//----------------------------------------------------------------------------- // Copyright (C) Gerhard de Koning Gans - May 2008 // Contribution made during a security research at Radboud University Nijmegen // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // See LICENSE.txt for the text of the license. //----------------------------------------------------------------------------- // Routines to support iClass. //----------------------------------------------------------------------------- #include "iclass.h" #include "proxmark3_arm.h" #include "cmd.h" // Needed for CRC in emulation mode; // same construction as in ISO 14443; // different initial value (CRC_ICLASS) #include "crc16.h" #include "optimized_cipher.h" #include "appmain.h" #include "BigBuf.h" #include "fpgaloader.h" #include "string.h" #include "util.h" #include "dbprint.h" #include "protocols.h" #include "ticks.h" #include "iso15693.h" #include "iclass_cmd.h" /* iclass_card_select_t struct */ static uint8_t get_pagemap(const picopass_hdr_t *hdr) { return (hdr->conf.fuses & (FUSE_CRYPT0 | FUSE_CRYPT1)) >> 3; } // The length of a received command will in most cases be no more than 18 bytes. // we expect max 34 (32+2) bytes as tag answer (response to READ4) #ifndef ICLASS_BUFFER_SIZE #define ICLASS_BUFFER_SIZE 34 + 2 #endif #ifndef ICLASS_16KS_SIZE #define ICLASS_16KS_SIZE 0x100 * 8 #endif // iCLASS has a slightly different timing compared to ISO15693. According to the picopass data sheet the tag response is expected 330us after // the reader command. This is measured from end of reader EOF to first modulation of the tag's SOF which starts with a 56,64us unmodulated period. // 330us = 140 ssp_clk cycles @ 423,75kHz when simulating. // 56,64us = 24 ssp_clk_cycles #define DELAY_ICLASS_VCD_TO_VICC_SIM (140 - 26) // (140 - 24) // times in ssp_clk_cycles @ 3,3625MHz when acting as reader #define DELAY_ICLASS_VICC_TO_VCD_READER DELAY_ISO15693_VICC_TO_VCD_READER // times in samples @ 212kHz when acting as reader #define ICLASS_READER_TIMEOUT_ACTALL 330 // 1558us, nominal 330us + 7slots*160us = 1450us #define ICLASS_READER_TIMEOUT_UPDATE 3390 // 16000us, nominal 4-15ms #define ICLASS_READER_TIMEOUT_OTHERS 80 // 380us, nominal 330us #define AddCrc(data, len) compute_crc(CRC_ICLASS, (data), (len), (data)+(len), (data)+(len)+1) /* * CARD TO READER * in ISO15693-2 mode - Manchester * in ISO 14443b - BPSK coding * * Timings: * ISO 15693-2 * Tout = 330 µs, Tprog 1 = 4 to 15 ms, Tslot = 330 µs + (number of slots x 160 µs) * ISO 14443a * Tout = 100 µs, Tprog = 4 to 15 ms, Tslot = 100 µs+ (number of slots x 80 µs) * ISO 14443b Tout = 76 µs, Tprog = 4 to 15 ms, Tslot = 119 µs+ (number of slots x 150 µs) * * * So for current implementation in ISO15693, its 330 µs from end of reader, to start of card. */ //============================================================================= // a `sniffer' for iClass communication // Both sides of communication! //============================================================================= void SniffIClass(uint8_t jam_search_len, uint8_t *jam_search_string) { SniffIso15693(jam_search_len, jam_search_string, true); } static void rotateCSN(const uint8_t *original_csn, uint8_t *rotated_csn) { for (uint8_t i = 0; i < 8; i++) { rotated_csn[i] = (original_csn[i] >> 3) | (original_csn[(i + 1) % 8] << 5); } } // Encode SOF only static void CodeIClassTagSOF(void) { tosend_reset(); tosend_t *ts = get_tosend(); ts->buf[++ts->max] = 0x1D; ts->max++; } /* * SOF comprises 3 parts; * * An unmodulated time of 56.64 us * * 24 pulses of 423.75 kHz (fc/32) * * A logic 1, which starts with an unmodulated time of 18.88us * followed by 8 pulses of 423.75kHz (fc/32) * * * EOF comprises 3 parts: * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated * time of 18.88us. * - 24 pulses of fc/32 * - An unmodulated time of 56.64 us * * * A logic 0 starts with 8 pulses of fc/32 * followed by an unmodulated time of 256/fc (~18,88us). * * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by * 8 pulses of fc/32 (also 18.88us) * * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag, * works like this. * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us). * - A 0-bit input to the FPGA becomes an unmodulated time of 18.88us * * In this mode * SOF can be written as 00011101 = 0x1D * EOF can be written as 10111000 = 0xb8 * logic 1 be written as 01 = 0x1 * logic 0 be written as 10 = 0x2 * * */ /** * @brief SimulateIClass simulates an iClass card. * @param arg0 type of simulation * - 0 uses the first 8 bytes in usb data as CSN * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified * in the usb data. This mode collects MAC from the reader, in order to do an offline * attack on the keys. For more info, see "dismantling iclass" and proxclone.com. * - Other : Uses the default CSN (031fec8af7ff12e0) * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only) * @param arg2 * @param datain */ // turn off afterwards void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) { iclass_simulate(arg0, arg1, arg2, datain, NULL, NULL); } void iclass_simulate(uint8_t sim_type, uint8_t num_csns, bool send_reply, uint8_t *datain, uint8_t *dataout, uint16_t *dataoutlen) { LEDsoff(); Iso15693InitTag(); clear_trace(); // only logg if we are called from the client. set_tracing(send_reply); //Use the emulator memory for SIM uint8_t *emulator = BigBuf_get_EM_addr(); uint8_t mac_responses[PM3_CMD_DATA_SIZE] = { 0 }; if (sim_type == ICLASS_SIM_MODE_CSN) { // Use the CSN from commandline memcpy(emulator, datain, 8); do_iclass_simulation(ICLASS_SIM_MODE_CSN, NULL); } else if (sim_type == ICLASS_SIM_MODE_CSN_DEFAULT) { //Default CSN uint8_t csn[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0 }; // Use the CSN from commandline memcpy(emulator, csn, 8); do_iclass_simulation(ICLASS_SIM_MODE_CSN, NULL); } else if (sim_type == ICLASS_SIM_MODE_READER_ATTACK) { Dbprintf("going into attack mode, %d CSNS sent", num_csns); // In this mode, a number of csns are within datain. We'll simulate each one, one at a time // in order to collect MAC's from the reader. This can later be used in an offlne-attack // in order to obtain the keys, as in the "dismantling iclass"-paper. #define EPURSE_MAC_SIZE 16 int i = 0; for (; i < num_csns && i * EPURSE_MAC_SIZE + 8 < PM3_CMD_DATA_SIZE; i++) { memcpy(emulator, datain + (i * 8), 8); if (do_iclass_simulation(ICLASS_SIM_MODE_EXIT_AFTER_MAC, mac_responses + i * EPURSE_MAC_SIZE)) { if (dataoutlen) *dataoutlen = i * EPURSE_MAC_SIZE; // Button pressed if (send_reply) reply_old(CMD_ACK, CMD_HF_ICLASS_SIMULATE, i, 0, mac_responses, i * EPURSE_MAC_SIZE); goto out; } } if (dataoutlen) *dataoutlen = i * EPURSE_MAC_SIZE; if (send_reply) reply_old(CMD_ACK, CMD_HF_ICLASS_SIMULATE, i, 0, mac_responses, i * EPURSE_MAC_SIZE); } else if (sim_type == ICLASS_SIM_MODE_FULL) { //This is 'full sim' mode, where we use the emulator storage for data. //ie: BigBuf_get_EM_addr should be previously filled with data from the "eload" command picopass_hdr_t *hdr = (picopass_hdr_t *)BigBuf_get_EM_addr(); uint8_t pagemap = get_pagemap(hdr); if (pagemap == PICOPASS_NON_SECURE_PAGEMODE) { do_iclass_simulation_nonsec(); } else { do_iclass_simulation(ICLASS_SIM_MODE_FULL, NULL); } } else if (sim_type == ICLASS_SIM_MODE_CONFIG_CARD) { // config card do_iclass_simulation(ICLASS_SIM_MODE_FULL, NULL); // swap bin } else if (sim_type == ICLASS_SIM_MODE_READER_ATTACK_KEYROLL) { // This is the KEYROLL version of sim 2. // the collected data (mac_response) is doubled out since we are trying to collect both keys in the keyroll process. // Keyroll