//----------------------------------------------------------------------------- // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Miscellaneous routines for low frequency sampling. //----------------------------------------------------------------------------- #include "lfsampling.h" #include "proxmark3_arm.h" #include "BigBuf.h" #include "fpgaloader.h" #include "ticks.h" #include "dbprint.h" #include "util.h" #include "lfdemod.h" #include "string.h" // memset #include "appmain.h" // print stack /* Default LF config is set to: decimation = 1 (we keep 1 out of 1 samples) bits_per_sample = 8 averaging = YES divisor = 95 (125kHz) trigger_threshold = 0 samples_to_skip = 0 verbose = YES */ static sample_config config = { 1, 8, 1, LF_DIVISOR_125, 0, 0, 1} ; // Holds bit packed struct of samples. static BitstreamOut data = {0, 0, 0}; // internal struct to keep track of samples gathered static sampling_t samples = {0, 0, 0, 0}; void printLFConfig(void) { uint32_t d = config.divisor; DbpString(_CYAN_("LF Sampling config")); Dbprintf(" [q] divisor.............%d ( "_GREEN_("%d.%02d kHz")" )", d, 12000 / (d + 1), ((1200000 + (d + 1) / 2) / (d + 1)) - ((12000 / (d + 1)) * 100)); Dbprintf(" [b] bits per sample.....%d", config.bits_per_sample); Dbprintf(" [d] decimation..........%d", config.decimation); Dbprintf(" [a] averaging...........%s", (config.averaging) ? "Yes" : "No"); Dbprintf(" [t] trigger threshold...%d", config.trigger_threshold); Dbprintf(" [s] samples to skip.....%d ", config.samples_to_skip); DbpString(_CYAN_("LF Sampling Stack")); print_stack_usage(); } void printSamples(void) { DbpString(_CYAN_("LF Sampling memory usage")); // Dbprintf(" decimation counter...%d", samples.dec_counter); // Dbprintf(" sum..................%u", samples.sum); Dbprintf(" counter.............." _YELLOW_("%u"), samples.counter); Dbprintf(" total saved.........." _YELLOW_("%u"), samples.total_saved); print_stack_usage(); } /** * Called from the USB-handler to set the sampling configuration * The sampling config is used for standard reading and sniffing. * * Other functions may read samples and ignore the sampling config, * such as functions to read the UID from a prox tag or similar. * * Values set to '-1' implies no change * @brief setSamplingConfig * @param sc */ void setSamplingConfig(sample_config *sc) { // decimation (1-8) how many bits of adc sample value to save if (sc->decimation > 0 && sc->decimation < 8) config.decimation = sc->decimation; // bits per sample (1-8) if (sc->bits_per_sample > 0 && sc->bits_per_sample < 8) config.bits_per_sample = sc->bits_per_sample; // if (sc->averaging > -1) config.averaging = (sc->averaging > 0) ? 1 : 0; // Frequency divisor (19 - 255) if (sc->divisor > 18 && sc->divisor < 256) config.divisor = sc->divisor; // Start saving samples when adc value larger than trigger_threshold if (sc->trigger_threshold > -1) config.trigger_threshold = sc->trigger_threshold; // Skip n adc samples before saving if (sc->samples_to_skip > -1) config.samples_to_skip = sc->samples_to_skip; if (sc->verbose) printLFConfig(); } sample_config *getSamplingConfig(void) { return &config; } /** * @brief Pushes bit onto the stream * @param stream * @param bit */ static void pushBit(BitstreamOut *stream, uint8_t bit) { int bytepos = stream->position >> 3; // divide by 8 int bitpos = stream->position & 7; *(stream->buffer + bytepos) &= ~(1 << (7 - bitpos)); *(stream->buffer + bytepos) |= (bit > 0) << (7 - bitpos); stream->position++; stream->numbits++; } void initSampleBuffer(uint32_t *sample_size) { initSampleBufferEx(sample_size, false); } void initSampleBufferEx(uint32_t *sample_size, bool use_malloc) { if (sample_size == NULL) { Dbprintf("initSampleBufferEx, param NULL"); return; } BigBuf_free_keep_EM(); // We can't erase the buffer now, it would drastically delay the acquisition if (use_malloc) { if (*sample_size == 0) { *sample_size = BigBuf_max_traceLen(); data.buffer = BigBuf_get_addr(); } else { *sample_size = MIN(*sample_size, BigBuf_max_traceLen()); data.buffer = BigBuf_malloc(*sample_size); } } else { if (*sample_size == 0) { *sample_size = BigBuf_max_traceLen(); } else { *sample_size = MIN(*sample_size, BigBuf_max_traceLen()); } data.buffer = BigBuf_get_addr(); } // samples.dec_counter = 0; samples.sum = 0; samples.counter = *sample_size; samples.total_saved = 0; } uint32_t getSampleCounter(void) { return samples.total_saved; } void logSampleSimple(uint8_t sample) { logSample(sample, config.decimation, config.bits_per_sample, config.averaging); } void logSample(uint8_t sample, uint8_t decimation, uint8_t bits_per_sample, bool avg) { if (!data.buffer) return; // keep track of total gather samples regardless how many was discarded. if (samples.counter-- == 0) return; if (bits_per_sample == 0) bits_per_sample = 1; if (bits_per_sample > 8) bits_per_sample = 8; if (decimation == 0) decimation = 1; if (avg) { samples.sum += sample; } // check decimation if (decimation > 1) { samples.dec_counter++; if (samples.dec_counter < decimation) return; samples.dec_counter = 0; } // averaging if (avg && decimation > 1) { sample = samples.sum / decimation; samples.sum = 0; } // store the sample samples.total_saved++; if (bits_per_sample == 8) { data.buffer[samples.total_saved - 1] = sample; // add number of bits. data.numbits = samples.total_saved << 3; } else { pushBit(&data, sample & 0x80); if (bits_per_sample > 1) pushBit(&data, sample & 0x40); if (bits_per_sample > 2) pushBit(&data, sample & 0x20); if (bits_per_sample > 3) pushBit(&data, sample & 0x10); if (bits_per_sample > 4) pushBit(&data, sample & 0x08); if (bits_per_sample > 5) pushBit(&data, sample & 0x04); if (bits_per_sample > 6) pushBit(&data, sample & 0x02); } } /** * Setup the FPGA to listen for samples. This method downloads the FPGA bitstream * if not already loaded, sets divisor and starts up the antenna. * @param divisor : 1, 88> 255 or negative ==> 134.8 kHz * 0 or 95 ==> 125 kHz * **/ void LFSetupFPGAForADC(int divisor, bool reader_field) { FpgaDownloadAndGo(FPGA_BITSTREAM_LF); if ((divisor == 1) || (divisor < 0) || (divisor > 255)) FpgaSendCommand(FPGA_CMD_SET_DIVISOR, LF_DIVISOR_134); //~134kHz else if (divisor == 0) FpgaSendCommand(FPGA_CMD_SET_DIVISOR, LF_DIVISOR_125); //125kHz else FpgaSendCommand(FPGA_CMD_SET_DIVISOR, divisor); FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_READER | (reader_field ? FPGA_LF_ADC_READER_FIELD : 0)); // Connect the A/D to the peak-detected low-frequency path. SetAdcMuxFor(GPIO_MUXSEL_LOPKD); // Now set up the SSC to get the ADC samples that are now streaming at us. FpgaSetupSsc(FPGA_MAJOR_MODE_LF_READER); // start a 1.5ticks is 1us StartTicks(); // 50ms for the resonant antenna to settle. if (reader_field) { WaitMS(50); } else { WaitMS(1); } } /** * Does the sample acquisition. If threshold is specified, the actual sampling * is not commenced until the threshold has been reached. * This method implements decimation and quantization in order to * be able to provide longer sample traces. * Uses the following global settings: * @param decimation - how much should the signal be decimated. A decimation of N means we keep 1 in N samples, etc. * @param bits_per_sample - bits per sample. Max 8, min 1 bit per sample. * @param averaging If set to true, decimation will use averaging, so that if e.g. decimation is 3, the sample * value that will be used is the average value of the three samples. * @param trigger_threshold - a threshold. The sampling won't commence until this threshold has been reached. Set * to -1 to ignore threshold. * @param verbose - is true, dbprints the status, else no outputs * @return the number of bits occupied by the samples. */ uint32_t DoAcquisition(uint8_t decimation, uint8_t