/***************************************************************************** * This file is part of iClassCipher. It is a reconstructon of the cipher engine * used in iClass, and RFID techology. * * The implementation is based on the work performed by * Flavio D. Garcia, Gerhard de Koning Gans, Roel Verdult and * Milosch Meriac in the paper "Dismantling IClass". * * Copyright (C) 2014 Martin Holst Swende * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as published * by the Free Software Foundation. * * This file is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with IClassCipher. If not, see . ****************************************************************************/ #include "cipher.h" #include "cipherutils.h" #include #include #include #include #include #include #include "fileutils.h" uint8_t keytable[] = { 0,0,0,0,0,0,0,0}; /** * Definition 1 (Cipher state). A cipher state of iClass s is an element of F 40/2 * consisting of the following four components: * 1. the left register l = (l 0 . . . l 7 ) ∈ F 8/2 ; * 2. the right register r = (r 0 . . . r 7 ) ∈ F 8/2 ; * 3. the top register t = (t 0 . . . t 15 ) ∈ F 16/2 . * 4. the bottom register b = (b 0 . . . b 7 ) ∈ F 8/2 . **/ typedef struct { uint8_t l; uint8_t r; uint8_t b; uint16_t t; } State; /** * Definition 2. The feedback function for the top register T : F 16/2 → F 2 * is defined as * T (x 0 x 1 . . . . . . x 15 ) = x 0 ⊕ x 1 ⊕ x 5 ⊕ x 7 ⊕ x 10 ⊕ x 11 ⊕ x 14 ⊕ x 15 . **/ bool T(State state) { bool x0 = state.t & 0x8000; bool x1 = state.t & 0x4000; bool x5 = state.t & 0x0400; bool x7 = state.t & 0x0100; bool x10 = state.t & 0x0020; bool x11 = state.t & 0x0010; bool x14 = state.t & 0x0002; bool x15 = state.t & 0x0001; return x0 ^ x1 ^ x5 ^ x7 ^ x10 ^ x11 ^ x14 ^ x15; } /** * Similarly, the feedback function for the bottom register B : F 8/2 → F 2 is defined as * B(x 0 x 1 . . . x 7 ) = x 1 ⊕ x 2 ⊕ x 3 ⊕ x 7 . **/ bool B(State state) { bool x1 = state.b & 0x40; bool x2 = state.b & 0x20; bool x3 = state.b & 0x10; bool x7 = state.b & 0x01; return x1 ^ x2 ^ x3 ^ x7; } /** * Definition 3 (Selection function). The selection function select : F 2 × F 2 × * F 8/2 → F 3/2 is defined as select(x, y, r) = z 0 z 1 z 2 where * z 0 = (r 0 ∧ r 2 ) ⊕ (r 1 ∧ r 3 ) ⊕ (r 2 ∨ r 4 ) * z 1 = (r 0 ∨ r 2 ) ⊕ (r 5 ∨ r 7 ) ⊕ r 1 ⊕ r 6 ⊕ x ⊕ y * z 2 = (r 3 ∧ r 5 ) ⊕ (r 4 ∧ r 6 ) ⊕ r 7 ⊕ x **/ uint8_t _select(bool x, bool y, uint8_t r) { bool r0 = r >> 7 & 0x1; bool r1 = r >> 6 & 0x1; bool r2 = r >> 5 & 0x1; bool r3 = r >> 4 & 0x1; bool r4 = r >> 3 & 0x1; bool r5 = r >> 2 & 0x1; bool r6 = r >> 1 & 0x1; bool r7 = r & 0x1; bool z0 = (r0 & r2) ^ (r1 & ~r3) ^ (r2 | r4); bool z1 = (r0 | r2) ^ ( r5 | r7) ^ r1 ^ r6 ^ x ^ y; bool z2 = (r3 & ~r5) ^ (r4 & r6 ) ^ r7 ^ x; // The three bitz z0.. z1 are packed into a uint8_t: // 00000ZZZ //Return value is a uint8_t uint8_t retval = 0; retval |= (z0 << 2) & 4; retval |= (z1 << 1) & 2; retval |= z2 & 1; // Return value 0 <= retval <= 7 return retval; } /** * Definition 4 (Successor state). Let s = l, r, t, b be a cipher state, k ∈ (F 82 ) 8 * be a key and y ∈ F 2 be the input bit. Then, the successor cipher state s ′ = * l ′ , r ′ , t ′ , b ′ is defined as * t ′ := (T (t) ⊕ r 0 ⊕ r 4 )t 0 . . . t 14 l ′ := (k [select(T (t),y,r)] ⊕ b ′ ) ⊞ l ⊞ r * b ′ := (B(b) ⊕ r 7 )b 0 . . . b 6 r ′ := (k [select(T (t),y,r)] ⊕ b ′ ) ⊞ l * * @param