iceman 9 csns * 8 * 2 = 144 // keyroll CARL55 15csns * 8 * 2 = 15 * 8 * 2 = 240 Dbprintf("going into attack keyroll mode, %d CSNS sent", num_csns); // In this mode, a number of csns are within datain. We'll simulate each one, one at a time // in order to collect MAC's from the reader. This can later be used in an offlne-attack // in order to obtain the keys, as in the "dismantling iclass"-paper. // keyroll mode, reader swaps between old key and new key alternatively when fail a authentication. // attack below is same as SIM 2, but we run the CSN twice to collected the mac for both keys. int i = 0; // The usb data is 512 bytes, fitting 65 8-byte CSNs in there. iceman fork uses 9 CSNS for (; i < num_csns && i * EPURSE_MAC_SIZE + 8 < PM3_CMD_DATA_SIZE; i++) { memcpy(emulator, datain + (i * 8), 8); // keyroll 1 if (do_iclass_simulation(ICLASS_SIM_MODE_EXIT_AFTER_MAC, mac_responses + i * EPURSE_MAC_SIZE)) { if (dataoutlen) *dataoutlen = i * EPURSE_MAC_SIZE * 2; if (send_reply) reply_old(CMD_ACK, CMD_HF_ICLASS_SIMULATE, i * 2, 0, mac_responses, i * EPURSE_MAC_SIZE * 2); // Button pressed goto out; } // keyroll 2 if (do_iclass_simulation(ICLASS_SIM_MODE_EXIT_AFTER_MAC, mac_responses + (i + num_csns) * EPURSE_MAC_SIZE)) { if (dataoutlen) *dataoutlen = i * EPURSE_MAC_SIZE * 2; if (send_reply) reply_old(CMD_ACK, CMD_HF_ICLASS_SIMULATE, i * 2, 0, mac_responses, i * EPURSE_MAC_SIZE * 2); // Button pressed goto out; } } if (dataoutlen) *dataoutlen = i * EPURSE_MAC_SIZE * 2; // double the amount of collected data. if (send_reply) reply_old(CMD_ACK, CMD_HF_ICLASS_SIMULATE, i * 2, 0, mac_responses, i * EPURSE_MAC_SIZE * 2); } else { // We may want a mode here where we hardcode the csns to use (from proxclone). // That will speed things up a little, but not required just yet. DbpString("the mode is not implemented, reserved for future use"); } out: if (dataout && dataoutlen) memcpy(dataout, mac_responses, *dataoutlen); switch_off(); BigBuf_free_keep_EM(); } /** * Simulation assumes a SECURE PAGE simulation with authentication and application areas. * * * @brief Does the actual simulation * @param csn - csn to use * @param breakAfterMacReceived if true, returns after reader MAC has been received. */ int do_iclass_simulation(int simulationMode, uint8_t *reader_mac_buf) { // free eventually allocated BigBuf memory BigBuf_free_keep_EM(); uint16_t page_size = 32 * 8; uint8_t current_page = 0; // maintain cipher states for both credit and debit key for each page State_t cipher_state_KD[8]; State_t cipher_state_KC[8]; State_t *cipher_state = &cipher_state_KD[0]; uint8_t *emulator = BigBuf_get_EM_addr(); uint8_t *csn = emulator; // CSN followed by two CRC bytes uint8_t anticoll_data[10] = { 0 }; uint8_t csn_data[10] = { 0 }; memcpy(csn_data, csn, sizeof(csn_data)); // Construct anticollision-CSN rotateCSN(csn_data, anticoll_data); // Compute CRC on both CSNs AddCrc(anticoll_data, 8); AddCrc(csn_data, 8); uint8_t diversified_kd[8] = { 0 }; uint8_t diversified_kc[8] = { 0 }; uint8_t *diversified_key = diversified_kd; // configuration block uint8_t conf_block[10] = {0x12, 0xFF, 0xFF, 0xFF, 0x7F, 0x1F, 0xFF, 0x3C, 0x00, 0x00}; // e-Purse uint8_t card_challenge_data[8] = { 0xfe, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; // AIA uint8_t aia_data[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00}; if (simulationMode == ICLASS_SIM_MODE_FULL) { memcpy(conf_block, emulator + (8 * 1), 8); // blk 1 memcpy(card_challenge_data, emulator + (8 * 2), 8); // e-purse, blk 2 memcpy(diversified_kd, emulator + (8 * 3), 8); // Kd, blk 3 memcpy(diversified_kc, emulator + (8 * 4), 8); // Kc, blk 4 // (iceman) this only works for 2KS / 16KS tags. // Use application data from block 5 memcpy(aia_data, emulator + (8 * 5), 8); } AddCrc(conf_block, 8); AddCrc(aia_data, 8); // set epurse of sim2,4 attack if (reader_mac_buf != NULL) { memcpy(reader_mac_buf, card_challenge_data, 8); } if ((conf_block[5] & 0x80) == 0x80) { page_size = 256 * 8; } // From PicoPass DS: // When the page is in personalization mode this bit is equal to 1. // Once the application issuer has personalized and coded its dedicated areas, this bit must be set to 0: // the page is then "in application mode". bool personalization_mode = conf_block[7] & 0x80; uint8_t block_wr_lock = conf_block[3]; // chip memory may be divided in 8 pages uint8_t max_page = ((conf_block[4] & 0x10) == 0x10) ? 0 : 7; // pre-calculate the cipher states, feeding it the CC cipher_state_KD[0] = opt_doTagMAC_1(card_challenge_data, diversified_kd); cipher_state_KC[0] = opt_doTagMAC_1(card_challenge_data, diversified_kc); if (simulationMode == ICLASS_SIM_MODE_FULL) { for (int i = 1; i < max_page; i++) { uint8_t *epurse = emulator + (i * page_size) + (8 * 2); uint8_t *kd = emulator + (i * page_size) + (8 * 3); uint8_t *kc = emulator + (i * page_size) + (8 * 4); cipher_state_KD[i] = opt_doTagMAC_1(epurse, kd); cipher_state_KC[i] = opt_doTagMAC_1(epurse, kc); } } // Anti-collision process: // Reader 0a // Tag 0f // Reader 0c // Tag anticoll. CSN // Reader 81 anticoll. CSN // Tag CSN uint8_t *modulated_response = NULL; int modulated_response_size; uint8_t *trace_data = NULL; int trace_data_size; // Respond SOF -- takes 1 bytes uint8_t *resp_sof = BigBuf_malloc(1); int resp_sof_len; // Anticollision CSN (rotated CSN) // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) uint8_t *resp_anticoll = BigBuf_malloc(22); int resp_anticoll_len; // CSN (block 0) // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) uint8_t *resp_csn = BigBuf_malloc(22); int resp_csn_len; // configuration (blk 1) PICOPASS 2ks uint8_t *resp_conf = BigBuf_malloc(22); int resp_conf_len; // e-Purse (blk 2) // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit) uint8_t *resp_cc = BigBuf_malloc(18); int resp_cc_len; // Kd, Kc (blocks 3 and 4). Cannot be read. Always respond with 0xff bytes only uint8_t *resp_ff = BigBuf_malloc(22); int resp_ff_len; uint8_t ff_data[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00}; AddCrc(ff_data, 8); // Application Issuer Area (blk 5) uint8_t *resp_aia = BigBuf_malloc(22); int resp_aia_len; // receive command uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); // Prepare card messages tosend_t *ts = get_tosend(); // First card answer: SOF CodeIClassTagSOF(); memcpy(resp_sof, ts->buf, ts->max); resp_sof_len = ts->max; // Anticollision CSN CodeIso15693AsTag(anticoll_data, sizeof(anticoll_data)); memcpy(resp_anticoll, ts->buf, ts->max); resp_anticoll_len = ts->max; // CSN (block 0) CodeIso15693AsTag(csn_data, sizeof(csn_data)); memcpy(resp_csn, ts->buf, ts->max); resp_csn_len = ts->max; // Configuration (block 1) CodeIso15693AsTag(conf_block, sizeof(conf_block)); memcpy(resp_conf, ts->buf, ts->max); resp_conf_len = ts->max; // e-Purse (block 2) CodeIso15693AsTag(card_challenge_data, sizeof(card_challenge_data)); memcpy(resp_cc, ts->buf, ts->max); resp_cc_len = ts->max; // Kd, Kc (blocks 3 and 4) CodeIso15693AsTag(ff_data, sizeof(ff_data)); memcpy(resp_ff, ts->buf, ts->max); resp_ff_len = ts->max; // Application Issuer Area (block 5) CodeIso15693AsTag(aia_data, sizeof(aia_data)); memcpy(resp_aia, ts->buf, ts->max); resp_aia_len = ts->max; //This is used for responding to READ-block commands or other data which is dynamically generated //First the 'trace'-data, not encoded for FPGA uint8_t *data_generic_trace = BigBuf_malloc(34); // 32 bytes data + 2byte CRC is max tag answer //Then storage for the modulated data //Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes) uint8_t *data_response = BigBuf_malloc((34 * 2) + 3); enum { IDLE, ACTIVATED, SELECTED, HALTED } chip_state = IDLE; bool button_pressed = false; uint8_t cmd, options, block; int len, kc_attempt = 0; bool exit_loop = false; bool using_kc = false; while (exit_loop == false) { WDT_HIT(); // Now look at the reader command and provide appropriate responses // default is no response: modulated_response = NULL; modulated_response_size = 0; trace_data = NULL; trace_data_size = 0; uint32_t reader_eof_time = 0; len = GetIso15693CommandFromReader(receivedCmd, MAX_FRAME_SIZE, &reader_eof_time); if (len < 0) { button_pressed = true; exit_loop = true; continue; } // extra response data cmd = receivedCmd[0] & 0xF; options = (receivedCmd[0] >> 4) & 0xFF; block = receivedCmd[1]; if (cmd == ICLASS_CMD_ACTALL && len == 1) { // 0x0A // Reader in anti collision phase modulated_response = resp_sof; modulated_response_size = resp_sof_len; chip_state = ACTIVATED; goto send; } else if (cmd == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) { // 0x0C // Reader asks for anti collision CSN if (chip_state == SELECTED || chip_state == ACTIVATED) { modulated_response = resp_anticoll; modulated_response_size = resp_anticoll_len; trace_data = anticoll_data; trace_data_size = sizeof(anticoll_data); } goto send; } else if (cmd == ICLASS_CMD_SELECT && len == 9) { // Reader selects anticollision CSN. // Tag sends the corresponding real CSN if (chip_state == ACTIVATED || chip_state == SELECTED) { if (!memcmp(receivedCmd + 1, anticoll_data, 8)) { modulated_response = resp_csn; modulated_response_size = resp_csn_len; trace_data = csn_data; trace_data_size = sizeof(csn_data); chip_state = SELECTED; } else { chip_state = IDLE; } } else if (chip_state == HALTED || chip_state == IDLE) { // RESELECT with CSN if (!memcmp(receivedCmd + 1, csn_data, 8)) { modulated_response = resp_csn; modulated_response_size = resp_csn_len; trace_data = csn_data; trace_data_size = sizeof(csn_data); chip_state = SELECTED; } } goto send; } else if (cmd == ICLASS_CMD_READ_OR_IDENTIFY && len == 4) { // 0x0C if (chip_state != SELECTED) { goto send; } if (simulationMode == ICLASS_SIM_MODE_EXIT_AFTER_MAC) { // provide defaults for blocks 0 ... 5 // block0,1,2,5 is always readable. switch (block) { case 0: { // csn (0c 00) modulated_response = resp_csn; modulated_response_size = resp_csn_len; trace_data = csn_data; trace_data_size = sizeof(csn_data); goto send; } case 1: { // configuration (0c 01) modulated_response = resp_conf; modulated_response_size = resp_conf_len; trace_data = conf_block; trace_data_size = sizeof(conf_block); goto send; } case 2: {// e-purse (0c 02) modulated_response = resp_cc; modulated_response_size = resp_cc_len; trace_data = card_challenge_data; trace_data_size = sizeof(card_challenge_data); // set epurse of sim2,4 attack if (reader_mac_buf != NULL) { memcpy(reader_mac_buf, card_challenge_data, 8); } goto send; } case 3: case 4: { // Kd, Kc, always respond with 0xff bytes modulated_response = resp_ff; modulated_response_size = resp_ff_len; trace_data = ff_data; trace_data_size = sizeof(ff_data); goto send; } case 5: { // Application Issuer Area (0c 05) modulated_response = resp_aia; modulated_response_size = resp_aia_len; trace_data = aia_data; trace_data_size = sizeof(aia_data); goto send; } } // switch } else if (simulationMode == ICLASS_SIM_MODE_FULL) { if (block == 3 || block == 4) { // Kd, Kc, always respond with 0xff bytes modulated_response = resp_ff; modulated_response_size = resp_ff_len; trace_data = ff_data; trace_data_size = sizeof(ff_data); } else { // use data from emulator memory memcpy(data_generic_trace, emulator + (current_page * page_size) + (block * 8), 8); AddCrc(data_generic_trace, 8); trace_data = data_generic_trace; trace_data_size = 10; CodeIso15693AsTag(trace_data, trace_data_size); memcpy(data_response, ts->buf, ts->max); modulated_response = data_response; modulated_response_size = ts->max; } goto send; } } else if (cmd == ICLASS_CMD_READCHECK && block == 0x02 && len == 2) { // 0x88 // Read e-purse KD (88 02) KC (18 02) if (chip_state != SELECTED) { goto send; } // debit key if (receivedCmd[0] == 0x88) { cipher_state = &cipher_state_KD[current_page]; diversified_key = diversified_kd; using_kc = false; } else { cipher_state = &cipher_state_KC[current_page]; diversified_key = diversified_kc; using_kc = true; } modulated_response = resp_cc; modulated_response_size = resp_cc_len; trace_data = card_challenge_data; trace_data_size = sizeof(card_challenge_data); goto send; } else if (cmd == ICLASS_CMD_CHECK && len == 9) { // 0x05 // Reader random and reader MAC!!! if (chip_state != SELECTED) { goto send; } if (simulationMode == ICLASS_SIM_MODE_FULL) { // NR, from reader, is in receivedCmd +1 opt_doTagMAC_2(*cipher_state, receivedCmd + 1, data_generic_trace, diversified_key); /* uint8_t _mac[4] = {0}; opt_doReaderMAC_2(*cipher_state, receivedCmd + 1, _mac, diversified_key); if (_mac[0] != receivedCmd[5] || _mac[1] != receivedCmd[6] || _mac[2] != receivedCmd[7] || _mac[3] != receivedCmd[8]) { Dbprintf("reader auth " _RED_("failed")); Dbprintf("hf iclass lookup --csn %02x%02x%02x%02x%02x%02x%02x%02x --epurse %02x%02x%02x%02x%02x%02x%02x%02x --macs %02x%02x%02x%02x%02x%02x%02x%02x f iclass_default_keys.dic", csn_data[0], csn_data[1], csn_data[2], csn_data[3], csn_data[4], csn_data[5], csn_data[6], csn_data[7], card_challenge_data[0], card_challenge_data[1], card_challenge_data[2], card_challenge_data[3], card_challenge_data[4], card_challenge_data[5], card_challenge_data[6], card_challenge_data[7], receivedCmd[1], receivedCmd[2], receivedCmd[3], receivedCmd[4], receivedCmd[5], receivedCmd[6], receivedCmd[7], receivedCmd[8] ); goto send; } */ trace_data = data_generic_trace; trace_data_size = 4; CodeIso15693AsTag(trace_data, trace_data_size); memcpy(data_response, ts->buf, ts->max); modulated_response = data_response; modulated_response_size = ts->max; if (using_kc) kc_attempt++; } else { // Not fullsim, we don't respond chip_state = HALTED; if (simulationMode == ICLASS_SIM_MODE_EXIT_AFTER_MAC) { if (g_dbglevel == DBG_EXTENDED) { Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x", csn[0], csn[1], csn[2], csn[3], csn[4], csn[5], csn[6], csn[7]); Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x", len, receivedCmd[0], receivedCmd[1], receivedCmd[2], receivedCmd[3], receivedCmd[4], receivedCmd[5], receivedCmd[6], receivedCmd[7], receivedCmd[8]); } else { Dbprintf("CSN: %02x .... %02x OK", csn[0], csn[7]); } if (reader_mac_buf != NULL) { // save NR and MAC for sim 2,4 memcpy(reader_mac_buf + 8, receivedCmd + 1, 8); } exit_loop = true; } } goto send; } else if (cmd == ICLASS_CMD_HALT && options == 0 && len == 1) { if (chip_state != SELECTED) { goto send; } // Reader ends the session modulated_response = resp_sof; modulated_response_size = resp_sof_len; chip_state = HALTED; goto send; } else if (simulationMode == ICLASS_SIM_MODE_FULL && cmd == ICLASS_CMD_READ4 && len == 4) { // 0x06 if (chip_state != SELECTED) { goto send; } //Read block memcpy(data_generic_trace, emulator + (current_page * page_size) + (block * 8), 32); AddCrc(data_generic_trace, 32); trace_data = data_generic_trace; trace_data_size = 34; CodeIso15693AsTag(trace_data, trace_data_size); memcpy(data_response, ts->buf, ts->max); modulated_response = data_response; modulated_response_size = ts->max; goto send; } else if (cmd == ICLASS_CMD_UPDATE && (len == 12 || len == 14)) { // We're expected to respond with the data+crc, exactly what's already in the receivedCmd // receivedCmd is now UPDATE 1b | ADDRESS 1b | DATA 8b | Signature 4b or CRC 2b if (chip_state != SELECTED) { goto send; } // is chip in ReadOnly (RO) if ((block_wr_lock & 0x80) == 0) goto send; if (block == 12 && (block_wr_lock & 0x40) == 0) goto send; if (block == 11 && (block_wr_lock & 0x20) == 0) goto send; if (block == 10 && (block_wr_lock & 0x10) == 0) goto send; if (block == 9 && (block_wr_lock & 0x08) == 0) goto send; if (block == 8 && (block_wr_lock & 0x04) == 0) goto send; if (block == 7 && (block_wr_lock & 0x02) == 0) goto send; if (block == 6 && (block_wr_lock & 0x01) == 0) goto send; if (block == 2) { // update e-purse memcpy(card_challenge_data, receivedCmd + 2, 8); CodeIso15693AsTag(card_challenge_data, sizeof(card_challenge_data)); memcpy(resp_cc, ts->buf, ts->max); resp_cc_len = ts->max; cipher_state_KD[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_kd); cipher_state_KC[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_kc); if (simulationMode == ICLASS_SIM_MODE_FULL) { memcpy(emulator + (current_page * page_size) + (8 * 2), card_challenge_data, 8); } } else if (block == 3) { // update Kd for (int i = 0; i < 8; i++) { if (personalization_mode) { diversified_kd[i] = receivedCmd[2 + i]; } else { diversified_kd[i] ^= receivedCmd[2 + i]; } } cipher_state_KD[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_kd); if (simulationMode == ICLASS_SIM_MODE_FULL) { memcpy(emulator + (current_page * page_size) + (8 * 3), diversified_kd, 8); } } else if (block == 4) { // update Kc for (int i = 0; i < 8; i++) { if (personalization_mode) { diversified_kc[i] = receivedCmd[2 + i]; } else { diversified_kc[i] ^= receivedCmd[2 + i]; } } cipher_state_KC[current_page] = opt_doTagMAC_1(card_challenge_data, diversified_kc); if (simulationMode == ICLASS_SIM_MODE_FULL) { memcpy(emulator + (current_page * page_size) + (8 * 4), diversified_kc, 8); } } else if (simulationMode == ICLASS_SIM_MODE_FULL) { // update emulator memory memcpy(emulator + (current_page * page_size) + (8 * block), receivedCmd + 2, 8); } memcpy(data_generic_trace, receivedCmd + 2, 8); AddCrc(data_generic_trace, 8); trace_data = data_generic_trace; trace_data_size = 10; CodeIso15693AsTag(trace_data, trace_data_size); memcpy(data_response, ts->buf, ts->max); modulated_response = data_response; modulated_response_size = ts->max; goto send; } else if (cmd == ICLASS_CMD_PAGESEL && len == 4) { // 0x84 // Pagesel, // - enables to select a page in the selected chip memory and return its configuration block // Chips with a single page will not answer to this command // Otherwise, we should answer 8bytes (conf block 1) + 2bytes CRC if (chip_state != SELECTED) { goto send; } if (simulationMode == ICLASS_SIM_MODE_FULL && max_page > 0) { // if on 2k, always ignore 3msb, & 0x1F) uint8_t page = receivedCmd[1] & 0x1F; if (page > max_page) { goto send; } current_page = page; memcpy(data_generic_trace, emulator + (current_page * page_size) + (8 * 1), 8); memcpy(diversified_kd, emulator + (current_page * page_size) + (8 * 3), 8); memcpy(diversified_kc, emulator + (current_page * page_size) + (8 * 4), 8); cipher_state = &cipher_state_KD[current_page]; personalization_mode = data_generic_trace[7] & 0x80; block_wr_lock = data_generic_trace[3]; AddCrc(data_generic_trace, 8); trace_data = data_generic_trace; trace_data_size = 10; CodeIso15693AsTag(trace_data, trace_data_size); memcpy(data_response, ts->buf, ts->max); modulated_response = data_response; modulated_response_size = ts->max; } goto send; } else if (cmd == ICLASS_CMD_DETECT) { // 0x0F // not supported yet, ignore // } else if (cmd == 0x26 && len == 5) { // standard ISO15693 INVENTORY command. Ignore. } else { // Never seen this command before if (g_dbglevel >= DBG_EXTENDED) print_result("Unhandled command received ", receivedCmd, len); } send: /** A legit tag has about 330us delay between reader EOT and tag SOF. **/ if (modulated_response_size > 0) { uint32_t response_time = reader_eof_time + DELAY_ICLASS_VCD_TO_VICC_SIM; TransmitTo15693Reader(modulated_response, modulated_response_size, &response_time, 0, false); LogTrace_ISO15693(trace_data, trace_data_size, response_time * 32, (response_time * 32) + (modulated_response_size * 32 * 64), NULL, false); } if (chip_state == HALTED) { uint32_t wait_time = GetCountSspClk() + ICLASS_READER_TIMEOUT_ACTALL; while (GetCountSspClk() < wait_time) {}; } // CC attack // wait to trigger the reader bug, then wait 1000ms if (kc_attempt > 3) { uint32_t wait_time = GetCountSspClk() + (16000 * 100); while (GetCountSspClk() < wait_time) {}; kc_attempt = 0; exit_loop = true; } } LEDsoff(); if (button_pressed) DbpString("button pressed"); return button_pressed; } int do_iclass_simulation_nonsec(void) { // free eventually allocated BigBuf memory BigBuf_free_keep_EM(); uint16_t page_size = 32 * 8; uint8_t current_page = 0; uint8_t *emulator = BigBuf_get_EM_addr(); uint8_t *csn = emulator; // CSN followed by two CRC bytes uint8_t anticoll_data[10] = { 0 }; uint8_t csn_data[10] = { 0 }; memcpy(csn_data, csn, sizeof(csn_data)); // Construct anticollision-CSN rotateCSN(csn_data, anticoll_data); // Compute CRC on both CSNs AddCrc(anticoll_data, 8); AddCrc(csn_data, 8); // configuration block uint8_t conf_block[10] = {0x12, 0xFF, 0xFF, 0xFF, 0x7F, 0x1F, 0xFF, 0x3C, 0x00, 0x00}; // AIA uint8_t aia_data[10] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00}; memcpy(conf_block, emulator + (8 * 1), 8); memcpy(aia_data, emulator + (8 * 2), 8); AddCrc(conf_block, 8); AddCrc(aia_data, 8); if ((conf_block[5] & 0x80) == 0x80) { page_size = 256 * 8; } // chip memory may be divided in 8 pages uint8_t max_page = ((conf_block[4] & 0x10) == 0x10) ? 0 : 7; // Anti-collision process: // Reader 0a // Tag 0f // Reader 0c // Tag anticoll. CSN // Reader 81 anticoll. CSN // Tag CSN uint8_t *modulated_response = NULL; int modulated_response_size = 0; uint8_t *trace_data = NULL; int trace_data_size = 0; // Respond SOF -- takes 1 bytes uint8_t *resp_sof = BigBuf_malloc(2); int resp_sof_len; // Anticollision CSN (rotated CSN) // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) uint8_t *resp_anticoll = BigBuf_malloc(28); int resp_anticoll_len; // CSN // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) uint8_t *resp_csn = BigBuf_malloc(28); int resp_csn_len; // configuration (blk 1) PICOPASS 2ks uint8_t *resp_conf = BigBuf_malloc(28); int resp_conf_len; // Application Issuer Area (blk 5) uint8_t *resp_aia = BigBuf_malloc(28); int resp_aia_len; // receive command uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); // Prepare card messages tosend_t *ts = get_tosend(); ts->max = 0; // First card answer: SOF CodeIClassTagSOF(); memcpy(resp_sof, ts->buf, ts->max); resp_sof_len = ts->max; // Anticollision CSN CodeIso15693AsTag(anticoll_data, sizeof(anticoll_data)); memcpy(resp_anticoll, ts->buf, ts->max); resp_anticoll_len = ts->max; // CSN (block 0) CodeIso15693AsTag(csn_data, sizeof(csn_data)); memcpy(resp_csn, ts->buf, ts->max); resp_csn_len = ts->max; // Configuration (block 1) CodeIso15693AsTag(conf_block, sizeof(conf_block)); memcpy(resp_conf, ts->buf, ts->max); resp_conf_len = ts->max; // Application Issuer Area (block 2) CodeIso15693AsTag(aia_data, sizeof(aia_data)); memcpy(resp_aia, ts->buf, ts->max); resp_aia_len = ts->max; //This is used for responding to READ-block commands or other data which is dynamically generated //First the 'trace'-data, not encoded for FPGA uint8_t *data_generic_trace = BigBuf_malloc(32 + 2); // 32 bytes data + 2byte CRC is max tag answer //Then storage for the modulated data //Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes) uint8_t *data_response = BigBuf_malloc((32 + 2) * 2 + 2); enum { IDLE, ACTIVATED, SELECTED, HALTED } chip_state = IDLE; bool button_pressed = false; uint8_t