bits_per_sample, bool avg, int16_t trigger_threshold, bool verbose, uint32_t sample_size, uint32_t cancel_after, int32_t samples_to_skip) { initSampleBuffer(&sample_size); if (DBGLEVEL >= DBG_DEBUG) { printSamples(); } bool trigger_hit = false; uint32_t cancel_counter = 0; int16_t checked = 0; while (BUTTON_PRESS() == false) { // only every 4000th times, in order to save time when collecting samples. // interruptible only when logging not yet triggered if ((checked >= 4000) && trigger_hit == false) { if (data_available()) { checked = -1; break; } else { checked = 0; } } ++checked; WDT_HIT(); if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { LED_D_ON(); } if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { volatile uint8_t sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR; // Test point 8 (TP8) can be used to trigger oscilloscope LED_D_OFF(); // threshold either high or low values 128 = center 0. if trigger = 178 if (trigger_hit == false) { if ((trigger_threshold > 0) && (sample < (trigger_threshold + 128)) && (sample > (128 - trigger_threshold))) { if (cancel_after > 0) { cancel_counter++; if (cancel_after == cancel_counter) break; } continue; } } trigger_hit = true; if (samples_to_skip > 0) { samples_to_skip--; continue; } logSample(sample, decimation, bits_per_sample, avg); if (samples.total_saved >= sample_size) break; } } if (verbose) { if (checked == -1) { Dbprintf("lf sampling aborted"); } else if ((cancel_counter == cancel_after) && (cancel_after > 0)) { Dbprintf("lf sampling cancelled after %u", cancel_counter); } Dbprintf("Done, saved " _YELLOW_("%d")" out of " _YELLOW_("%d")" seen samples at " _YELLOW_("%d")" bits/sample", samples.total_saved, samples.counter, bits_per_sample); } // Ensure that DC offset removal and noise check is performed for any device-side processing removeSignalOffset(data.buffer, samples.total_saved); computeSignalProperties(data.buffer, samples.total_saved); return data.numbits; } /** * @brief Does sample acquisition, ignoring the config values set in the sample_config. * This method is typically used by tag-specific readers who just wants to read the samples * the normal way * @param trigger_threshold * @param verbose * @return number of bits sampled */ uint32_t DoAcquisition_default(int trigger_threshold, bool verbose) { return DoAcquisition(1, 8, 0, trigger_threshold, verbose, 0, 0, 0); } uint32_t DoAcquisition_config(bool verbose, uint32_t sample_size) { return DoAcquisition(config.decimation , config.bits_per_sample , config.averaging , config.trigger_threshold , verbose , sample_size , 0 // cancel_after , config.samples_to_skip); } uint32_t DoPartialAcquisition(int trigger_threshold, bool verbose, uint32_t sample_size, uint32_t cancel_after) { return DoAcquisition(config.decimation , config.bits_per_sample , config.averaging , trigger_threshold , verbose , sample_size , cancel_after , 0); // samples to skip } static uint32_t ReadLF(bool reader_field, bool verbose, uint32_t sample_size) { if (verbose) printLFConfig(); LFSetupFPGAForADC(config.divisor, reader_field); uint32_t ret = DoAcquisition_config(verbose, sample_size); StopTicks(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); return ret; } /** * Initializes the FPGA for reader-mode (field on), and acquires the samples. * @return number of bits sampled **/ uint32_t SampleLF(bool verbose, uint32_t sample_size) { BigBuf_Clear_ext(false); return ReadLF(true, verbose, sample_size); } /** * Initializes the FPGA for sniffer-mode (field off), and acquires the samples. * @return number of bits sampled **/ uint32_t SniffLF(bool verbose, uint32_t sample_size) { BigBuf_Clear_ext(false); return ReadLF(false, verbose, sample_size); } /** * acquisition of T55x7 LF signal. Similar to other LF, but adjusted with @marshmellows thresholds * the data is collected in BigBuf. **/ void