s - state * @param k - array containing 8 bytes **/ State successor(uint8_t* k, State s, bool y) { bool r0 = s.r >> 7 & 0x1; bool r4 = s.r >> 3 & 0x1; bool r7 = s.r & 0x1; State successor = {0,0,0,0}; successor.t = s.t >> 1; successor.t |= (T(s) ^ r0 ^ r4) << 15; successor.b = s.b >> 1; successor.b |= (B(s) ^ r7) << 7; bool Tt = T(s); successor.l = ((k[_select(Tt,y,s.r)] ^ successor.b) + s.l+s.r ) & 0xFF; successor.r = ((k[_select(Tt,y,s.r)] ^ successor.b) + s.l ) & 0xFF; return successor; } /** * We define the successor function suc which takes a key k ∈ (F 82 ) 8 , a state s and * an input y ∈ F 2 and outputs the successor state s ′ . We overload the function suc * to multiple bit input x ∈ F n 2 which we define as * @param k - array containing 8 bytes **/ State suc(uint8_t* k,State s, BitstreamIn *bitstream) { if(bitsLeft(bitstream) == 0) { return s; } bool lastbit = tailBit(bitstream); return successor(k,suc(k,s,bitstream), lastbit); } /** * Definition 5 (Output). Define the function output which takes an internal * state s =< l, r, t, b > and returns the bit r 5 . We also define the function output * on multiple bits input which takes a key k, a state s and an input x ∈ F n 2 as * output(k, s, ǫ) = ǫ * output(k, s, x 0 . . . x n ) = output(s) · output(k, s ′ , x 1 . . . x n ) * where s ′ = suc(k, s, x 0 ). **/ void output(uint8_t* k,State s, BitstreamIn* in, BitstreamOut* out) { if(bitsLeft(in) == 0) { return; } pushBit(out,(s.r >> 2) & 1); //Remove first bit uint8_t x0 = headBit(in); State ss = successor(k,s,x0); output(k,ss,in, out); } /** * Definition 6 (Initial state). Define the function init which takes as input a * key k ∈ (F 82 ) 8 and outputs the initial cipher state s =< l, r, t, b > **/ State init(uint8_t* k) { State s = { ((k[0] ^ 0x4c) + 0xEC) & 0xFF,// l ((k[0] ^ 0x4c) + 0x21) & 0xFF,// r 0x4c, // b 0xE012 // t }; return s; } void MAC(uint8_t* k, BitstreamIn input, BitstreamOut out) { uint8_t zeroes_32[] = {0,0,0,0}; BitstreamIn input_32_zeroes = {zeroes_32,sizeof(zeroes_32)*8,0}; State initState = suc(k,init(k),&input); output(k,initState,&input_32_zeroes,&out); } void doMAC(uint8_t *cc_nr_p, int length, uint8_t *div_key_p, uint8_t mac[4]) { uint8_t *cc_nr; uint8_t div_key[8]; cc_nr=(uint8_t*)malloc(length+1); memcpy(cc_nr,cc_nr_p,length); memcpy(div_key,div_key_p,8); reverse_arraybytes(cc_nr,length); BitstreamIn bitstream = {cc_nr,length * 8,0}; uint8_t dest []= {0,0,0,0,0,0,0,0}; BitstreamOut out = { dest, sizeof(dest)*8, 0 }; MAC(div_key,bitstream, out); //The output MAC must also be reversed reverse_arraybytes(dest, sizeof(dest)); memcpy(mac, dest, 4); //printf("Calculated_MAC\t%02x%02x%02x%02x\n", dest[0],dest[1],dest[2],dest[3]); free(cc_nr); return; } int testMAC() { prnlog("[+] Testing MAC calculation..."); //From the "dismantling.IClass" paper: uint8_t cc_nr[] = {0xFE,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0,0,0,0}; //From the paper uint8_t div_key[8] = {0xE0,0x33,0xCA,0x41,0x9A,0xEE,0x43,0xF9}; uint8_t correct_MAC[4] = {0x1d,0x49,0xC9,0xDA}; uint8_t calculated_mac[4] = {0}; doMAC(cc_nr, 12,div_key, calculated_mac); if(memcmp(calculated_mac, correct_MAC,4) == 0) { prnlog("[+] MAC calculation OK!"); }else { prnlog("[+] FAILED: MAC calculation failed:"); printarr(" Calculated_MAC", calculated_mac, 4); printarr(" Correct_MAC ", correct_MAC, 4); return 1; } return 0; }