//----------------------------------------------------------------------------- // Copyright (C) 2010, Flavio D. Garcia, Peter van Rossum, Roel Verdult // and Ronny Wichers Schreur. Radboud University Nijmegen // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // See LICENSE.txt for the text of the license. //----------------------------------------------------------------------------- // SecureMemory, CryptoMemory and CryptoRF library //----------------------------------------------------------------------------- #include "cryptolib.h" #include #include #include #include typedef enum { CA_ENCRYPT = 0x01, CA_DECRYPT = 0x02 } CryptoAction; int counter = 0; static uint8_t nibbles_to_byte(nibble b0, nibble b1) { // Combine both nibbles return ((b0 << 4) | b1); } static uint8_t funny_mod(uint8_t a, uint8_t m) { // Just return the input when this is less or equal than the modular value if (a < m) return a; // Compute the modular value a %= m; // Return the funny value, when the output was now zero, return the modular value return (a == 0) ? m : a; } static uint8_t bit_rotate_left(uint8_t a, uint8_t n_bits) { // Rotate value a with the length of n_bits only 1 time uint8_t mask = (1 << n_bits) - 1; return ((a << 1) | (a >> (n_bits - 1))) & mask; } /* static void reconstruct_nibbles(crypto_state s) { uint8_t b1, b5, b8, b15, b18; uint8_t b0, b4, b7, b14, b17; // Extract the bytes that generated the "previous" nibble b1 = (uint8_t)((s->l >> 25) & 0x1f); b5 = (uint8_t)((s->l >> 5) & 0x1f); b8 = (uint8_t)((s->m >> 35) & 0x1f); b15 = (uint8_t)((s->r >> 15) & 0x1f); b18 = (uint8_t)(s->r & 0x1f); // Reconstruct the b0 nibble s->b0 = ((b1 ^ b5) & 0x0f) & ~(b8); s->b0 |= ((b15 ^ b18) & 0x0f) & b8; // Extract the bytes for the current nibble b0 = (uint8_t)((s->l >> 30) & 0x1f); b4 = (uint8_t)((s->l >> 10) & 0x1f); b7 = (uint8_t)((s->m >> 42) & 0x1f); b14 = (uint8_t)((s->r >> 20) & 0x1f); b17 = (uint8_t)((s->r >> 5) & 0x1f); // Construct the values for b1 generation s->b1l = ((b0 ^ b4) & 0x0f); s->b1r = ((b14 ^ b17) & 0x0f); s->b1s = b7; // Reconstruct the b1 nibble s->b1 = s->b1l & ~(s->b1s); s->b1 |= s->b1r & s->b1s; } */ static void next_left(uint8_t in, crypto_state s) { uint8_t b3, b6, bx; // Update the left cipher state with the input byte s->l ^= ((in & 0x1f) << 20); // Extract the two (5 bits) values used for modular addtion b3 = (uint8_t)((s->l >> 15) & 0x1f); b6 = (uint8_t)(s->l & 0x1f); // Compute the modular addition bx = funny_mod(b3 + bit_rotate_left(b6, 5), 0x1f); // Rotate the left cipher state 5 bits s->l = ((s->l >> 5) | ((uint64_t)bx << 30)); // Save the 4 left output bits used for b1 s->b1l = ((bx ^ b3) & 0x0f); } static void next_right(uint8_t in, crypto_state s) { uint8_t b16, b18, bx; // Update the right cipher state with the input byte s->r ^= ((in & 0xf8) << 12); // Extract the two (5 bits) values used for modular addtion b16 = (uint8_t)((s->r >> 10) & 0x1f); b18 = (uint8_t)(s->r & 0x1f); // Compute the modular addition bx = funny_mod(b18 + b16, 0x1f); // Rotate the right cipher state 5 bits s->r = ((s->r >> 5) | ((uint64_t)bx << 20)); // Save the 4 right output bits used for b1 s->b1r = ((bx ^ b16) & 0x0f); } static void next_middle(uint8_t in, crypto_state s) { uint8_t b12, b13, bx; // Update the middle cipher state with the input byte s->m ^= (((((uint64_t)in << 3) & 0x7f) | (in >> 5)) << 14); // Extract the two (7 bits) values used for modular addtion b12 = (uint8_t)((s->m >> 7) & 0x7f); b13 = (uint8_t)(s->m & 0x7f); // Compute the modular addition bx = (funny_mod(b12 + bit_rotate_left(b13, 7), 0x7f)); // Rotate the middle cipher state 7 bits s->m = ((s->m >> 7) | ((uint64_t)bx << 42)); // Save the 4 middle selector bits used for b1 s->b1s = bx & 0x0f; } static void next(const bool feedback, uint8_t in, crypto_state s) { // Initialize the (optional) input parameter uint8_t a = in; // Only Cryptomemory uses feedback if (feedback) { // Construct the cipher update 'a' from (input ^ feedback) a = in ^ nibbles_to_byte(s->b0, s->b1); } // Shift the cipher state next_left(a, s); next_middle(a, s); next_right(a, s); // For active states we can use the available (previous) 'b1' nibble, // otherwise use reconstruct_nibbles() to generate them // reconstruct_nibbles(s) // The