cmd, options, block; int len; bool exit_loop = false; while (exit_loop == false) { WDT_HIT(); uint32_t reader_eof_time = 0; len = GetIso15693CommandFromReader(receivedCmd, MAX_FRAME_SIZE, &reader_eof_time); if (len < 0) { button_pressed = true; exit_loop = true; continue; } // Now look at the reader command and provide appropriate responses // default is no response: modulated_response = NULL; modulated_response_size = 0; trace_data = NULL; trace_data_size = 0; // extra response data cmd = receivedCmd[0] & 0xF; options = (receivedCmd[0] >> 4) & 0xFF; block = receivedCmd[1]; if (cmd == ICLASS_CMD_ACTALL && len == 1) { // 0x0A // Reader in anti collision phase if (chip_state != HALTED) { modulated_response = resp_sof; modulated_response_size = resp_sof_len; chip_state = ACTIVATED; } goto send; } else if (cmd == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) { // 0x0C // Reader asks for anti collision CSN if (chip_state == SELECTED || chip_state == ACTIVATED) { modulated_response = resp_anticoll; modulated_response_size = resp_anticoll_len; trace_data = anticoll_data; trace_data_size = sizeof(anticoll_data); } goto send; } else if (cmd == ICLASS_CMD_SELECT && len == 9) { // Reader selects anticollision CSN. // Tag sends the corresponding real CSN if (chip_state == ACTIVATED || chip_state == SELECTED) { if (!memcmp(receivedCmd + 1, anticoll_data, 8)) { modulated_response = resp_csn; modulated_response_size = resp_csn_len; trace_data = csn_data; trace_data_size = sizeof(csn_data); chip_state = SELECTED; } else { chip_state = IDLE; } } else if (chip_state == HALTED) { // RESELECT with CSN if (!memcmp(receivedCmd + 1, csn_data, 8)) { modulated_response = resp_csn; modulated_response_size = resp_csn_len; trace_data = csn_data; trace_data_size = sizeof(csn_data); chip_state = SELECTED; } } goto send; } else if (cmd == ICLASS_CMD_READ_OR_IDENTIFY && len == 4) { // 0x0C if (chip_state != SELECTED) { goto send; } switch (block) { case 0: { // csn (0c 00) modulated_response = resp_csn; modulated_response_size = resp_csn_len; trace_data = csn_data; trace_data_size = sizeof(csn_data); goto send; } case 1: { // configuration (0c 01) modulated_response = resp_conf; modulated_response_size = resp_conf_len; trace_data = conf_block; trace_data_size = sizeof(conf_block); goto send; } case 2: { // Application Issuer Area (0c 02) modulated_response = resp_aia; modulated_response_size = resp_aia_len; trace_data = aia_data; trace_data_size = sizeof(aia_data); goto send; } default : { memcpy(data_generic_trace, emulator + (block << 3), 8); AddCrc(data_generic_trace, 8); trace_data = data_generic_trace; trace_data_size = 10; CodeIso15693AsTag(trace_data, trace_data_size); memcpy(data_response, ts->buf, ts->max); modulated_response = data_response; modulated_response_size = ts->max; goto send; } } // swith } else if (cmd == ICLASS_CMD_READCHECK) { // 0x88 goto send; } else if (cmd == ICLASS_CMD_CHECK && len == 9) { // 0x05 goto send; } else if (cmd == ICLASS_CMD_HALT && options == 0 && len == 1) { if (chip_state != SELECTED) { goto send; } // Reader ends the session modulated_response = resp_sof; modulated_response_size = resp_sof_len; chip_state = HALTED; goto send; } else if (cmd == ICLASS_CMD_READ4 && len == 4) { // 0x06 if (chip_state != SELECTED) { goto send; } //Read block memcpy(data_generic_trace, emulator + (current_page * page_size) + (block * 8), 8 * 4); AddCrc(data_generic_trace, 8 * 4); trace_data = data_generic_trace; trace_data_size = 34; CodeIso15693AsTag(trace_data, trace_data_size); memcpy(data_response, ts->buf, ts->max); modulated_response = data_response; modulated_response_size = ts->max; goto send; } else if (cmd == ICLASS_CMD_UPDATE && (len == 12 || len == 14)) { // We're expected to respond with the data+crc, exactly what's already in the receivedCmd // receivedCmd is now UPDATE 1b | ADDRESS 1b | DATA 8b | Signature 4b or CRC 2b if (chip_state != SELECTED) { goto send; } // update emulator memory memcpy(emulator + (current_page * page_size) + (8 * block), receivedCmd + 2, 8); memcpy(data_generic_trace, receivedCmd + 2, 8); AddCrc(data_generic_trace, 8); trace_data = data_generic_trace; trace_data_size = 10; CodeIso15693AsTag(trace_data, trace_data_size); memcpy(data_response, ts->buf, ts->max); modulated_response = data_response; modulated_response_size = ts->max; goto send; } else if (cmd == ICLASS_CMD_PAGESEL && len == 4) { // 0x84 // Pagesel, // - enables to select a page in the selected chip memory and return its configuration block // Chips with a single page will not answer to this command // Otherwise, we should answer 8bytes (conf block 1) + 2bytes CRC if (chip_state != SELECTED) { goto send; } if (max_page > 0) { current_page = receivedCmd[1]; memcpy(data_generic_trace, emulator + (current_page * page_size) + (8 * 1), 8); AddCrc(data_generic_trace, 8); trace_data = data_generic_trace; trace_data_size = 10; CodeIso15693AsTag(trace_data, trace_data_size); memcpy(data_response, ts->buf, ts->max); modulated_response = data_response; modulated_response_size = ts->max; } goto send; // } else if(cmd == ICLASS_CMD_DETECT) { // 0x0F // } else if (cmd == 0x26 && len == 5) { // standard ISO15693 INVENTORY command. Ignore. } else { // Never seen this command before if (g_dbglevel >= DBG_EXTENDED) print_result("Unhandled command received ", receivedCmd, len); } send: /** A legit tag has about 330us delay between reader EOT and tag SOF. **/ if (modulated_response_size > 0) { uint32_t response_time = reader_eof_time + DELAY_ICLASS_VCD_TO_VICC_SIM; TransmitTo15693Reader(modulated_response, modulated_response_size, &response_time, 0, false); LogTrace_ISO15693(trace_data, trace_data_size, response_time * 32, (response_time * 32) + (modulated_response_size * 32 * 64), NULL, false); } } LEDsoff(); if (button_pressed) DbpString("button pressed"); return button_pressed; } // THE READER CODE static void iclass_send_as_reader(uint8_t *frame, int len, uint32_t *start_time, uint32_t *end_time, bool shallow_mod) { CodeIso15693AsReader(frame, len); tosend_t *ts = get_tosend(); TransmitTo15693Tag(ts->buf, ts->max, start_time, shallow_mod); *end_time = *start_time + (32 * ((8 * ts->max) - 4)); // subtract the 4 padding bits after EOF LogTrace_ISO15693(frame, len, (*start_time * 4), (*end_time * 4), NULL, true); } static bool iclass_send_cmd_with_retries(uint8_t *cmd, size_t cmdsize, uint8_t *resp, size_t max_resp_size, uint8_t expected_size, uint8_t tries, uint32_t *start_time, uint16_t timeout, uint32_t *eof_time, bool shallow_mod) { uint16_t resp_len = 0; while (tries-- > 0) { iclass_send_as_reader(cmd, cmdsize, start_time, eof_time, shallow_mod); if (resp == NULL) { return true; } int res = GetIso15693AnswerFromTag(resp, max_resp_size, timeout, eof_time, false, true, &resp_len); if (res == PM3_SUCCESS && expected_size == resp_len) { return true; } } return false; } /** * @brief Talks to an iclass tag, sends the commands to get CSN and CC. * @param card_data where the CSN, CONFIG, CC are stored for return * 8 bytes csn + 8 bytes config + 8 bytes CC * @return false = fail * true = Got all. */ static bool select_iclass_tag_ex(picopass_hdr_t *hdr, bool use_credit_key, uint32_t *eof_time, uint8_t *status, bool shallow_mod) { static uint8_t act_all[] = { ICLASS_CMD_ACTALL }; static uint8_t identify[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x00, 0x73, 0x33 }; static uint8_t read_conf[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x01, 0xfa, 0x22 }; uint8_t select[] = { 0x80 | ICLASS_CMD_SELECT, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t