//----------------------------------------------------------------------------- // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Main code for the bootloader //----------------------------------------------------------------------------- #include #include "usb_cdc.h" struct common_area common_area __attribute__((section(".commonarea"))); unsigned int start_addr, end_addr, bootrom_unlocked; extern char _bootrom_start, _bootrom_end, _flash_start, _flash_end; extern uint32_t _osimage_entry; static int reply_old(uint64_t cmd, uint64_t arg0, uint64_t arg1, uint64_t arg2, void *data, size_t len) { PacketResponseOLD txcmd; for (size_t i = 0; i < sizeof(PacketResponseOLD); i++) ((uint8_t *)&txcmd)[i] = 0x00; // Compose the outgoing command frame txcmd.cmd = cmd; txcmd.arg[0] = arg0; txcmd.arg[1] = arg1; txcmd.arg[2] = arg2; // Add the (optional) content to the frame, with a maximum size of PM3_CMD_DATA_SIZE if (data && len) { len = MIN(len, PM3_CMD_DATA_SIZE); for (size_t i = 0; i < len; i++) { txcmd.d.asBytes[i] = ((uint8_t *)data)[i]; } } int result = PM3_EUNDEF; // Send frame and make sure all bytes are transmitted result = usb_write((uint8_t *)&txcmd, sizeof(PacketResponseOLD)); return result; } void DbpString(char *str) { uint8_t len = 0; while (str[len] != 0x00) len++; reply_old(CMD_DEBUG_PRINT_STRING, len, 0, 0, (uint8_t *)str, len); } static void ConfigClocks(void) { // we are using a 16 MHz crystal as the basis for everything // slow clock runs at 32kHz typical regardless of crystal // enable system clock and USB clock AT91C_BASE_PMC->PMC_SCER |= AT91C_PMC_PCK | AT91C_PMC_UDP; // enable the clock to the following peripherals AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_PIOA) | (1 << AT91C_ID_ADC) | (1 << AT91C_ID_SPI) | (1 << AT91C_ID_SSC) | (1 << AT91C_ID_PWMC) | (1 << AT91C_ID_UDP); // worst case scenario, with MAINCK = 16MHz xtal, startup delay is 1.4ms // if SLCK slow clock runs at its worst case (max) frequency of 42kHz // max startup delay = (1.4ms*42k)/8 = 7.356 so round up to 8 // enable main oscillator and set startup delay AT91C_BASE_PMC->PMC_MOR = AT91C_CKGR_MOSCEN | PMC_MAIN_OSC_STARTUP_DELAY(8); // wait for main oscillator to stabilize while (!(AT91C_BASE_PMC->PMC_SR & AT91C_PMC_MOSCS)) {}; // PLL output clock frequency in range 80 - 160 MHz needs CKGR_PLL = 00 // PLL output clock frequency in range 150 - 180 MHz needs CKGR_PLL = 10 // PLL output is MAINCK * multiplier / divisor = 16MHz * 12 / 2 = 96MHz AT91C_BASE_PMC->PMC_PLLR = PMC_PLL_DIVISOR(2) | //PMC_PLL_COUNT_BEFORE_LOCK(0x10) | PMC_PLL_COUNT_BEFORE_LOCK(0x3F) | PMC_PLL_FREQUENCY_RANGE(0) | PMC_PLL_MULTIPLIER(12) | PMC_PLL_USB_DIVISOR(1); // wait for PLL to lock while (!(AT91C_BASE_PMC->PMC_SR & AT91C_PMC_LOCK)) {}; // we want a master clock (MCK) to be PLL clock / 2 = 96MHz / 2 = 48MHz // datasheet recommends that this register is programmed in two operations // when changing to PLL, program the prescaler first then the source AT91C_BASE_PMC->PMC_MCKR = AT91C_PMC_PRES_CLK_2; // wait for main clock ready signal while (!(AT91C_BASE_PMC->PMC_SR & AT91C_PMC_MCKRDY)) {}; // set the source to PLL AT91C_BASE_PMC->PMC_MCKR = AT91C_PMC_PRES_CLK_2 | AT91C_PMC_CSS_PLL_CLK; // wait for main clock ready signal while (!