nible from b1 shifts to b0 s->b0 = s->b1; // Construct the new value of nible b1 s->b1 = s->b1l & ~(s->b1s); s->b1 |= s->b1r & s->b1s; } static void next_n(const bool feedback, size_t n, uint8_t in, crypto_state s) { // While n-rounds left, shift the cipher while (n--) next(feedback, in, s); } static void initialize(const bool feedback, const uint8_t *Gc, const uint8_t *Ci, const uint8_t *Q, const size_t n, crypto_state s) { size_t pos; // Reset the cipher state memset(s, 0x00, sizeof(crypto_state_t)); // Load in the ci (tag-nonce), together with the first half of Q (reader-nonce) for (pos = 0; pos < 4; pos++) { next_n(feedback, n, Ci[2 * pos ], s); next_n(feedback, n, Ci[2 * pos + 1], s); next(feedback, Q[pos], s); } // Load in the diversified key (Gc), together with the second half of Q (reader-nonce) for (pos = 0; pos < 4; pos++) { next_n(feedback, n, Gc[2 * pos ], s); next_n(feedback, n, Gc[2 * pos + 1], s); next(feedback, Q[pos + 4], s); } } static uint8_t cm_byte(crypto_state s) { // Construct keystream byte by combining both nibbles return nibbles_to_byte(s->b0, s->b1); } static uint8_t sm_byte(crypto_state s) { uint8_t ks; // Construct keystream byte by combining 2 parts from 4 nibbles next_n(false, 2, 0, s); ks = s->b1 << 4; next_n(false, 2, 0, s); ks |= s->b1; return ks; } void print_crypto_state(const char *text, crypto_state s) { int pos; printf("%s", text); for (pos = 6; pos >= 0; pos--) printf(" %02x", (uint8_t)(s->l >> (pos * 5)) & 0x1f); printf(" |"); for (pos = 6; pos >= 0; pos--) printf(" %02x", (uint8_t)(s->m >> (pos * 7)) & 0x7f); printf(" |"); for (pos = 4; pos >= 0; pos--) printf(" %02x", (uint8_t)(s->r >> (pos * 5)) & 0x1f); printf(" | %02x", cm_byte(s)); printf("\n"); } void sm_auth(const uint8_t *Gc, const uint8_t *Ci, const uint8_t *Q, uint8_t *Ch, uint8_t *Ci_1, crypto_state s) { size_t pos; initialize(false, Gc, Ci, Q, 1, s); // Generate challenge answer for Tag and Reader for (pos = 0; pos < 8; pos++) { Ci_1[pos] = sm_byte(s); Ch[pos] = sm_byte(s); } } void cm_auth(const uint8_t *Gc, const uint8_t *Ci, const uint8_t *Q, uint8_t *Ch, uint8_t *Ci_1, uint8_t *Ci_2, crypto_state s) { size_t pos; initialize(true, Gc, Ci, Q, 3, s); // Construct the reader-answer (challenge) next_n(true, 6, 0, s); Ch[0] = cm_byte(s); for (pos = 1; pos < 8; pos++) { next_n(true, 7, 0, s); Ch [pos] = cm_byte(s); } // Construct the tag-answer (Ci+1 = ff .. .. .. .. .. .. ..) Ci_1[0] = 0xff; for (pos = 1; pos < 8; pos++) { next_n(true, 2, 0, s); Ci_1[pos] = cm_byte(s); } // Construct the session key (Ci+2) for (pos = 0; pos < 8; pos++) { next_n(true, 2, 0, s); Ci_2[pos] = cm_byte(s); } // Prepare the cipher for encryption by shifting 3 more times next_n(true, 3, 0, s); } static void cm_crypt(const CryptoAction ca, const uint8_t offset, const uint8_t len, const uint8_t *in, uint8_t *out, crypto_state s) { size_t pos; next_n(true, 5, 0, s); next(true, offset, s); next_n(true, 5, 0, s); next(true, len, s); for (pos = 0; pos < len; pos++) { // Perform the crypto operation uint8_t bt = in[pos] ^ cm_byte(s); // Generate output if (out) out[pos] = bt; // Detect where to find the plaintext for loading into cipher state if (ca == CA_DECRYPT) { next(true, bt, s); } else { next(true, in[pos], s); } // Shift the cipher state 5 times next_n(true, 5, 0, s); } } void cm_encrypt(const uint8_t offset, const uint8_t len, const uint8_t *pt, uint8_t *ct, crypto_state s) { next_n(true, 5, 0, s); next(true, 0, s); cm_crypt(CA_ENCRYPT, offset, len, pt, ct, s); } void cm_decrypt(const uint8_t offset, const uint8_t len, const uint8_t *ct, uint8_t *pt, crypto_state s) { next_n(true, 5, 0, s); next(true, 0, s); cm_crypt(CA_DECRYPT, offset, len, ct, pt, s); } void cm_grind_read_system_zone(const uint8_t offset, const uint8_t len, const uint8_t *pt, crypto_state s) { cm_crypt(CA_ENCRYPT, offset, len, pt, NULL, s); } void cm_grind_set_user_zone(const uint8_t zone, crypto_state s) { next(true, zone, s); } void cm_mac(uint8_t *mac, crypto_state s) { next_n(true, 10, 0, s); if (mac) mac[0] = cm_byte(s); next_n(true, 5, 0, s); if (mac) mac[1] = cm_byte(s); } void cm_password(const uint8_t *pt, uint8_t *ct, crypto_state s) { for (size_t pos = 0; pos < 3; pos++) { next_n(true, 5, pt[pos], s); ct[pos] = cm_byte(s); } }