//----------------------------------------------------------------------------- // Copyright (C) 2018 Merlok // Copyright (C) 2018 drHatson // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // iso14443-4 mifare commands //----------------------------------------------------------------------------- #include "mifare4.h" #include #include #include "cmdhf14a.h" #include "util.h" #include "ui.h" #include "crypto/libpcrypto.h" AccessConditions_t MFAccessConditions[] = { {0x00, "rdAB wrAB incAB dectrAB"}, {0x01, "rdAB dectrAB"}, {0x02, "rdAB"}, {0x03, "rdB wrB"}, {0x04, "rdAB wrB"}, {0x05, "rdB"}, {0x06, "rdAB wrB incB dectrAB"}, {0x07, "none"} }; AccessConditions_t MFAccessConditionsTrailer[] = { {0x00, "rdAbyA rdCbyA rdBbyA wrBbyA"}, {0x01, "wrAbyA rdCbyA wrCbyA rdBbyA wrBbyA"}, {0x02, "rdCbyA rdBbyA"}, {0x03, "wrAbyB rdCbyAB wrCbyB wrBbyB"}, {0x04, "wrAbyB rdCbyAB wrBbyB"}, {0x05, "rdCbyAB wrCbyB"}, {0x06, "rdCbyAB"}, {0x07, "rdCbyAB"} }; char *mfGetAccessConditionsDesc(uint8_t blockn, uint8_t *data) { static char StaticNone[] = "none"; uint8_t data1 = ((data[1] >> 4) & 0x0f) >> blockn; uint8_t data2 = ((data[2]) & 0x0f) >> blockn; uint8_t data3 = ((data[2] >> 4) & 0x0f) >> blockn; uint8_t cond = (data1 & 0x01) << 2 | (data2 & 0x01) << 1 | (data3 & 0x01); if (blockn == 3) { for (int i = 0; i < ARRAYLEN(MFAccessConditionsTrailer); i++) if (MFAccessConditionsTrailer[i].cond == cond) { return MFAccessConditionsTrailer[i].description; } } else { for (int i = 0; i < ARRAYLEN(MFAccessConditions); i++) if (MFAccessConditions[i].cond == cond) { return MFAccessConditions[i].description; } }; return StaticNone; }; int CalculateEncIVCommand(mf4Session *session, uint8_t *iv, bool verbose) { memcpy(&iv[0], session->TI, 4); memcpy(&iv[4], &session->R_Ctr, 2); memcpy(&iv[6], &session->W_Ctr, 2); memcpy(&iv[8], &session->R_Ctr, 2); memcpy(&iv[10], &session->W_Ctr, 2); memcpy(&iv[12], &session->R_Ctr, 2); memcpy(&iv[14], &session->W_Ctr, 2); return 0; } int CalculateEncIVResponse(mf4Session *session, uint8_t *iv, bool verbose) { memcpy(&iv[0], &session->R_Ctr, 2); memcpy(&iv[2], &session->W_Ctr, 2); memcpy(&iv[4], &session->R_Ctr, 2); memcpy(&iv[6], &session->W_Ctr, 2); memcpy(&iv[8], &session->R_Ctr, 2); memcpy(&iv[10], &session->W_Ctr, 2); memcpy(&iv[12], session->TI, 4); return 0; } int CalculateMAC(mf4Session *session, MACType_t mtype, uint8_t blockNum, uint8_t blockCount, uint8_t *data, int datalen, uint8_t *mac, bool verbose) { if (!session || !session->Authenticated || !mac || !data || !datalen || datalen < 1) return 1; memset(mac, 0x00, 8); uint16_t ctr = session->R_Ctr; switch(mtype) { case mtypWriteCmd: case mtypWriteResp: ctr = session->W_Ctr; break; case mtypReadCmd: case mtypReadResp: break; } uint8_t macdata[2049] = {data[0], (ctr & 0xFF), (ctr >> 8), 0}; int macdatalen = datalen; memcpy(&macdata[3], session->TI, 4); switch(mtype) { case mtypReadCmd: memcpy(&macdata[7], &data[1], datalen - 1); macdatalen = datalen + 6; break; case mtypReadResp: macdata[7] = blockNum; macdata[8] = 0; macdata[9] = blockCount; memcpy(&macdata[10], &data[1], datalen - 1); macdatalen = datalen + 9; break; case mtypWriteCmd: memcpy(&macdata[7], &data[1], datalen - 1); macdatalen = datalen + 6; break; case mtypWriteResp: macdatalen = 1 + 6; break; } if (verbose) PrintAndLog("MAC data[%d]: %s", macdatalen, sprint_hex(macdata, macdatalen)); return aes_cmac8(NULL, session->Kmac, macdata, mac, macdatalen); } int MifareAuth4(mf4Session *session, uint8_t *keyn, uint8_t *key, bool activateField, bool leaveSignalON, bool verbose) { uint8_t data[257] = {0}; int datalen = 0; uint8_t RndA[17] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x00}; uint8_t RndB[17] = {0}; if (session) session->Authenticated = false; uint8_t cmd1[] = {0x70, keyn[1], keyn[0], 0x00}; int res = ExchangeRAW14a(cmd1, sizeof(cmd1), activateField, true, data, sizeof(data), &datalen); if (res) { PrintAndLogEx(ERR, "Exchande raw error: %d", res); DropField(); return 2; } if (verbose) PrintAndLogEx(INFO, "phase2: %s", sprint_hex(cmd2, 33)); res = ExchangeRAW14a(cmd2, sizeof(cmd2), false, true, data, sizeof(data), &datalen); if (res) { PrintAndLogEx(ERR, "Exchande raw error: %d", res); DropField(); return 4; } if (verbose) PrintAndLogEx(INFO, "Authenticated = true; session->R_Ctr = 0; session->W_Ctr = 0; session->KeyNum = keyn[1] + (keyn[0] << 8); memmove(session->RndA, RndA, 16); memmove(session->RndB, RndB, 16); memmove(session->Key, key, 16); memmove(session->TI, raw, 4); memmove(session->PICCap2, &raw[20], 6); memmove(session->PCDCap2, &raw[26], 6); memmove(session->Kenc, kenc, 16); memmove(session->Kmac, kmac, 16); } PrintAndLogEx(INFO, "Authentication OK"); return 0; } // Mifare Memory Structure: up to 32 Sectors with 4 blocks each (1k and 2k cards), // plus evtl. 8 sectors with 16 blocks each (4k cards) uint8_t mfNumBlocksPerSector(uint8_t sectorNo) { if (sectorNo < 32) return 4; else return 16; } uint8_t mfFirstBlockOfSector(uint8_t sectorNo) { if (sectorNo < 32) return sectorNo * 4; else return 32 * 4 + (sectorNo - 32) * 16; } uint8_t mfSectorTrailer(uint8_t blockNo) { if (blockNo < 32*4) { return (blockNo | 0x03); } else { return (blockNo | 0x0f); } } bool mfIsSectorTrailer(uint8_t blockNo) { return (blockNo == mfSectorTrailer(blockNo)); } uint8_t mfSectorNum(uint8_t blockNo) { if (blockNo < 32 * 4) return blockNo / 4; else return 32 + (blockNo - 32 * 4) / 16; }