doT55x7Acquisition(size_t sample_size) { #define T55xx_READ_UPPER_THRESHOLD 128+60 // 60 grph #define T55xx_READ_LOWER_THRESHOLD 128-60 // -60 grph #define T55xx_READ_TOL 5 uint8_t *dest = BigBuf_get_addr(); uint16_t bufsize = BigBuf_max_traceLen(); if (bufsize > sample_size) bufsize = sample_size; uint8_t lastSample = 0; uint16_t i = 0, skipCnt = 0; bool startFound = false; bool highFound = false; bool lowFound = false; uint16_t checker = 0; if (DBGLEVEL >= DBG_DEBUG) { Dbprintf("doT55x7Acquisition - after init"); print_stack_usage(); } while (skipCnt < 1000 && (i < bufsize)) { if (BUTTON_PRESS()) break; if (checker == 4000) { if (data_available()) break; else checker = 0; } else { ++checker; } WDT_HIT(); if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) { LED_D_ON(); } if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { volatile uint8_t sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR; LED_D_OFF(); // skip until the first high sample above threshold if (!startFound && sample > T55xx_READ_UPPER_THRESHOLD) { highFound = true; } else if (!highFound) { skipCnt++; continue; } // skip until the first low sample below threshold if (!startFound && sample < T55xx_READ_LOWER_THRESHOLD) { lastSample = sample; lowFound = true; } else if (!lowFound) { skipCnt++; continue; } // skip until first high samples begin to change if (startFound || sample > T55xx_READ_LOWER_THRESHOLD + T55xx_READ_TOL) { // if just found start - recover last sample if (!startFound) { dest[i++] = lastSample; startFound = true; } // collect samples dest[i++] = sample; } } } } /** * acquisition of Cotag LF signal. Similart to other LF, since the Cotag has such long datarate RF/384 * and is Manchester?, we directly gather the manchester data into bigbuff **/ #define COTAG_T1 384 #define COTAG_T2 (COTAG_T1 >> 1) #define COTAG_ONE_THRESHOLD 127+5 #define COTAG_ZERO_THRESHOLD 127-5 #ifndef COTAG_BITS #define COTAG_BITS 264 #endif void doCotagAcquisition(void) { uint16_t bufsize = BigBuf_max_traceLen(); uint8_t *dest = BigBuf_malloc(bufsize); dest[0] = 0; bool firsthigh = false, firstlow = false; uint16_t i = 0, noise_counter = 0; while ((i < bufsize - 1) && (noise_counter < COTAG_T1 << 1)) { if (BUTTON_PRESS()) break; WDT_HIT(); if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { volatile uint8_t sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR; // find first peak if (firsthigh == false) { if (sample < COTAG_ONE_THRESHOLD) { noise_counter++; continue; } noise_counter = 0; firsthigh = true; } if (firstlow == false) { if (sample > COTAG_ZERO_THRESHOLD) { noise_counter++; continue; } noise_counter = 0; firstlow = true; } ++i; if (sample > COTAG_ONE_THRESHOLD) { dest[i] = 255; } else if (sample < COTAG_ZERO_THRESHOLD) { dest[i] = 0; } else { dest[i] = dest[i - 1]; } } } // Ensure that DC offset removal and noise check is performed for any device-side processing removeSignalOffset(dest, i); computeSignalProperties(dest, i); } uint16_t doCotagAcquisitionManchester(uint8_t *dest, uint16_t destlen) { if (dest == NULL) return 0; dest[0] = 0; bool firsthigh = false, firstlow = false; uint8_t curr = 0, prev = 0; uint16_t i = 0; uint16_t period = 0; while ((i < destlen) && BUTTON_PRESS() == false) { WDT_HIT(); if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) { volatile uint8_t sample = (uint8_t)AT91C_BASE_SSC->SSC_RHR; // find first peak if (firsthigh == false) { if (sample < COTAG_ONE_THRESHOLD) { continue; } firsthigh = true; } if (firstlow == false) { if (sample > COTAG_ZERO_THRESHOLD) { continue; } firstlow = true; } // set sample 255, 0, or previous if (sample > COTAG_ONE_THRESHOLD) { prev = curr; curr = 1; } else if (sample < COTAG_ZERO_THRESHOLD) { prev = curr; curr = 0; } else { curr = prev; } // full T1 periods, if (period > 0) { --period; continue; } dest[i] = curr; ++i; period = COTAG_T1; } } return i; }