//----------------------------------------------------------------------------- // Copyright (C) 2010 Hector Martin "marcan" // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // ELF file flasher //----------------------------------------------------------------------------- #include "flash.h" #define FLASH_START 0x100000 #define BOOTLOADER_SIZE 0x2000 #define BOOTLOADER_END (FLASH_START + BOOTLOADER_SIZE) #define BLOCK_SIZE 0x200 #define FLASHER_VERSION BL_VERSION_1_0_0 static const uint8_t elf_ident[] = { 0x7f, 'E', 'L', 'F', ELFCLASS32, ELFDATA2LSB, EV_CURRENT }; static int chipid_to_mem_avail(uint32_t iChipID) { int mem_avail = 0; switch ((iChipID & 0xF00) >> 8) { case 0: mem_avail = 0; break; case 1: mem_avail = 8; break; case 2: mem_avail = 16; break; case 3: mem_avail = 32; break; case 5: mem_avail = 64; break; case 7: mem_avail = 128; break; case 9: mem_avail = 256; break; case 10: mem_avail = 512; break; case 12: mem_avail = 1024; break; case 14: mem_avail = 2048; } return mem_avail; } // Turn PHDRs into flasher segments, checking for PHDR sanity and merging adjacent // unaligned segments if needed static int build_segs_from_phdrs(flash_file_t *ctx, FILE *fd, Elf32_Phdr *phdrs, uint16_t num_phdrs, uint32_t flash_end) { Elf32_Phdr *phdr = phdrs; flash_seg_t *seg; uint32_t last_end = 0; ctx->segments = calloc(sizeof(flash_seg_t) * num_phdrs, sizeof(uint8_t)); if (!ctx->segments) { PrintAndLogEx(ERR, "Out of memory"); return -1; } ctx->num_segs = 0; seg = ctx->segments; PrintAndLogEx(SUCCESS, "Loading usable ELF segments:"); for (int i = 0; i < num_phdrs; i++) { if (le32(phdr->p_type) != PT_LOAD) { phdr++; continue; } uint32_t vaddr = le32(phdr->p_vaddr); uint32_t paddr = le32(phdr->p_paddr); uint32_t filesz = le32(phdr->p_filesz); uint32_t memsz = le32(phdr->p_memsz); uint32_t offset = le32(phdr->p_offset); uint32_t flags = le32(phdr->p_flags); if (!filesz) { phdr++; continue; } PrintAndLogEx(SUCCESS, " "_YELLOW_("%d")": V 0x%08x P 0x%08x (0x%08x->0x%08x) [%c%c%c] @0x%x", i, vaddr, paddr, filesz, memsz, (flags & PF_R) ? 'R' : ' ', (flags & PF_W) ? 'W' : ' ', (flags & PF_X) ? 'X' : ' ', offset); if (filesz != memsz) { PrintAndLogEx(ERR, "Error: PHDR file size does not equal memory size\n" "(DATA+BSS PHDRs do not make sense on ROM platforms!)"); return -1; } if (paddr < last_end) { PrintAndLogEx(ERR, "Error: PHDRs not sorted or overlap"); return -1; } if (paddr < FLASH_START || (paddr + filesz) > flash_end) { PrintAndLogEx(ERR, "Error: PHDR is not contained in Flash"); return -1; } if (vaddr >= FLASH_START && vaddr < flash_end && (flags & PF_W)) { PrintAndLogEx(ERR, "Error: Flash VMA segment is writable"); return -1; } uint8_t *data; // make extra space if we need to move the data forward data = calloc(filesz + BLOCK_SIZE, sizeof(uint8_t)); if (!data) { PrintAndLogEx(ERR, "Error: Out of memory"); return -1; } if (fseek(fd, offset, SEEK_SET) < 0 || fread(data, 1, filesz, fd) != filesz) { PrintAndLogEx(ERR, "Error while reading PHDR payload"); free(data); return -1; } uint32_t block_offset = paddr & (BLOCK_SIZE - 1); if (block_offset) { if (ctx->num_segs) { flash_seg_t *prev_seg = seg - 1; uint32_t this_end = paddr + filesz; uint32_t this_firstblock = paddr & ~(BLOCK_SIZE - 1); uint32_t prev_lastblock = (last_end - 1) & ~(BLOCK_SIZE - 1); if (this_firstblock == prev_lastblock) { uint32_t new_length = this_end - prev_seg->start; uint32_t this_offset = paddr - prev_seg->start; uint32_t hole = this_offset - prev_seg->length; uint8_t *new_data = calloc(new_length, sizeof(uint8_t)); if (!new_data) { PrintAndLogEx(ERR, "Error: Out of memory"); free(data); return -1; } memset(new_data, 0xff, new_length); memcpy(new_data, prev_seg->data, prev_seg->length); memcpy(new_data + this_offset, data, filesz); PrintAndLogEx(INFO, "Note: Extending previous segment from 0x%x to 0x%x bytes", prev_seg->length, new_length); if (hole) PrintAndLogEx(INFO, "Note: 0x%x-byte hole created", hole); free(data); free(prev_seg->data); prev_seg->data = new_data; prev_seg->length = new_length; last_end = this_end; phdr++; continue; } } PrintAndLogEx(WARNING, "Warning: segment does not begin on a block boundary, will pad"); memmove(data + block_offset, data, filesz); memset(data, 0xFF, block_offset); filesz += block_offset; paddr -= block_offset; } seg->data = data; seg->start = paddr; seg->length = filesz; seg++; ctx->num_segs++; last_end = paddr + filesz; phdr++; } return 0; } // Sanity check segments and check for bootloader writes static int check_segs(flash_file_t *ctx, int can_write_bl, uint32_t flash_end) { for (int i = 0; i < ctx->num_segs; i++) { flash_seg_t *seg = &ctx->segments[i]; if (seg->start & (BLOCK_SIZE - 1)) { PrintAndLogEx(ERR, "Error: Segment is not aligned"); return -1; } if (seg->start < FLASH_START) { PrintAndLogEx(ERR, "Error: Segment is outside of flash bounds"); return -1; } if (seg->start + seg->length > flash_end) { PrintAndLogEx(ERR, "Error: Segment is outside of flash bounds"); return -1; } if (!can_write_bl && seg->start < BOOTLOADER_END) { PrintAndLogEx(ERR, "Attempted to write bootloader but bootloader writes are not enabled"); return -1; } if (can_write_bl && seg->start < BOOTLOADER_END && (seg->start + seg->length > BOOTLOADER_END)) { PrintAndLogEx(ERR, "Error: Segment is outside of bootloader bounds"); return -1; } } return 0; } // Load an ELF file and prepare it for flashing int flash_load(flash_file_t *ctx, const char *name, int can_write_bl, int flash_size) { FILE *fd; Elf32_Ehdr ehdr; Elf32_Phdr *phdrs = NULL; uint16_t num_phdrs; uint32_t flash_end = FLASH_START + flash_size; int res; fd = fopen(name, "rb"); if (!fd) { PrintAndLogEx(ERR, _RED_("Could not open file") "%s >>> ", name); goto fail; } PrintAndLogEx(SUCCESS, _BLUE_("Loading ELF file") _YELLOW_("%s"), name); if (fread(&ehdr, sizeof(ehdr), 1, fd) != 1) { PrintAndLogEx(ERR, "Error while reading ELF file header"); goto fail; } if (memcmp(ehdr.e_ident, elf_ident, sizeof(elf_ident)) || le32(ehdr.e_version) != 1) { PrintAndLogEx(ERR, "Not an ELF file or wrong ELF type"); goto fail; } if (le16(ehdr.e_type) != ET_EXEC) { PrintAndLogEx(ERR, "ELF is not executable"); goto fail; } if (le16(ehdr.e_machine) != EM_ARM) { PrintAndLogEx(ERR, "Wrong ELF architecture"); goto fail; } if (!ehdr.e_phnum || !ehdr.e_phoff) { PrintAndLogEx(ERR, "ELF has no PHDRs"); goto fail; } if (le16(ehdr.e_phentsize) != sizeof(Elf32_Phdr)) { // could be a structure padding issue... PrintAndLogEx(ERR, "Either the ELF file or this code is made of fail"); goto fail; } num_phdrs = le16(ehdr.e_phnum); phdrs = calloc(le16(ehdr.e_phnum) * sizeof(Elf32_Phdr), sizeof(uint8_t)); if (!phdrs) { PrintAndLogEx(ERR, "Out of memory"); goto fail; } if (fseek(fd, le32(ehdr.e_phoff), SEEK_SET) < 0) { PrintAndLogEx(ERR, "Error while reading ELF PHDRs"); goto fail; } if (fread(phdrs, sizeof(Elf32_Phdr), num_phdrs, fd) != num_phdrs) { PrintAndLogEx(ERR, "Error while reading ELF PHDRs"); goto fail; } res = build_segs_from_phdrs(ctx, fd, phdrs, num_phdrs, flash_end); if (res < 0) goto fail; res = check_segs(ctx, can_write_bl, flash_end); if (res < 0) goto fail; free(phdrs); fclose(fd); ctx->filename = name; return 0; fail: if (phdrs) free(phdrs); if (fd) fclose(fd); flash_free(ctx); return -1; } // Get the state of the proxmark, backwards compatible static int get_proxmark_state(uint32_t *state) { SendCommandBL(CMD_DEVICE_INFO, 0, 0, 0, NULL, 0); PacketResponseNG resp; WaitForResponse(CMD_UNKNOWN, &resp); // wait for any response. No timeout. // Three outcomes: // 1. The old bootrom code will ignore CMD_DEVICE_INFO, but respond with an ACK // 2. The old os code will respond with CMD_DEBUG_PRINT_STRING and "unknown command" // 3. The new bootrom and os codes will respond with CMD_DEVICE_INFO and flags switch (resp.cmd) { case CMD_ACK: *state = DEVICE_INFO_FLAG_CURRENT_MODE_BOOTROM; break; case CMD_DEBUG_PRINT_STRING: *state = DEVICE_INFO_FLAG_CURRENT_MODE_OS; break; case CMD_DEVICE_INFO: *state = resp.oldarg[0]; break; default: PrintAndLogEx(ERR, _RED_("Error:") "Couldn't get Proxmark3 state, bad response type: 0x%04x", resp.cmd); return -1; break; } return 0; } // Enter the bootloader to be able to start flashing static int enter_bootloader(char *serial_port_name) { uint32_t state; if (get_proxmark_state(&state) < 0) return -1; /* Already in flash state, we're done. */ if (state & DEVICE_INFO_FLAG_CURRENT_MODE_BOOTROM) return 0; if (state & DEVICE_INFO_FLAG_CURRENT_MODE_OS) { PrintAndLogEx(SUCCESS, _BLUE_("Entering bootloader...")); if ((state & DEVICE_INFO_FLAG_BOOTROM_PRESENT) && (state & DEVICE_INFO_FLAG_OSIMAGE_PRESENT)) { // New style handover: Send CMD_START_FLASH, which will reset the board // and enter the bootrom on the next boot. SendCommandBL(CMD_START_FLASH, 0, 0, 0, NULL, 0); PrintAndLogEx(SUCCESS, "(Press and release the button only to " _YELLOW_("abort") ")"); } else { // Old style handover: Ask the user to press the button, then reset the board SendCommandBL(CMD_HARDWARE_RESET, 0, 0, 0, NULL, 0); PrintAndLogEx(SUCCESS, "Press and hold down button NOW if your bootloader requires it."); } msleep(100); CloseProxmark(); // Let time to OS to make the port disappear msleep(1000); if (OpenProxmark(serial_port_name, true, 60, true, FLASHMODE_SPEED)) { PrintAndLogEx(NORMAL, " " _GREEN_("Found")); return 0; } else { PrintAndLogEx(ERR, _RED_("Error:") "Proxmark3 not found."); return -1; } } PrintAndLogEx(ERR, _RED_("Error:") "Unknown Proxmark3 mode"); return -1; } static int wait_for_ack(PacketResponseNG *ack) { WaitForResponse(CMD_UNKNOWN, ack); if (ack->cmd != CMD_ACK) { PrintAndLogEx(ERR, "Error: Unexpected reply 0x%04x %s (expected ACK)", ack->cmd, (ack->cmd == CMD_NACK) ? "NACK" : "" ); return -1; } return 0; } static void flash_suggest_update_bootloader(void) { PrintAndLogEx(ERR, _RED_("It is recommended that you first" _YELLOW_("update your bootloader") " alone,")); PrintAndLogEx(ERR, _RED_("reboot the Proxmark3 then only update the main firmware") "\n"); } static void flash_suggest_update_flasher(void) { PrintAndLogEx(ERR, _RED_("It is recommended that you first" _YELLOW_("update your flasher") )); } // Go into flashing mode int flash_start_flashing(int enable_bl_writes, char *serial_port_name, uint32_t *max_allowed) { uint32_t state; uint32_t chipinfo = 0; if (enter_bootloader(serial_port_name) < 0) return -1; if (get_proxmark_state(&state) < 0) return -1; if (state & DEVICE_INFO_FLAG_UNDERSTANDS_CHIP_INFO) { SendCommandBL(CMD_CHIP_INFO, 0, 0, 0, NULL, 0); PacketResponseNG resp; WaitForResponse(CMD_CHIP_INFO, &resp); chipinfo = resp.oldarg[0]; } int version = BL_VERSION_INVALID; if (state & DEVICE_INFO_FLAG_UNDERSTANDS_VERSION) { SendCommandBL(CMD_BL_VERSION, 0, 0, 0, NULL, 0); PacketResponseNG resp; WaitForResponse(CMD_BL_VERSION, &resp); version = resp.oldarg[0]; if ((BL_VERSION_MAJOR(version) < BL_VERSION_FIRST_MAJOR) || (BL_VERSION_MAJOR(version) > BL_VERSION_LAST_MAJOR)) { // version info seems fishy version = BL_VERSION_INVALID; PrintAndLogEx(ERR, _RED_("====================== OBS ! ===========================")); PrintAndLogEx(ERR, _RED_("Note: Your bootloader reported an invalid version number")); flash_suggest_update_bootloader(); // } else if (BL_VERSION_MAJOR(version) < BL_VERSION_MAJOR(FLASHER_VERSION)) { PrintAndLogEx(ERR, _RED_("====================== OBS ! ===================================")); PrintAndLogEx(ERR, _RED_("Note: Your bootloader reported a version older than this flasher")); flash_suggest_update_bootloader(); } else if (BL_VERSION_MAJOR(version) > BL_VERSION_MAJOR(FLASHER_VERSION)) { PrintAndLogEx(ERR, _RED_("====================== OBS ! =========================")); PrintAndLogEx(ERR, _RED_("Note: Your bootloader is more recent than this flasher")); flash_suggest_update_flasher(); } } else { PrintAndLogEx(ERR, _RED_("====================== OBS ! ===========================================")); PrintAndLogEx(ERR, _RED_("Note: Your bootloader does not understand the new" _YELLOW_("CMD_BL_VERSION") " command")); flash_suggest_update_bootloader(); } uint32_t flash_end = FLASH_START + AT91C_IFLASH_PAGE_SIZE * AT91C_IFLASH_NB_OF_PAGES / 2; *max_allowed = 256; int mem_avail = chipid_to_mem_avail(chipinfo); if (mem_avail != 0) { PrintAndLogEx(NORMAL, "Available memory on this board: %uK bytes\n", mem_avail); if (mem_avail > 256) { if (BL_VERSION_MAJOR(version) < BL_VERSION_MAJOR(BL_VERSION_1_0_0)) { PrintAndLogEx(ERR, _RED_("====================== OBS ! ======================")); PrintAndLogEx(ERR, _RED_("Your bootloader does not support writing above 256k")); flash_suggest_update_bootloader(); } else { flash_end = FLASH_START + AT91C_IFLASH_PAGE_SIZE * AT91C_IFLASH_NB_OF_PAGES; *max_allowed = mem_avail; } } } else { PrintAndLogEx(NORMAL, "Available memory on this