read_aia[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x05, 0xde, 0x64}; uint8_t read_check_cc[] = { 0x80 | ICLASS_CMD_READCHECK, 0x02 }; uint8_t resp[ICLASS_BUFFER_SIZE] = {0}; // Bit 4: K.If this bit equals to one, the READCHECK will use the Credit Key (Kc); if equals to zero, Debit Key (Kd) will be used // bit 7: parity. if (use_credit_key) read_check_cc[0] = 0x10 | ICLASS_CMD_READCHECK; // wakeup uint32_t start_time = GetCountSspClk(); iclass_send_as_reader(act_all, 1, &start_time, eof_time, shallow_mod); int res; uint16_t resp_len = 0; res = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_ACTALL, eof_time, false, true, &resp_len); if (res != PM3_SUCCESS) return false; // send Identify start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; iclass_send_as_reader(identify, 1, &start_time, eof_time, shallow_mod); // expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC res = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time, false, true, &resp_len); if (res != PM3_SUCCESS || resp_len != 10) return false; // copy the Anti-collision CSN to our select-packet memcpy(&select[1], resp, 8); // select the card start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; iclass_send_as_reader(select, sizeof(select), &start_time, eof_time, shallow_mod); // expect a 10-byte response here, 8 byte CSN and 2 byte CRC res = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time, false, true, &resp_len); if (res != PM3_SUCCESS || resp_len != 10) return false; // save CSN memcpy(hdr->csn, resp, sizeof(hdr->csn)); // card selected, now read config (block1) (only 8 bytes no CRC) start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; iclass_send_as_reader(read_conf, sizeof(read_conf), &start_time, eof_time, shallow_mod); // expect a 8-byte response here res = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time, false, true, &resp_len); if (res != PM3_SUCCESS || resp_len != 10) return false; // save CONF memcpy((uint8_t *)&hdr->conf, resp, sizeof(hdr->conf)); if (status) *status |= (FLAG_ICLASS_CSN | FLAG_ICLASS_CONF); uint8_t pagemap = get_pagemap(hdr); if (pagemap != PICOPASS_NON_SECURE_PAGEMODE) { // read App Issuer Area block 5 start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; iclass_send_as_reader(read_aia, sizeof(read_aia), &start_time, eof_time, shallow_mod); // expect a 10-byte response here res = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time, false, true, &resp_len); if (res != PM3_SUCCESS || resp_len != 10) return false; if (status) { *status |= FLAG_ICLASS_AIA; memcpy(hdr->app_issuer_area, resp, sizeof(hdr->app_issuer_area)); } // card selected, now read e-purse (cc) (block2) (only 8 bytes no CRC) start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; iclass_send_as_reader(read_check_cc, sizeof(read_check_cc), &start_time, eof_time, shallow_mod); // expect a 8-byte response here res = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time, false, true, &resp_len); if (res != PM3_SUCCESS || resp_len != 8) return false; memcpy(hdr->epurse, resp, sizeof(hdr->epurse)); if (status) *status |= FLAG_ICLASS_CC; } else { // on NON_SECURE_PAGEMODE cards, AIA is on block2.. // read App Issuer Area block 2 read_aia[1] = 0x02; read_aia[2] = 0x61; read_aia[3] = 0x10; start_time = *eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; iclass_send_as_reader(read_aia, sizeof(read_aia), &start_time, eof_time, shallow_mod); // expect a 10-byte response here res = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_OTHERS, eof_time, false, true, &resp_len); if (res != PM3_SUCCESS || resp_len != 10) return false; if (status) { *status |= FLAG_ICLASS_AIA; memcpy(hdr->epurse, resp, sizeof(hdr->epurse)); } } return true; } bool select_iclass_tag(picopass_hdr_t *hdr, bool use_credit_key, uint32_t *eof_time, bool shallow_mod) { uint8_t result = 0; return select_iclass_tag_ex(hdr, use_credit_key, eof_time, &result, shallow_mod); } // Reader iClass Anticollission // turn off afterwards void ReaderIClass(uint8_t flags) { // flag to use credit key bool use_credit_key = ((flags & FLAG_ICLASS_READER_CREDITKEY) == FLAG_ICLASS_READER_CREDITKEY); bool shallow_mod = (flags & FLAG_ICLASS_READER_SHALLOW_MOD); if ((flags & FLAG_ICLASS_READER_INIT) == FLAG_ICLASS_READER_INIT) { Iso15693InitReader(); } if ((flags & FLAG_ICLASS_READER_CLEARTRACE) == FLAG_ICLASS_READER_CLEARTRACE) { clear_trace(); } uint8_t res = 0; uint32_t eof_time = 0; picopass_hdr_t hdr = {0}; if (select_iclass_tag_ex(&hdr, use_credit_key, &eof_time, &res, shallow_mod) == false) { reply_ng(CMD_HF_ICLASS_READER, PM3_ERFTRANS, NULL, 0); goto out; } // Page mapping for secure mode // 0 : CSN // 1 : Configuration // 2 : e-purse // 3 : kd / debit / aa2 (write-only) // 4 : kc / credit / aa1 (write-only) // 5 : AIA, Application issuer area // // Page mapping for non secure mode // 0 : CSN // 1 : Configuration // 2 : AIA, Application issuer area // Return to client, e 6 * 8 bytes of data. // with 0xFF:s in block 3 and 4. iclass_card_select_resp_t payload = { .status = res }; memcpy(&payload.header.hdr, &hdr, sizeof(picopass_hdr_t)); reply_ng(CMD_HF_ICLASS_READER, PM3_SUCCESS, (uint8_t *)&payload, sizeof(iclass_card_select_resp_t)); out: switch_off(); } bool authenticate_iclass_tag(iclass_auth_req_t *payload, picopass_hdr_t *hdr, uint32_t *start_time, uint32_t *eof_time, uint8_t *mac_out) { uint8_t cmd_check[9] = { ICLASS_CMD_CHECK }; uint8_t mac[4] = {0}; uint8_t resp_auth[4] = {0}; uint8_t ccnr[12] = {0}; uint8_t *pmac = mac; if (mac_out) pmac = mac_out; memcpy(ccnr, hdr->epurse, sizeof(hdr->epurse)); if (payload->use_replay) { memcpy(pmac, payload->key + 4, 4); memcpy(cmd_check + 1, payload->key, 8); } else { uint8_t div_key[8] = {0}; if (payload->use_raw) memcpy(div_key, payload->key, 8); else iclass_calc_div_key(hdr->csn, payload->key, div_key, payload->use_elite); if (payload->use_credit_key) memcpy(hdr->key_c, div_key, sizeof(hdr->key_c)); else memcpy(hdr->key_d, div_key, sizeof(hdr->key_d)); opt_doReaderMAC(ccnr, div_key, pmac); // copy MAC to check command (readersignature) cmd_check[5] = pmac[0]; cmd_check[6] = pmac[1]; cmd_check[7] = pmac[2]; cmd_check[8] = pmac[3]; } return iclass_send_cmd_with_retries(cmd_check, sizeof(cmd_check), resp_auth, sizeof(resp_auth), 4, 2, start_time, ICLASS_READER_TIMEOUT_OTHERS, eof_time, payload->shallow_mod); } /* this function works on the following assumptions. * - one select first, to get CSN / CC (e-purse) * - calculate before diversified keys and precalc mac based on CSN/KEY. * - data in contains of diversified keys, mac * - key loop only test one type of authtication key. Ie two calls needed * to cover debit and credit key. (AA1/AA2) */ void iClass_Authentication_fast(iclass_chk_t *p) { // sanitation if (p == NULL) { reply_ng(CMD_HF_ICLASS_CHKKEYS, PM3_ESOFT, NULL, 0); return; } bool shallow_mod = p->shallow_mod; uint8_t check[9] = { ICLASS_CMD_CHECK }; uint8_t resp[ICLASS_BUFFER_SIZE] = {0}; uint8_t readcheck_cc[] = { 0x80 | ICLASS_CMD_READCHECK, 0x02 }; if (p->use_credit_key) readcheck_cc[0] = 0x10 | ICLASS_CMD_READCHECK; // select card / e-purse picopass_hdr_t hdr = {0}; iclass_premac_t *keys = p->items; LED_A_ON(); // fresh start switch_off(); SpinDelay(20); Iso15693InitReader(); bool isOK = false; uint32_t start_time = 0, eof_time = 0; if (select_iclass_tag(&hdr, p->use_credit_key, &eof_time, shallow_mod) == false) goto out; start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; // since select_iclass_tag call sends s readcheck, we start with sending first response. uint16_t checked = 0; // Keychunk loop uint8_t i = 0; for (i = 0; i < p->count; i++) { // Allow button