADDRESS; bool option = cmd[0] & ISO15_REQ_OPTION; uint32_t response_time = reader_eof_time + DELAY_ISO15693_VCD_TO_VICC_SIM; uint8_t address_offset = 0; if (addressed) { address_offset = 8; } uint8_t block_idx = cmd[2 + address_offset]; uint8_t block_count = 1; if (cmd[1] == ISO15693_READ_MULTI_BLOCK) { block_count = cmd[3 + address_offset] + 1; } // Build READ_(MULTI_)BLOCK response int response_length = 3 + block_size * block_count; int security_offset = 0; if (option) { response_length += block_count; security_offset = 1; } uint8_t resp_readblock[response_length]; memset(resp_readblock, 0, response_length); resp_readblock[0] = 0; // Response flags for (int j = 0; j < block_count; j++) { // where to put the data of the current block int work_offset = 1 + j * (block_size + security_offset); if (option) { resp_readblock[work_offset] = 0; // Security status } // Block data if (block_size * (block_idx + j + 1) <= CARD_MEMORY_SIZE) { EmlGetMemIso15693(block_size, resp_readblock + (work_offset + security_offset), block_size * (block_idx + j)); } else { memset(resp_readblock + work_offset + security_offset, 0, block_size); } } // CRC AddCrc15(resp_readblock, response_length - 2); CodeIso15693AsTag(resp_readblock, response_length); tosend_t *ts = get_tosend(); TransmitTo15693Reader(ts->buf, ts->max, &response_time, 0, slow); LogTrace_ISO15693(resp_readblock, response_length, response_time * 32, (response_time * 32) + (ts->max * 32 * 64), NULL, false); } // WRITE_BLOCK and WRITE_MULTI_BLOCK if ((cmd[1] == ISO15693_WRITEBLOCK) || (cmd[1] == ISO15693_WRITE_MULTI_BLOCK)) { bool slow = !(cmd[0] & ISO15_REQ_DATARATE_HIGH); bool addressed = cmd[0] & ISO15_REQ_ADDRESS; uint32_t response_time = reader_eof_time + DELAY_ISO15693_VCD_TO_VICC_SIM; uint8_t address_offset = 0; if (addressed) { address_offset = 8; } uint8_t block_idx = cmd[2 + address_offset]; uint8_t block_count = 1; uint8_t multi_offset = 0; if (cmd[1] == ISO15693_WRITE_MULTI_BLOCK) { block_count = cmd[3 + address_offset] + 1; multi_offset = 1; } uint8_t *data = cmd + 3 + address_offset + multi_offset; // write data EmlSetMemIso15693(block_count * block_size, data, block_idx * block_size); // Build WRITE_(MULTI_)BLOCK response int response_length = 3; uint8_t resp_writeblock[response_length]; memset(resp_writeblock, 0, response_length); resp_writeblock[0] = 0; // Response flags // CRC AddCrc15(resp_writeblock, response_length - 2); CodeIso15693AsTag(resp_writeblock, response_length); tosend_t *ts = get_tosend(); TransmitTo15693Reader(ts->buf, ts->max, &response_time, 0, slow); LogTrace_ISO15693(resp_writeblock, response_length, response_time * 32, (response_time * 32) + (ts->max * 32 * 64), NULL, false); } } switch_off(); if (button_pressed) DbpString("button pressed"); reply_ng(CMD_HF_ISO15693_SIMULATE, PM3_SUCCESS, NULL, 0); } // Since there is no standardized way of reading the AFI out of a tag, we will brute force it // (some manufactures offer a way to read the AFI, though) void BruteforceIso15693Afi(uint32_t speed) { uint8_t data[7] = {0}; uint8_t recv[ISO15693_MAX_RESPONSE_LENGTH]; Iso15693InitReader(); // first without AFI // Tags should respond without AFI and with AFI=0 even when AFI is active data[0] = ISO15_REQ_SUBCARRIER_SINGLE | ISO15_REQ_DATARATE_HIGH | ISO15_REQ_INVENTORY | ISO15_REQINV_SLOT1; data[1] = ISO15693_INVENTORY; data[2] = 0; // AFI AddCrc15(data, 3); int datalen = 5; uint32_t eof_time = 0; uint16_t recvlen = 0; int res = SendDataTag(data, datalen, true, speed, recv, sizeof(recv), 0, ISO15693_READER_TIMEOUT, &eof_time, &recvlen); if (res != PM3_SUCCESS) { DbpString("Failed to select card"); reply_ng(CMD_HF_ISO15693_FINDAFI, res, NULL, 0); switch_off(); return; } uint32_t start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER; WDT_HIT(); if (recvlen >= 12) { Dbprintf("NoAFI UID = %s", iso15693_sprintUID(NULL, recv + 2)); } // now with AFI data[0] |= ISO15_REQINV_AFI; data[2] = 0; // AFI data[3] = 0; // mask length // 4 + 2crc datalen = 6; bool aborted = false; for (uint16_t i = 0; i < 256; i++) { data[2] = i & 0xFF; AddCrc15(data, 4); recvlen = 0; res = SendDataTag(data, datalen, false, speed, recv, sizeof(recv), start_time, ISO15693_READER_TIMEOUT, &eof_time, &recvlen); start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER; WDT_HIT(); if (recvlen >= 12) { Dbprintf("AFI = %i UID = %s", i, iso15693_sprintUID(NULL, recv + 2)); } aborted = (BUTTON_PRESS() && data_available()); if (aborted) { break; } } DbpString("AFI Bruteforcing done."); switch_off(); if (aborted) { reply_ng(CMD_HF_ISO15693_FINDAFI, PM3_EOPABORTED, NULL, 0); } else { reply_ng(CMD_HF_ISO15693_FINDAFI, PM3_SUCCESS, NULL, 0); } } // Allows to directly send commands to the tag via the client // OBS: doesn't turn off rf field afterwards. void DirectTag15693Command(uint32_t datalen, uint32_t speed, uint32_t recv, uint8_t *data) { LED_A_ON(); uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH]; uint16_t timeout; uint32_t eof_time = 0; bool request_answer = false; switch (data[1]) { case ISO15693_WRITEBLOCK: case ISO15693_LOCKBLOCK: case ISO15693_WRITE_MULTI_BLOCK: case ISO15693_WRITE_AFI: case ISO15693_LOCK_AFI: case ISO15693_WRITE_DSFID: case ISO15693_LOCK_DSFID: timeout = ISO15693_READER_TIMEOUT_WRITE; request_answer = data[0] & ISO15_REQ_OPTION; break; default: timeout = ISO15693_READER_TIMEOUT; } uint32_t start_time = 0; uint16_t recvlen = 0; int res = SendDataTag(data, datalen, true, speed, (recv ? recvbuf : NULL), sizeof(recvbuf), start_time, timeout, &eof_time, &recvlen); if (res == PM3_ETEAROFF) { // tearoff occurred reply_ng(CMD_HF_ISO15693_COMMAND, res, NULL, 0); } else { bool fsk = data[0] & ISO15_REQ_SUBCARRIER_TWO; bool recv_speed = data[0] & ISO15_REQ_DATARATE_HIGH; // send a single EOF to get the tag response if (request_answer) { start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER; res = SendDataTagEOF((recv ? recvbuf : NULL), sizeof(recvbuf), start_time, ISO15693_READER_TIMEOUT, &eof_time, fsk, recv_speed, &recvlen); } if (recv) { recvlen = MIN(recvlen, ISO15693_MAX_RESPONSE_LENGTH); reply_ng(CMD_HF_ISO15693_COMMAND, res, recvbuf, recvlen); } else { reply_ng(CMD_HF_ISO15693_COMMAND, PM3_SUCCESS, NULL, 0); } } // note: this prevents using hf 15 cmd with s option - which isn't implemented yet anyway // also prevents hf 15 raw -k keep_field on ... FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LED_D_OFF(); } /* SLIx functions from official master forks. void LockPassSlixIso15693(uint32_t pass_id, uint32_t password) { LED_A_ON(); uint8_t cmd_inventory[] = {ISO15693_REQ_DATARATE_HIGH | ISO15693_REQ_INVENTORY | ISO15693_REQINV_SLOT1, 0x01, 0x00, 0x00, 0x00 }; uint8_t cmd_get_rnd[] = {ISO15693_REQ_DATARATE_HIGH, 0xB2, 0x04, 0x00, 0x00 }; uint8_t cmd_set_pass[] = {ISO15693_REQ_DATARATE_HIGH, 0xB3, 0x04, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; //uint8_t cmd_write_pass[] = {ISO15693_REQ_DATARATE_HIGH | ISO15693_REQ_ADDRESS, 0xB4, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t cmd_lock_pass[] = {ISO15693_REQ_DATARATE_HIGH | ISO15693_REQ_ADDRESS, 0xB5, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00 }; uint16_t crc; uint16_t recvlen = 0; uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH]; uint32_t start_time = 0; bool done = false; int res; // setup 'get random number' command crc = Iso15693Crc(cmd_get_rnd, 3); cmd_get_rnd[3] = crc & 0xff; cmd_get_rnd[4] = crc >> 8; Dbprintf("LockPass: Press button lock password, long-press to terminate."); while (!done) { LED_D_ON(); switch(BUTTON_HELD(1000)) { case BUTTON_SINGLE_CLICK: Dbprintf("LockPass: Reset 'DONE'-LED (A)"); LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); break; case BUTTON_HOLD: Dbprintf("LockPass: Terminating"); done = true; break; default: SpinDelay(50); continue; } if (done) [ break; } res = SendDataTag(cmd_get_rnd, sizeof(cmd_get_rnd), true, true, recvbuf, sizeof(recvbuf), start_time, &recvlen); if (res != PM3_SUCCESS && recvlen != 5) { LED_C_ON(); } else { Dbprintf("LockPass: Received random 0x%02X%02X (%d)", recvbuf[1], recvbuf[2], recvlen); // setup 'set password' command cmd_set_pass[4] = ((password>>0) &0xFF) ^ recvbuf[1]; cmd_set_pass[5] = ((password>>8) &0xFF) ^ recvbuf[2]; cmd_set_pass[6] = ((password>>16) &0xFF) ^ recvbuf[1]; cmd_set_pass[7] = ((password>>24) &0xFF) ^ recvbuf[2]; crc = Iso15693Crc(cmd_set_pass, 8); cmd_set_pass[8] = crc & 0xff; cmd_set_pass[9] = crc >> 8; Dbprintf("LockPass: Sending old password to end privacy mode", cmd_set_pass[4], cmd_set_pass[5], cmd_set_pass[6], cmd_set_pass[7]); res = SendDataTag(cmd_set_pass, sizeof(cmd_set_pass), false, true, recvbuf, sizeof(recvbuf), start_time, &recvlen); if (res != PM3_SUCCESS && recvlen != 3) { Dbprintf("LockPass: Failed to set password (%d)", recvlen); LED_B_ON(); } else { crc = Iso15693Crc(cmd_inventory, 3); cmd_inventory[3] = crc & 0xff; cmd_inventory[4] = crc >> 8; Dbprintf("LockPass: Searching for tag..."); res = SendDataTag(cmd_inventory, sizeof(cmd_inventory), false, true, recvbuf, sizeof(recvbuf), start_time, &recvlen); if (res != PM3_SUCCESS && recvlen != 12) { Dbprintf("LockPass: Failed to read inventory (%d)", recvlen); LED_B_ON(); LED_C_ON(); } else { Dbprintf("LockPass: Answer from %02X%02X%02X%02X%02X%02X%02X%02X", recvbuf[9], recvbuf[8], recvbuf[7], recvbuf[6], recvbuf[5], recvbuf[4], recvbuf[3], recvbuf[2]); memcpy(&cmd_lock_pass[3], &recvbuf[2], 8); cmd_lock_pass[8+3] = pass_id; crc = Iso15693Crc(cmd_lock_pass, 8+4); cmd_lock_pass[8+4] = crc & 0xff; cmd_lock_pass[8+5] = crc >> 8; Dbprintf("LockPass: locking to password 0x%02X%02X%02X%02X for ID %02X", cmd_set_pass[4], cmd_set_pass[5], cmd_set_pass[6], cmd_set_pass[7], pass_id); res = SendDataTag(cmd_lock_pass, sizeof(cmd_lock_pass), false, true, recvbuf, sizeof(recvbuf), start_time, &recvlen); if (res != PM3_SUCCESS && recvlen != 3) { Dbprintf("LockPass: Failed to lock password (%d)", recvlen); } else { Dbprintf("LockPass: Successful (%d)", recvlen); } LED_A_ON(); } } } } Dbprintf("LockPass: Finishing"); cmd_send(CMD_ACK, recvlen, 0, 0, recvbuf, recvlen); } */ //----------------------------------------------------------------------------- // Work with "magic Chinese" card. // //----------------------------------------------------------------------------- // Set the UID on Magic ISO15693 tag (based on Iceman's LUA-script). void SetTag15693Uid(const uint8_t *uid) { LED_A_ON(); uint8_t cmd[4][9] = { {ISO15_REQ_DATARATE_HIGH, ISO15693_WRITEBLOCK, 0x3e, 0x00, 0x00, 0x00, 0x00}, {ISO15_REQ_DATARATE_HIGH, ISO15693_WRITEBLOCK, 0x3f, 0x69, 0x96, 0x00, 0x00}, {ISO15_REQ_DATARATE_HIGH, ISO15693_WRITEBLOCK, 0x38}, {ISO15_REQ_DATARATE_HIGH, ISO15693_WRITEBLOCK, 0x39} }; // Command 3 : 02 21 38 u8u7u6u5 (where uX = uid byte X) cmd[2][3] = uid[7]; cmd[2][4] = uid[6]; cmd[2][5] = uid[5]; cmd[2][6] = uid[4]; // Command 4 : 02 21 39 u4u3u2u1 (where uX = uid byte X) cmd[3][3] = uid[3]; cmd[3][4] = uid[2]; cmd[3][5] = uid[1]; cmd[3][6] = uid[0]; AddCrc15(cmd[0], 7); AddCrc15(cmd[1], 7); AddCrc15(cmd[2], 7); AddCrc15(cmd[3], 7); uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH]; uint32_t start_time = 0; uint32_t eof_time = 0; uint16_t recvlen = 0; int res = PM3_SUCCESS; for (int i = 0; i < 4; i++) { res = SendDataTag( cmd[i], sizeof(cmd[i]), (i == 0) ? true : false, true, recvbuf, sizeof(recvbuf), start_time, ISO15693_READER_TIMEOUT_WRITE, &eof_time, &recvlen); start_time = eof_time + DELAY_ISO15693_VICC_TO_VCD_READER; } reply_ng(CMD_HF_ISO15693_CSETUID, res, NULL, 0); switch_off(); } static void init_password_15693_slixl(uint8_t *buffer, uint8_t *pwd, const uint8_t *rnd) { memcpy(buffer, pwd, 4); if (rnd) { buffer[0] ^= rnd[0]; buffer[1] ^= rnd[1]; buffer[2] ^= rnd[0]; buffer[3] ^= rnd[1]; } } static bool get_rnd_15693_slixl(uint32_t start_time, uint32_t *eof_time, uint8_t *rnd) { // 0x04, == NXP from manufacture id list. uint8_t c[] = {ISO15_REQ_DATARATE_HIGH, ISO15693_GET_RANDOM_NUMBER, 0x04, 0x00, 0x00 }; AddCrc15(c, 3); uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH]; uint16_t recvlen = 0; int res = SendDataTag(c, sizeof(c), false, true, recvbuf, sizeof(recvbuf), start_time, ISO15693_READER_TIMEOUT_WRITE, eof_time, &recvlen); if (res != PM3_SUCCESS && recvlen != 5) { return false; } if (rnd) { memcpy(rnd, &recvbuf[1], 2); } return true; } static uint32_t set_pass_15693_slixl(uint32_t start_time, uint32_t *eof_time, uint8_t pass_id, uint8_t *password) { uint8_t rnd[2]; if (get_rnd_15693_slixl(start_time, eof_time, rnd) == false) { return PM3_ETIMEOUT; } // 0x04, == NXP from manufacture id list. uint8_t c[] = {ISO15_REQ_DATARATE_HIGH, ISO15693_SET_PASSWORD, 0x04, pass_id, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; init_password_15693_slixl(&c[4], password, rnd); AddCrc15(c, 8); start_time = *eof_time + DELAY_ISO15693_VICC_TO_VCD_READER; uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH]; uint16_t recvlen = 0; int res = SendDataTag(c, sizeof(c), false, true, recvbuf, sizeof(recvbuf), start_time, ISO15693_READER_TIMEOUT_WRITE, eof_time, &recvlen); if (res != PM3_SUCCESS && recvlen != 3) { return PM3_EWRONGANSWER; } return PM3_SUCCESS; } /* static uint32_t enable_privacy_15693_slixl(uint32_t start_time, uint32_t *eof_time, uint8_t *uid, uint8_t pass_id, uint8_t *password) { uint8_t rnd[2]; if (get_rnd_15693_slixl(start_time, eof_time, rnd) == false) { return PM3_ETIMEOUT; } uint8_t c[] = {ISO15_REQ_DATARATE_HIGH | ISO15_REQ_ADDRESS, ISO15693_ENABLE_PRIVACY, pass_id, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; memcpy(&c[3], uid, 8); init_password_15693_slixl(&c[11], password, rnd); AddCrc15(c, 15); start_time = *eof_time + DELAY_ISO15693_VICC_TO_VCD_READER; uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH]; uint16_t recvlen = 0 int res = SendDataTag(c, sizeof(c), false, true, recvbuf, sizeof(recvbuf), start_time, ISO15693_READER_TIMEOUT_WRITE, eof_time, &recvlen); if (res != PM3_SUCCESS && recvlen != 3) { return PM3_EWRONGANSWER; } return PM3_SUCCESS; } static uint32_t write_password_15693_slixl(uint32_t start_time, uint32_t *eof_time, uint8_t *uid, uint8_t pass_id, uint8_t *password) { uint8_t rnd[2]; if (get_rnd_15693_slixl(start_time, eof_time, rnd) == false) { return PM3_ETIMEOUT; } uint8_t c[] = {ISO15_REQ_DATARATE_HIGH | ISO15_REQ_ADDRESS, ISO15693_WRITE_PASSWORD, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; memcpy(&c[3], uid, 8); c[11] = pass_id; init_password_15693_slixl(&c[12], password, NULL); AddCrc15(c, 16); start_time = *eof_time + DELAY_ISO15693_VICC_TO_VCD_READER; uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH]; uint16_t recvlen = 0; int res = SendDataTag(c, sizeof(c), false, true, recvbuf, sizeof(recvbuf), start_time, ISO15693_READER_TIMEOUT_WRITE, eof_time, &recvlen); if (res != PM3_SUCCESS && recvlen != 3) { return PM3_EWRONGANSWER; } return PM3_SUCCESS; } static uint32_t destroy_15693_slixl(uint32_t start_time, uint32_t *eof_time, uint8_t *uid, uint8_t *password) { uint8_t rnd[2]; if (get_rnd_15693_slixl(start_time, eof_time, rnd) == false) { return PM3_ETIMEOUT; } uint8_t c[] = {ISO15_REQ_DATARATE_HIGH | ISO15_REQ_ADDRESS, ISO15693_DESTROY, ISO15693_ENABLE_PRIVACY, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; memcpy(&c[3], uid, 8); init_password_15693_slixl(&c[11], password, rnd); AddCrc15(c, 15); start_time = *eof_time + DELAY_ISO15693_VICC_TO_VCD_READER; uint8_t recvbuf[ISO15693_MAX_RESPONSE_LENGTH]; uint16_t recvlen = 0; int res = SendDataTag(c, sizeof(c), false, true, recvbuf, sizeof(recvbuf), start_time, ISO15693_READER_TIMEOUT_WRITE, eof_time, &recvlen); if (res != PM3_SUCCESS && recvlen != 3) { return PM3_EWRONGANSWER; } return PM3_SUCCESS; } */ // Sets a PRIVACY password to all ZEROS void DisablePrivacySlixLIso15693(uint8_t *password) { LED_D_ON(); Iso15693InitReader(); StartCountSspClk(); uint32_t start_time = 0, eof_time = 0; // Password identifier Password byte // 0x04 Privacy // 0x08 Destroy SLIX-L // 0x10 EAS/AFI int res = set_pass_15693_slixl(start_time, &eof_time, 0x04, password); reply_ng(CMD_HF_ISO15693_SLIX_L_DISABLE_PRIVACY, res, NULL, 0); switch_off(); } // Sets a EAS/AFI password to all ZEROS void DisableEAS_AFISlixLIso15693(uint8_t *password) { LED_D_ON(); Iso15693InitReader(); StartCountSspClk(); uint32_t start_time = 0, eof_time = 0; // Password identifier Password byte // 0x04 Privacy // 0x08 Destroy SLIX-L // 0x10 EAS/AFI int res = set_pass_15693_slixl(start_time, &eof_time, 0x10, password); reply_ng(CMD_HF_ISO15693_SLIX_L_DISABLE_AESAFI, res, NULL, 0); switch_off(); }