//----------------------------------------------------------------------------- // Utility functions used in many places, not specific to any piece of code. // Jonathan Westhues, Sept 2005 //----------------------------------------------------------------------------- #include #include "apps.h" void *memcpy(void *dest, const void *src, int len) { BYTE *d = dest; const BYTE *s = src; while((len--) > 0) { *d = *s; d++; s++; } return dest; } void *memset(void *dest, int c, int len) { BYTE *d = dest; while((len--) > 0) { *d = c; d++; } return dest; } int memcmp(const void *av, const void *bv, int len) { const BYTE *a = av; const BYTE *b = bv; while((len--) > 0) { if(*a != *b) { return *a - *b; } a++; b++; } return 0; } int strlen(char *str) { int l = 0; while(*str) { l++; str++; } return l; } char* strncat(char *dest, const char *src, unsigned int n) { unsigned int dest_len = strlen(dest); unsigned int i; for (i = 0 ; i < n && src[i] != '\0' ; i++) dest[dest_len + i] = src[i]; dest[dest_len + i] = '\0'; return dest; } void num_to_bytes(uint64_t n, size_t len, byte_t* dest) { while (len--) { dest[len] = (byte_t) n; n >>= 8; } } uint64_t bytes_to_num(byte_t* src, size_t len) { uint64_t num = 0; while (len--) { num = (num << 8) | (*src); src++; } return num; } void LEDsoff() { LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF(); } // LEDs: R(C) O(A) G(B) -- R(D) [1, 2, 4 and 8] void LED(int led, int ms) { if (led & LED_RED) LED_C_ON(); if (led & LED_ORANGE) LED_A_ON(); if (led & LED_GREEN) LED_B_ON(); if (led & LED_RED2) LED_D_ON(); if (!ms) return; SpinDelay(ms); if (led & LED_RED) LED_C_OFF(); if (led & LED_ORANGE) LED_A_OFF(); if (led & LED_GREEN) LED_B_OFF(); if (led & LED_RED2) LED_D_OFF(); } // Determine if a button is double clicked, single clicked, // not clicked, or held down (for ms || 1sec) // In general, don't use this function unless you expect a // double click, otherwise it will waste 500ms -- use BUTTON_HELD instead int BUTTON_CLICKED(int ms) { // Up to 500ms in between clicks to mean a double click int ticks = (48000 * (ms ? ms : 1000)) >> 10; // If we're not even pressed, forget about it! if (!BUTTON_PRESS()) return BUTTON_NO_CLICK; // Borrow a PWM unit for my real-time clock AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0); // 48 MHz / 1024 gives 46.875 kHz AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10); AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0; AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff; WORD start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; int letoff = 0; for(;;) { WORD now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; // We haven't let off the button yet if (!letoff) { // We just let it off! if (!BUTTON_PRESS()) { letoff = 1; // reset our timer for 500ms start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; ticks = (48000 * (500)) >> 10; } // Still haven't let it off else // Have we held down a full second? if (now == (WORD)(start + ticks)) return BUTTON_HOLD; } // We already let off, did we click again? else // Sweet, double click! if (BUTTON_PRESS()) return BUTTON_DOUBLE_CLICK; // Have we ran out of time to double click? else if (now == (WORD)(start + ticks)) // At least we did a single click return BUTTON_SINGLE_CLICK; WDT_HIT(); } // We should never get here return BUTTON_ERROR; } // Determine if a button is held down int BUTTON_HELD(int ms) { // If button is held for one second int ticks = (48000 * (ms ? ms : 1000)) >> 10; // If we're not even pressed, forget about it! if (!BUTTON_PRESS()) return BUTTON_NO_CLICK; // Borrow a PWM unit for my real-time clock AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0); // 48 MHz / 1024 gives 46.875 kHz AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10); AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0; AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff; WORD start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; for(;;) { WORD now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; // As soon as our button let go, we didn't hold long enough if (!BUTTON_PRESS()) return BUTTON_SINGLE_CLICK; // Have we waited the full second? else if (now == (WORD)(start + ticks)) return BUTTON_HOLD; WDT_HIT(); } // We should never get here return BUTTON_ERROR; } // attempt at high resolution microsecond timer // beware: timer counts in 21.3uS increments (1024/48Mhz) void SpinDelayUs(int us) { int ticks = (48*us) >> 10; // Borrow a PWM unit for my real-time clock AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0); // 48 MHz / 1024 gives 46.875 kHz AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10); AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0; AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff; WORD start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; for(;;) { WORD now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; if (now == (WORD)(start + ticks)) return; WDT_HIT(); } } void SpinDelay(int ms) { // convert to uS and call microsecond delay function SpinDelayUs(ms*1000); } /* Similar to FpgaGatherVersion this formats stored version information * into a string representation. It takes a pointer to the struct version_information, * verifies the magic properties, then stores a formatted string, prefixed by * prefix in dst. */ void FormatVersionInformation(char *dst, int len, const char *prefix, void *version_information) { struct version_information *v = (struct version_information*)version_information; dst[0] = 0; strncat(dst, prefix, len); if(v->magic != VERSION_INFORMATION_MAGIC) { strncat(dst, "Missing/Invalid version information", len); return; } if(v->versionversion != 1) { strncat(dst, "Version information not understood", len); return; } if(!v->present) { strncat(dst, "Version information not available", len); return; } strncat(dst, v->svnversion, len); if(v->clean == 0) { strncat(dst, "-unclean", len); } else if(v->clean == 2) { strncat(dst, "-suspect", len); } strncat(dst, " ", len); strncat(dst, v->buildtime, len); }