/* * Portable interface to the CPU cycle counter * * Copyright (C) 2006-2015, ARM Limited, All Rights Reserved * SPDX-License-Identifier: GPL-2.0 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * This file is part of mbed TLS (https://tls.mbed.org) */ #if !defined(MBEDTLS_CONFIG_FILE) #include "mbedtls/config.h" #else #include MBEDTLS_CONFIG_FILE #endif #if defined(MBEDTLS_SELF_TEST) && defined(MBEDTLS_PLATFORM_C) #include "mbedtls/platform.h" #else #include #define mbedtls_printf printf #endif #if defined(MBEDTLS_TIMING_C) #include "mbedtls/timing.h" #if !defined(MBEDTLS_TIMING_ALT) #if !defined(unix) && !defined(__unix__) && !defined(__unix) && \ !defined(__APPLE__) && !defined(_WIN32) && !defined(__QNXNTO__) && \ !defined(__HAIKU__) #error "This module only works on Unix and Windows, see MBEDTLS_TIMING_C in config.h" #endif #ifndef asm #define asm __asm #endif #if defined(_WIN32) && !defined(EFIX64) && !defined(EFI32) #include #include struct _hr_time { LARGE_INTEGER start; }; #else #include #include #include #include #include struct _hr_time { struct timeval start; }; #endif /* _WIN32 && !EFIX64 && !EFI32 */ #if !defined(HAVE_HARDCLOCK) && defined(MBEDTLS_HAVE_ASM) && \ ( defined(_MSC_VER) && defined(_M_IX86) ) || defined(__WATCOMC__) #define HAVE_HARDCLOCK unsigned long mbedtls_timing_hardclock(void) { unsigned long tsc; __asm rdtsc __asm mov [tsc], eax return (tsc); } #endif /* !HAVE_HARDCLOCK && MBEDTLS_HAVE_ASM && ( _MSC_VER && _M_IX86 ) || __WATCOMC__ */ /* some versions of mingw-64 have 32-bit longs even on x84_64 */ #if !defined(HAVE_HARDCLOCK) && defined(MBEDTLS_HAVE_ASM) && \ defined(__GNUC__) && ( defined(__i386__) || ( \ ( defined(__amd64__) || defined( __x86_64__) ) && __SIZEOF_LONG__ == 4 ) ) #define HAVE_HARDCLOCK unsigned long mbedtls_timing_hardclock(void) { unsigned long lo, hi; asm volatile("rdtsc" : "=a"(lo), "=d"(hi)); return (lo); } #endif /* !HAVE_HARDCLOCK && MBEDTLS_HAVE_ASM && __GNUC__ && __i386__ */ #if !defined(HAVE_HARDCLOCK) && defined(MBEDTLS_HAVE_ASM) && \ defined(__GNUC__) && ( defined(__amd64__) || defined(__x86_64__) ) #define HAVE_HARDCLOCK unsigned long mbedtls_timing_hardclock(void) { unsigned long lo, hi; asm volatile("rdtsc" : "=a"(lo), "=d"(hi)); return (lo | (hi << 32)); } #endif /* !HAVE_HARDCLOCK && MBEDTLS_HAVE_ASM && __GNUC__ && ( __amd64__ || __x86_64__ ) */ #if !defined(HAVE_HARDCLOCK) && defined(MBEDTLS_HAVE_ASM) && \ defined(__GNUC__) && ( defined(__powerpc__) || defined(__ppc__) ) #define HAVE_HARDCLOCK unsigned long mbedtls_timing_hardclock(void) { unsigned long tbl, tbu0, tbu1; do { asm volatile("mftbu %0" : "=r"(tbu0)); asm volatile("mftb %0" : "=r"(tbl)); asm volatile("mftbu %0" : "=r"(tbu1)); } while (tbu0 != tbu1); return (tbl); } #endif /* !HAVE_HARDCLOCK && MBEDTLS_HAVE_ASM && __GNUC__ && ( __powerpc__ || __ppc__ ) */ #if !defined(HAVE_HARDCLOCK) && defined(MBEDTLS_HAVE_ASM) && \ defined(__GNUC__) && defined(__sparc64__) #if defined(__OpenBSD__) #warning OpenBSD does not allow access to tick register using software version instead #else #define HAVE_HARDCLOCK unsigned long mbedtls_timing_hardclock(void) { unsigned long tick; asm volatile("rdpr %%tick, %0;" : "=&r"(tick)); return (tick); } #endif /* __OpenBSD__ */ #endif /* !HAVE_HARDCLOCK && MBEDTLS_HAVE_ASM && __GNUC__ && __sparc64__ */ #if !defined(HAVE_HARDCLOCK) && defined(MBEDTLS_HAVE_ASM) && \ defined(__GNUC__) && defined(__sparc__) && !defined(__sparc64__) #define HAVE_HARDCLOCK unsigned long mbedtls_timing_hardclock(void) { unsigned long tick; asm volatile(".byte 0x83, 0x41, 0x00, 0x00"); asm volatile("mov %%g1, %0" : "=r"(tick)); return (tick); } #endif /* !HAVE_HARDCLOCK && MBEDTLS_HAVE_ASM && __GNUC__ && __sparc__ && !__sparc64__ */ #if !defined(HAVE_HARDCLOCK) && defined(MBEDTLS_HAVE_ASM) && \ defined(__GNUC__) && defined(__alpha__) #define HAVE_HARDCLOCK unsigned long mbedtls_timing_hardclock(void) { unsigned long cc; asm volatile("rpcc %0" : "=r"(cc)); return (cc & 0xFFFFFFFF); } #endif /* !HAVE_HARDCLOCK && MBEDTLS_HAVE_ASM && __GNUC__ && __alpha__ */ #if !defined(HAVE_HARDCLOCK) && defined(MBEDTLS_HAVE_ASM) && \ defined(__GNUC__) && defined(__ia64__) #define HAVE_HARDCLOCK unsigned long mbedtls_timing_hardclock(void) { unsigned long itc; asm volatile("mov %0 = ar.itc" : "=r"(itc)); return (itc); } #endif /* !HAVE_HARDCLOCK && MBEDTLS_HAVE_ASM && __GNUC__ && __ia64__ */ #if !defined(HAVE_HARDCLOCK) && defined(_MSC_VER) && \ !defined(EFIX64) && !defined(EFI32) #define HAVE_HARDCLOCK unsigned long mbedtls_timing_hardclock(void) { LARGE_INTEGER offset; QueryPerformanceCounter(&offset); return ((unsigned long)(offset.QuadPart)); } #endif /* !HAVE_HARDCLOCK && _MSC_VER && !EFIX64 && !EFI32 */ #if !defined(HAVE_HARDCLOCK) #define HAVE_HARDCLOCK static int hardclock_init = 0; static struct timeval tv_init; unsigned long mbedtls_timing_hardclock(void) { struct timeval tv_cur; if (hardclock_init == 0) { #ifdef __MINGW32__ mingw_gettimeofday(&tv_init, NULL); #else gettimeofday(&tv_init, NULL); #endif hardclock_init = 1; } #ifdef __MINGW32__ mingw_gettimeofday(&tv_cur, NULL); #else gettimeofday(&tv_cur, NULL); #endif return ((tv_cur.tv_sec - tv_init.tv_sec) * 1000000 + (tv_cur.tv_usec - tv_init.tv_usec)); } #endif /* !HAVE_HARDCLOCK */ volatile int mbedtls_timing_alarmed = 0; #if defined(_WIN32) && !defined(EFIX64) && !defined(EFI32) unsigned long mbedtls_timing_get_timer(struct mbedtls_timing_hr_time *val, int reset) { struct _hr_time *t = (struct _hr_time *) val; if (reset) { QueryPerformanceCounter(&t->start); return (0); } else { unsigned long delta; LARGE_INTEGER now, hfreq; QueryPerformanceCounter(&now); QueryPerformanceFrequency(&hfreq); delta = (unsigned long)((now.QuadPart - t->start.QuadPart) * 1000ul / hfreq.QuadPart); return (delta); } } /* It's OK to use a global because alarm() is supposed to be global anyway */ static DWORD alarmMs; static DWORD WINAPI TimerProc(LPVOID TimerContext) { ((void) TimerContext); Sleep(alarmMs); mbedtls_timing_alarmed = 1; return (TRUE); } void mbedtls_set_alarm(int seconds) { DWORD ThreadId; if (seconds == 0) { /* No need to create a thread for this simple case. * Also, this shorcut is more reliable at least on MinGW32 */ mbedtls_timing_alarmed = 1; return; } mbedtls_timing_alarmed = 0; alarmMs = seconds * 1000; CloseHandle(CreateThread(NULL, 