press / usb cmd to interrupt device if (checked == 1000) { if (BUTTON_PRESS() || data_available()) goto out; checked = 0; } ++checked; WDT_HIT(); LED_B_ON(); // copy MAC to check command (readersignature) check[5] = keys[i].mac[0]; check[6] = keys[i].mac[1]; check[7] = keys[i].mac[2]; check[8] = keys[i].mac[3]; // expect 4bytes, 3 retries times.. isOK = iclass_send_cmd_with_retries(check, sizeof(check), resp, sizeof(resp), 4, 2, &start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time, shallow_mod); if (isOK) goto out; start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; // Auth Sequence MUST begin with reading e-purse. (block2) // Card selected, now read e-purse (cc) (block2) (only 8 bytes no CRC) iclass_send_as_reader(readcheck_cc, sizeof(readcheck_cc), &start_time, &eof_time, shallow_mod); LED_B_OFF(); } out: // send keyindex. reply_ng(CMD_HF_ICLASS_CHKKEYS, (isOK) ? PM3_SUCCESS : PM3_ESOFT, (uint8_t *)&i, sizeof(i)); switch_off(); } // Tries to read block. // retries 3times. // reply 8 bytes block bool iclass_read_block(uint16_t blockno, uint8_t *data, uint32_t *start_time, uint32_t *eof_time, bool shallow_mod) { uint8_t resp[10]; uint8_t c[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockno, 0x00, 0x00}; AddCrc(c + 1, 1); bool isOK = iclass_send_cmd_with_retries(c, sizeof(c), resp, sizeof(resp), 10, 2, start_time, ICLASS_READER_TIMEOUT_OTHERS, eof_time, shallow_mod); if (isOK) memcpy(data, resp, 8); return isOK; } // turn off afterwards // send in authentication needed data, if to use auth. // reply 8 bytes block if send_reply (for client) void iClass_ReadBlock(uint8_t *msg) { iclass_auth_req_t *payload = (iclass_auth_req_t *)msg; bool shallow_mod = payload->shallow_mod; iclass_readblock_resp_t response = { .isOK = true }; memset(response.data, 0, sizeof(response.data)); uint8_t cmd_read[] = {ICLASS_CMD_READ_OR_IDENTIFY, payload->blockno, 0x00, 0x00}; AddCrc(cmd_read + 1, 1); Iso15693InitReader(); // select tag. uint32_t eof_time = 0; picopass_hdr_t hdr = {0}; bool res = select_iclass_tag(&hdr, payload->use_credit_key, &eof_time, shallow_mod); if (res == false) { if (payload->send_reply) { response.isOK = res; reply_ng(CMD_HF_ICLASS_READBL, PM3_ETIMEOUT, (uint8_t *)&response, sizeof(response)); } goto out; } uint32_t start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; // authenticate if (payload->do_auth) { res = authenticate_iclass_tag(payload, &hdr, &start_time, &eof_time, NULL); if (res == false) { if (payload->send_reply) { response.isOK = res; reply_ng(CMD_HF_ICLASS_READBL, PM3_ETIMEOUT, (uint8_t *)&response, sizeof(response)); } goto out; } } start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; // read data uint8_t resp[10]; res = iclass_send_cmd_with_retries(cmd_read, sizeof(cmd_read), resp, sizeof(resp), 10, 3, &start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time, shallow_mod); if (res) { memcpy(response.data, resp, sizeof(response.data)); if (payload->send_reply) { reply_ng(CMD_HF_ICLASS_READBL, PM3_SUCCESS, (uint8_t *)&response, sizeof(response)); } } else { if (payload->send_reply) { response.isOK = res; reply_ng(CMD_HF_ICLASS_READBL, PM3_ETIMEOUT, (uint8_t *)&response, sizeof(response)); } } out: switch_off(); } // Dump command seems to dump a block related portion of card memory. // I suppose it will need to do an authentatication to AA1, read its blocks by calling this. // then authenticate AA2, and read those blocks by calling this. // By the looks at it only 2K cards is supported, or first page dumps on larger cards. // turn off afterwards void iClass_Dump(uint8_t *msg) { BigBuf_free(); iclass_dump_req_t *cmd = (iclass_dump_req_t *)msg; iclass_auth_req_t *req = &cmd->req; bool shallow_mod = req->shallow_mod; uint8_t *dataout = BigBuf_malloc(ICLASS_16KS_SIZE); if (dataout == NULL) { DbpString("fail to allocate memory"); if (req->send_reply) { reply_ng(CMD_HF_ICLASS_DUMP, PM3_EMALLOC, NULL, 0); } switch_off(); return; } memset(dataout, 0xFF, ICLASS_16KS_SIZE); Iso15693InitReader(); // select tag. uint32_t eof_time = 0; picopass_hdr_t hdr = {0}; memset(&hdr, 0xff, sizeof(picopass_hdr_t)); bool res = select_iclass_tag(&hdr, req->use_credit_key, &eof_time, shallow_mod); if (res == false) { if (req->send_reply) { reply_ng(CMD_HF_ICLASS_DUMP, PM3_ETIMEOUT, NULL, 0); } switch_off(); return; } uint32_t start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; // authenticate if (req->do_auth) { res = authenticate_iclass_tag(req, &hdr, &start_time, &eof_time, NULL); if (res == false) { if (req->send_reply) { reply_ng(CMD_HF_ICLASS_DUMP, PM3_ETIMEOUT, NULL, 0); } switch_off(); return; } } start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; bool dumpsuccess = true; // main read loop uint16_t i; for (i = cmd->start_block; i <= cmd->end_block; i++) { uint8_t resp[10]; uint8_t c[] = {ICLASS_CMD_READ_OR_IDENTIFY, i, 0x00, 0x00}; AddCrc(c + 1, 1); res = iclass_send_cmd_with_retries(c, sizeof(c), resp, sizeof(resp), 10, 3, &start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time, shallow_mod); if (res) { memcpy(dataout + (8 * i), resp, 8); } else { Dbprintf("failed to read block %u ( 0x%02x)", i, i); dumpsuccess = false; } } switch_off(); // copy diversified key back. if (req->do_auth) { if (req->use_credit_key) memcpy(dataout + (8 * 4), hdr.key_c, 8); else memcpy(dataout + (8 * 3), hdr.key_d, 8); } if (req->send_reply) { struct p { bool isOK; uint16_t block_cnt; uint32_t bb_offset; } PACKED response; response.isOK = dumpsuccess; response.block_cnt = i; response.bb_offset = dataout - BigBuf_get_addr(); reply_ng(CMD_HF_ICLASS_DUMP, PM3_SUCCESS, (uint8_t *)&response, sizeof(response)); } BigBuf_free(); } static bool iclass_writeblock_ext(uint8_t blockno, uint8_t *data, uint8_t *mac, bool use_mac, bool shallow_mod) { // write command: cmd, 1 blockno, 8 data, 4 mac uint8_t write[14] = { 0x80 | ICLASS_CMD_UPDATE, blockno }; uint8_t write_len = 14; memcpy(write + 2, data, 8); if (use_mac) { memcpy(write + 10, mac, 4); } else { AddCrc(write + 1, 9); write_len -= 2; } uint8_t resp[10] = {0}; uint32_t eof_time = 0, start_time = 0; bool isOK = iclass_send_cmd_with_retries(write, write_len, resp, sizeof(resp), 10, 3, &start_time, ICLASS_READER_TIMEOUT_UPDATE, &eof_time, shallow_mod); if (isOK == false) { return false; } uint8_t all_ff[8] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; if (blockno == 2) { // check response. e-purse update swaps first and second half if (memcmp(data + 4, resp, 4) || memcmp(data, resp + 4, 4)) { return false; } } else if (blockno == 3 || blockno == 4) { // check response. Key updates always return 0xffffffffffffffff if (memcmp(all_ff, resp, 8)) { return false; } } else { // check response. All other updates return unchanged data if (memcmp(data, resp, 8)) { return false; } } return true; } // turn off afterwards void iClass_WriteBlock(uint8_t *msg) { LED_A_ON(); iclass_writeblock_req_t *payload = (iclass_writeblock_req_t *)msg; bool shallow_mod = payload->req.shallow_mod; uint8_t write[14] = { 0x80 | ICLASS_CMD_UPDATE, payload->req.blockno }; uint8_t write_len = 14; Iso15693InitReader(); // select tag. uint32_t eof_time = 0; picopass_hdr_t hdr = {0}; uint8_t res = select_iclass_tag(&hdr, payload->req.use_credit_key, &eof_time, shallow_mod); if (res == false) { goto out; } uint32_t start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; uint8_t mac[4] = {0}; // authenticate if (payload->req.do_auth) { res = authenticate_iclass_tag(&payload->req, &hdr, &start_time, &eof_time, mac); if (res == false) { goto out; } } // new block data memcpy(write + 2, payload->data, 8); uint8_t pagemap = get_pagemap(&hdr); if (pagemap == PICOPASS_NON_SECURE_PAGEMODE) { // Unsecured tags uses CRC16, but don't include the UPDATE operation code // byte0 = update op // byte1 = block no // byte2..9 = new block data AddCrc(write + 1, 9); write_len -= 2; } else { if (payload->req.use_replay) { memcpy(write + 10, payload->mac, sizeof(payload->mac)); } else { // Secure tags uses MAC uint8_t wb[9]; wb[0] = payload->req.blockno; memcpy(wb + 1, payload->data, 8); if (payload->req.use_credit_key) doMAC_N(wb, sizeof(wb), hdr.key_c, mac); else doMAC_N(wb, sizeof(wb), hdr.key_d, mac); memcpy(write + 10, mac, sizeof(mac)); } } start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; uint8_t resp[10] = {0}; uint8_t tries = 3; while (tries-- > 0) { iclass_send_as_reader(write, write_len, &start_time, &eof_time, shallow_mod); if (tearoff_hook() == PM3_ETEAROFF) { // tearoff occurred res = false; switch_off(); if (payload->req.send_reply) reply_ng(CMD_HF_ICLASS_WRITEBL, PM3_ETEAROFF, (uint8_t *)&res, sizeof(uint8_t)); return; } else { uint16_t resp_len = 0; int res2 = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_UPDATE, &eof_time, false, true, &resp_len); if (res2 == PM3_SUCCESS && resp_len == 10) { res = true; break; } } } if (tries == 0) { res = false; goto out; } // verify write uint8_t all_ff[8] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; if (pagemap == PICOPASS_SECURE_PAGEMODE && payload->req.blockno == 2) { // check response. e-purse update swaps first and second half if (memcmp(payload->data + 4, resp, 4) || memcmp(payload->data, resp + 4, 4)) { res = false; goto out; } } else if (pagemap == PICOPASS_SECURE_PAGEMODE && (payload->req.blockno == 3 || payload->req.blockno == 4)) { // check response. Key updates always return 0xffffffffffffffff if (memcmp(all_ff, resp, 8)) { res = false; goto out; } } else { // check response. All other updates return unchanged data if (memcmp(payload->data, resp, 8)) { res = false; goto out; } } out: switch_off(); if (payload->req.send_reply) reply_ng(CMD_HF_ICLASS_WRITEBL, PM3_SUCCESS, (uint8_t *)&res, sizeof(uint8_t)); } void iclass_credit_epurse(iclass_credit_epurse_t *payload) { LED_A_ON(); bool shallow_mod = payload->req.shallow_mod; Iso15693InitReader(); // select tag. uint32_t eof_time = 0; picopass_hdr_t hdr = {0}; uint8_t res = select_iclass_tag(&hdr, payload->req.use_credit_key, &eof_time, shallow_mod); if (res == false) { goto out; } uint32_t start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; uint8_t mac[4] = {0}; // authenticate if (payload->req.do_auth) { res = authenticate_iclass_tag(&payload->req, &hdr, &start_time, &eof_time, mac); if (res == false) { goto out; } } start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; uint8_t cmd_read[] = {ICLASS_CMD_READ_OR_IDENTIFY, payload->req.blockno, 0x00, 0x00}; AddCrc(cmd_read + 1, 1); uint8_t epurse[10]; res = iclass_send_cmd_with_retries(cmd_read, sizeof(cmd_read), epurse, sizeof(epurse), 10, 3, &start_time, ICLASS_READER_TIMEOUT_OTHERS, &eof_time, shallow_mod); if (!res) { switch_off(); if (payload->req.send_reply) reply_ng(CMD_HF_ICLASS_CREDIT_EPURSE, PM3_ETIMEOUT, (uint8_t *)&res, sizeof(uint8_t)); return; } uint8_t write[14] = { 0x80 | ICLASS_CMD_UPDATE, payload->req.blockno }; uint8_t write_len = 14; uint8_t epurse_offset = 0; const uint8_t empty_epurse[] = {0xff, 0xff, 0xff, 0xff}; if (!memcmp(epurse, empty_epurse, 4)) { // epurse data in stage 2 epurse_offset = 4; } memcpy(epurse + epurse_offset, payload->epurse, 4); // blank out debiting value as per the first step of the crediting procedure epurse[epurse_offset + 0] = 0xFF; epurse[epurse_offset + 1] = 0xFF; // initial epurse write for credit memcpy(write + 2, epurse, 8); doMAC_N(write + 1, 9, payload->req.use_credit_key ? hdr.key_c : hdr.key_d, mac); memcpy(write + 10, mac, sizeof(mac)); start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; uint8_t resp[10] = {0}; uint8_t tries = 3; while (tries-- > 0) { iclass_send_as_reader(write, write_len, &start_time, &eof_time, shallow_mod); if (tearoff_hook() == PM3_ETEAROFF) { // tearoff occurred res = false; switch_off(); if (payload->req.send_reply) reply_ng(CMD_HF_ICLASS_CREDIT_EPURSE, PM3_ETEAROFF, (uint8_t *)&res, sizeof(uint8_t)); return; } else { uint16_t resp_len = 0; int res2 = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_UPDATE, &eof_time, false, true, &resp_len); if (res2 == PM3_SUCCESS && resp_len == 10) { res = true; break; } } } if (tries == 0) { res = false; goto out; } // check response. e-purse update swaps first and second half if (memcmp(write + 2 + 4, resp, 4) || memcmp(write + 2, resp + 4, 4)) { res = false; goto out; } // new epurse write // epurse offset is now flipped after the first write epurse_offset ^= 4; memcpy(resp + epurse_offset, payload->epurse, 4); memcpy(write + 2, resp, 8); doMAC_N(write + 1, 9, payload->req.use_credit_key ? hdr.key_c : hdr.key_d, mac); memcpy(write + 10, mac, sizeof(mac)); start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; tries = 3; while (tries-- > 0) { iclass_send_as_reader(write, write_len, &start_time, &eof_time, shallow_mod); if (tearoff_hook() == PM3_ETEAROFF) { // tearoff occurred res = false; switch_off(); if (payload->req.send_reply) reply_ng(CMD_HF_ICLASS_CREDIT_EPURSE, PM3_ETEAROFF, (uint8_t *)&res, sizeof(uint8_t)); return; } else { uint16_t resp_len = 0; int res2 = GetIso15693AnswerFromTag(resp, sizeof(resp), ICLASS_READER_TIMEOUT_UPDATE, &eof_time, false, true, &resp_len); if (res2 == PM3_SUCCESS && resp_len == 10) { res = true; break; } } } if (tries == 0) { res = false; goto out; } // check response. e-purse update swaps first and second half if (memcmp(write + 2 + 4, resp, 4) || memcmp(write + 2, resp + 4, 4)) { res = false; goto out; } out: switch_off(); if (payload->req.send_reply) reply_ng(CMD_HF_ICLASS_CREDIT_EPURSE, PM3_SUCCESS, (uint8_t *)&res, sizeof(uint8_t)); } void iClass_Restore(iclass_restore_req_t *msg) { // sanitation if (msg == NULL) { reply_ng(CMD_HF_ICLASS_RESTORE, PM3_ESOFT, NULL, 0); return; } if (msg->item_cnt == 0) { if (msg->req.send_reply) { reply_ng(CMD_HF_ICLASS_RESTORE, PM3_ESOFT, NULL, 0); } return; } bool shallow_mod = msg->req.shallow_mod; LED_A_ON(); Iso15693InitReader(); uint16_t written = 0; uint32_t eof_time = 0; picopass_hdr_t hdr = {0}; // select bool res = select_iclass_tag(&hdr, msg->req.use_credit_key, &eof_time, shallow_mod); if (res == false) { goto out; } // authenticate uint8_t mac[4] = {0}; uint32_t start_time = eof_time + DELAY_ICLASS_VICC_TO_VCD_READER; // authenticate if (msg->req.do_auth) { res = authenticate_iclass_tag(&msg->req, &hdr, &start_time, &eof_time, mac); if (res == false) { goto out; } } // main loop bool use_mac; for (uint8_t i = 0; i < msg->item_cnt; i++) { iclass_restore_item_t item = msg->blocks[i]; uint8_t pagemap = get_pagemap(&hdr); if (pagemap == PICOPASS_NON_SECURE_PAGEMODE) { // Unsecured tags uses CRC16 use_mac = false; } else { // Secure tags uses MAC use_mac = true; uint8_t wb[9] = {0}; wb[0] = item.blockno; memcpy(wb + 1, item.data, 8); if (msg->req.use_credit_key) doMAC_N(wb, sizeof(wb), hdr.key_c, mac); else doMAC_N(wb, sizeof(wb), hdr.key_d, mac); } // data + mac if (iclass_writeblock_ext(item.blockno, item.data, mac, use_mac, shallow_mod)) { Dbprintf("Write block [%3d/0x%02X] " _GREEN_("successful"), item.blockno, item.blockno); written++; } else { Dbprintf("Write block [%3d/0x%02X] " _RED_("failed"), item.blockno, item.blockno); } } out: switch_off(); if (msg->req.send_reply) { int isOK = (written == msg->item_cnt) ? PM3_SUCCESS : PM3_ESOFT; reply_ng(CMD_HF_ICLASS_RESTORE, isOK, NULL, 0); } }