(AT91C_BASE_PMC->PMC_SR & AT91C_PMC_MCKRDY)) {}; } static void Fatal(void) { for (;;) {}; } void UsbPacketReceived(uint8_t *packet, int len) { int i, dont_ack = 0; PacketCommandOLD *c = (PacketCommandOLD *)packet; //if ( len != sizeof(PacketCommandOLD`)) Fatal(); uint32_t arg0 = (uint32_t)c->arg[0]; switch (c->cmd) { case CMD_DEVICE_INFO: { dont_ack = 1; arg0 = DEVICE_INFO_FLAG_BOOTROM_PRESENT | DEVICE_INFO_FLAG_CURRENT_MODE_BOOTROM | DEVICE_INFO_FLAG_UNDERSTANDS_START_FLASH | DEVICE_INFO_FLAG_UNDERSTANDS_CHIP_INFO | DEVICE_INFO_FLAG_UNDERSTANDS_VERSION; if (common_area.flags.osimage_present) arg0 |= DEVICE_INFO_FLAG_OSIMAGE_PRESENT; reply_old(CMD_DEVICE_INFO, arg0, 1, 2, 0, 0); } break; case CMD_CHIP_INFO: { dont_ack = 1; arg0 = *(AT91C_DBGU_CIDR); reply_old(CMD_CHIP_INFO, arg0, 0, 0, 0, 0); } break; case CMD_BL_VERSION: { dont_ack = 1; arg0 = BL_VERSION_1_0_0; reply_old(CMD_BL_VERSION, arg0, 0, 0, 0, 0); } break; case CMD_SETUP_WRITE: { /* The temporary write buffer of the embedded flash controller is mapped to the * whole memory region, only the last 8 bits are decoded. */ volatile uint32_t *p = (volatile uint32_t *)&_flash_start; for (i = 0; i < 12; i++) p[i + arg0] = c->d.asDwords[i]; } break; case CMD_FINISH_WRITE: { uint32_t *flash_mem = (uint32_t *)(&_flash_start); for (int j = 0; j < 2; j++) { uint32_t flash_address = arg0 + (0x100 * j); AT91PS_EFC efc_bank = AT91C_BASE_EFC0; int offset = 0; uint32_t page_n = (flash_address - ((uint32_t)flash_mem)) / AT91C_IFLASH_PAGE_SIZE; if (page_n >= AT91C_IFLASH_NB_OF_PAGES / 2) { page_n -= AT91C_IFLASH_NB_OF_PAGES / 2; efc_bank = AT91C_BASE_EFC1; // We need to offset the writes or it will not fill the correct bank write buffer. offset = (AT91C_IFLASH_NB_OF_PAGES / 2) * AT91C_IFLASH_PAGE_SIZE / sizeof(uint32_t); } for (i = 0 + (64 * j); i < 64 + (64 * j); i++) { flash_mem[offset + i] = c->d.asDwords[i]; } /* Check that the address that we are supposed to write to is within our allowed region */ if (((flash_address + AT91C_IFLASH_PAGE_SIZE - 1) >= end_addr) || (flash_address < start_addr)) { /* Disallow write */ dont_ack = 1; reply_old(CMD_NACK, 0, 0, 0, 0, 0); } else { efc_bank->EFC_FCR = MC_FLASH_COMMAND_KEY | MC_FLASH_COMMAND_PAGEN(page_n) | AT91C_MC_FCMD_START_PROG; } // Wait until flashing of page finishes uint32_t sr; while (!((sr = efc_bank->EFC_FSR) & AT91C_MC_FRDY)); if (sr & (AT91C_MC_LOCKE | AT91C_MC_PROGE)) { dont_ack = 1; reply_old(CMD_NACK, sr, 0, 0, 0, 0); } } } break; case CMD_HARDWARE_RESET: { usb_disable(); AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; } break; case CMD_START_FLASH: { if (c->arg[2] == START_FLASH_MAGIC) bootrom_unlocked = 1; else bootrom_unlocked = 0; int prot_start = (int)&_bootrom_start; int prot_end = (int)&_bootrom_end; int allow_start = (int)&_flash_start; int allow_end = (int)&_flash_end; int cmd_start = c->arg[0]; int cmd_end = c->arg[1]; /* Only allow command if the bootrom is unlocked, or the parameters are outside of the protected * bootrom area. In any case they must be within the flash area. */ if ((bootrom_unlocked || ((cmd_start >= prot_end) || (cmd_end < prot_start))) && (cmd_start >= allow_start) && (cmd_end <= allow_end)) { start_addr = cmd_start; end_addr = cmd_end; } else { start_addr = end_addr = 0; dont_ack = 1; reply_old(CMD_NACK, 0, 0, 0, 0, 0); } } break; default: { Fatal(); } break; } if (!dont_ack) reply_old(CMD_ACK, arg0, 0, 0, 0, 0); } static