board: "_RED_("UNKNOWN")"\n"); PrintAndLogEx(ERR, _RED_("====================== OBS ! ======================================")); PrintAndLogEx(ERR, _RED_("Note: Your bootloader does not understand the new" _YELLOW_("CHIP_INFO") " command")); flash_suggest_update_bootloader(); } if (enable_bl_writes) { PrintAndLogEx(INFO, "Permitted flash range: 0x%08x-0x%08x", FLASH_START, flash_end); } else { PrintAndLogEx(INFO, "Permitted flash range: 0x%08x-0x%08x", BOOTLOADER_END, flash_end); } if (state & DEVICE_INFO_FLAG_UNDERSTANDS_START_FLASH) { PacketResponseNG resp; if (enable_bl_writes) { SendCommandBL(CMD_START_FLASH, FLASH_START, flash_end, START_FLASH_MAGIC, NULL, 0); } else { SendCommandBL(CMD_START_FLASH, BOOTLOADER_END, flash_end, 0, NULL, 0); } return wait_for_ack(&resp); } else { PrintAndLogEx(ERR, _RED_("====================== OBS ! ========================================")); PrintAndLogEx(ERR, _RED_("Note: Your bootloader does not understand the new" _YELLOW_("START_FLASH") " command")); flash_suggest_update_bootloader(); } return 0; } static int write_block(uint32_t address, uint8_t *data, uint32_t length) { uint8_t block_buf[BLOCK_SIZE]; memset(block_buf, 0xFF, BLOCK_SIZE); memcpy(block_buf, data, length); PacketResponseNG resp; SendCommandBL(CMD_FINISH_WRITE, address, 0, 0, block_buf, length); int ret = wait_for_ack(&resp); if (ret && resp.oldarg[0]) { uint32_t lock_bits = resp.oldarg[0] >> 16; bool lock_error = resp.oldarg[0] & AT91C_MC_LOCKE; bool prog_error = resp.oldarg[0] & AT91C_MC_PROGE; bool security_bit = resp.oldarg[0] & AT91C_MC_SECURITY; PrintAndLogEx(NORMAL, "%s", lock_error ? " Lock Error" : ""); PrintAndLogEx(NORMAL, "%s", prog_error ? " Invalid Command or bad Keyword" : ""); PrintAndLogEx(NORMAL, "%s", security_bit ? " Security Bit is set!" : ""); PrintAndLogEx(NORMAL, " Lock Bits: 0x%04x", lock_bits); } return ret; } // Write a file's segments to Flash int flash_write(flash_file_t *ctx) { PrintAndLogEx(SUCCESS, "Writing segments for file: %s", ctx->filename); for (int i = 0; i < ctx->num_segs; i++) { flash_seg_t *seg = &ctx->segments[i]; uint32_t length = seg->length; uint32_t blocks = (length + BLOCK_SIZE - 1) / BLOCK_SIZE; uint32_t end = seg->start + length; PrintAndLogEx(SUCCESS, " 0x%08x..0x%08x [0x%x / %u blocks]", seg->start, end - 1, length, blocks); fflush(stdout); int block = 0; uint8_t *data = seg->data; uint32_t baddr = seg->start; while (length) { uint32_t block_size = length; if (block_size > BLOCK_SIZE) block_size = BLOCK_SIZE; if (write_block(baddr, data, block_size) < 0) { PrintAndLogEx(ERR, "Error writing block %d of %u", block, blocks); return -1; } data += block_size; baddr += block_size; length -= block_size; block++; fprintf(stdout, "."); fflush(stdout); } PrintAndLogEx(NORMAL, " " _GREEN_("OK")); fflush(stdout); } return 0; } // free a file context void flash_free(flash_file_t *ctx) { if (!ctx) return; if (ctx->segments) { for (int i = 0; i < ctx->num_segs; i++) free(ctx->segments[i].data); free(ctx->segments); ctx->segments = NULL; ctx->num_segs = 0; } } // just reset the unit int flash_stop_flashing(void) { SendCommandBL(CMD_HARDWARE_RESET, 0, 0, 0, NULL, 0); msleep(100); return 0; }