void flash_mode(void) { start_addr = 0; end_addr = 0; bootrom_unlocked = 0; uint8_t rx[sizeof(PacketCommandOLD)]; common_area.command = COMMON_AREA_COMMAND_NONE; if (!common_area.flags.button_pressed && BUTTON_PRESS()) common_area.flags.button_pressed = 1; usb_enable(); // wait for reset to be complete? for (volatile size_t i = 0; i < 0x100000; i++) {}; for (;;) { WDT_HIT(); // Check if there is a usb packet available if (usb_poll_validate_length()) { if (usb_read(rx, sizeof(rx))) { UsbPacketReceived(rx, sizeof(rx)); } } if (common_area.flags.button_pressed && !BUTTON_PRESS()) { common_area.flags.button_pressed = 0; } if (!common_area.flags.button_pressed && BUTTON_PRESS()) { /* Perform a reset to leave flash mode */ common_area.flags.button_pressed = 1; usb_disable(); LED_B_ON(); AT91C_BASE_RSTC->RSTC_RCR = RST_CONTROL_KEY | AT91C_RSTC_PROCRST; for (;;) {}; } } } void BootROM(void) { //------------ // First set up all the I/O pins; GPIOs configured directly, other ones // just need to be assigned to the appropriate peripheral. // Kill all the pullups, especially the one on USB D+; leave them for // the unused pins, though. AT91C_BASE_PIOA->PIO_PPUDR = GPIO_USB_PU | GPIO_LED_A | GPIO_LED_B | GPIO_LED_C | GPIO_LED_D | GPIO_FPGA_DIN | GPIO_FPGA_DOUT | GPIO_FPGA_CCLK | GPIO_FPGA_NINIT | GPIO_FPGA_NPROGRAM | GPIO_FPGA_DONE | GPIO_MUXSEL_HIPKD | GPIO_MUXSEL_HIRAW | GPIO_MUXSEL_LOPKD | GPIO_MUXSEL_LORAW | GPIO_RELAY | GPIO_NVDD_ON; // (and add GPIO_FPGA_ON) // These pins are outputs AT91C_BASE_PIOA->PIO_OER = GPIO_LED_A | GPIO_LED_B | GPIO_LED_C | GPIO_LED_D | GPIO_RELAY | GPIO_NVDD_ON; // PIO controls the following pins AT91C_BASE_PIOA->PIO_PER = GPIO_USB_PU | GPIO_LED_A | GPIO_LED_B | GPIO_LED_C | GPIO_LED_D; // USB_D_PLUS_PULLUP_OFF(); usb_disable(); LED_D_OFF(); LED_C_ON(); LED_B_OFF(); LED_A_OFF(); // Set the first 256kb memory flashspeed AT91C_BASE_EFC0->EFC_FMR = AT91C_MC_FWS_1FWS | MC_FLASH_MODE_MASTER_CLK_IN_MHZ(48); // 9 = 256, 10+ is 512kb uint8_t id = (*(AT91C_DBGU_CIDR) & 0xF00) >> 8; if (id > 9) AT91C_BASE_EFC1->EFC_FMR = AT91C_MC_FWS_1FWS | MC_FLASH_MODE_MASTER_CLK_IN_MHZ(48); // Initialize all system clocks ConfigClocks(); LED_A_ON(); int common_area_present = 0; switch (AT91C_BASE_RSTC->RSTC_RSR & AT91C_RSTC_RSTTYP) { case AT91C_RSTC_RSTTYP_WATCHDOG: case AT91C_RSTC_RSTTYP_SOFTWARE: case AT91C_RSTC_RSTTYP_USER: /* In these cases the common_area in RAM should be ok, retain it if it's there */ if (common_area.magic == COMMON_AREA_MAGIC && common_area.version == 1) common_area_present = 1; break; default: /* Otherwise, initialize it from scratch */ break; } if (!common_area_present) { /* Common area not ok, initialize it */ int i; /* Makeshift memset, no need to drag util.c into this */ for (i = 0; i < sizeof(common_area); i++) ((char *)&common_area)[i] = 0; common_area.magic = COMMON_AREA_MAGIC; common_area.version = 1; } common_area.flags.bootrom_present = 1; if ((common_area.command == COMMON_AREA_COMMAND_ENTER_FLASH_MODE) || (!common_area.flags.button_pressed && BUTTON_PRESS()) || (_osimage_entry == 0xffffffffU)) { flash_mode(); } else { // clear button status, even if button still pressed common_area.flags.button_pressed = 0; // jump to Flash address of the osimage entry point (LSBit set for thumb mode) __asm("bx %0\n" : : "r"(((int)&_osimage_entry) | 0x1)); } }