0, TimerProc, NULL, 0, &ThreadId)); } #else /* _WIN32 && !EFIX64 && !EFI32 */ unsigned long mbedtls_timing_get_timer(struct mbedtls_timing_hr_time *val, int reset) { struct _hr_time *t = (struct _hr_time *) val; if (reset) { gettimeofday(&t->start, NULL); return (0); } else { unsigned long delta; struct timeval now; gettimeofday(&now, NULL); delta = (now.tv_sec - t->start.tv_sec) * 1000ul + (now.tv_usec - t->start.tv_usec) / 1000; return (delta); } } static void sighandler(int signum) { mbedtls_timing_alarmed = 1; signal(signum, sighandler); } void mbedtls_set_alarm(int seconds) { mbedtls_timing_alarmed = 0; signal(SIGALRM, sighandler); alarm(seconds); if (seconds == 0) { /* alarm(0) cancelled any previous pending alarm, but the handler won't fire, so raise the flag straight away. */ mbedtls_timing_alarmed = 1; } } #endif /* _WIN32 && !EFIX64 && !EFI32 */ /* * Set delays to watch */ void mbedtls_timing_set_delay(void *data, uint32_t int_ms, uint32_t fin_ms) { mbedtls_timing_delay_context *ctx = (mbedtls_timing_delay_context *) data; ctx->int_ms = int_ms; ctx->fin_ms = fin_ms; if (fin_ms != 0) (void) mbedtls_timing_get_timer(&ctx->timer, 1); } /* * Get number of delays expired */ int mbedtls_timing_get_delay(void *data) { mbedtls_timing_delay_context *ctx = (mbedtls_timing_delay_context *) data; unsigned long elapsed_ms; if (ctx->fin_ms == 0) return (-1); elapsed_ms = mbedtls_timing_get_timer(&ctx->timer, 0); if (elapsed_ms >= ctx->fin_ms) return (2); if (elapsed_ms >= ctx->int_ms) return (1); return (0); } #endif /* !MBEDTLS_TIMING_ALT */ #if defined(MBEDTLS_SELF_TEST) /* * Busy-waits for the given number of milliseconds. * Used for testing mbedtls_timing_hardclock. */ static void busy_msleep(unsigned long msec) { struct mbedtls_timing_hr_time hires; unsigned long i = 0; /* for busy-waiting */ volatile unsigned long j; /* to prevent optimisation */ (void) mbedtls_timing_get_timer(&hires, 1); while (mbedtls_timing_get_timer(&hires, 0) < msec) i++; j = i; (void) j; } #define FAIL do \ { \ if( verbose != 0 ) \ { \ mbedtls_printf( "failed at line %d\n", __LINE__ ); \ mbedtls_printf( " cycles=%lu ratio=%lu millisecs=%lu secs=%lu hardfail=%d a=%lu b=%lu\n", \ cycles, ratio, millisecs, secs, hardfail, \ (unsigned long) a, (unsigned long) b ); \ mbedtls_printf( " elapsed(hires)=%lu elapsed(ctx)=%lu status(ctx)=%d\n", \ mbedtls_timing_get_timer( &hires, 0 ), \ mbedtls_timing_get_timer( &ctx.timer, 0 ), \ mbedtls_timing_get_delay( &ctx ) ); \ } \ return( 1 ); \ } while( 0 ) /* * Checkup routine * * Warning: this is work in progress, some tests may not be reliable enough * yet! False positives may happen. */ int mbedtls_timing_self_test(int verbose) { unsigned long cycles = 0, ratio = 0; unsigned long millisecs = 0, secs = 0; int hardfail = 0; struct mbedtls_timing_hr_time hires; uint32_t a = 0, b = 0; mbedtls_timing_delay_context ctx; if (verbose != 0) mbedtls_printf(" TIMING tests note: will take some time!\n"); if (verbose != 0) mbedtls_printf(" TIMING test #1 (set_alarm / get_timer): "); { secs = 1; (void) mbedtls_timing_get_timer(&hires, 1); mbedtls_set_alarm((int) secs); while (!mbedtls_timing_alarmed) ; millisecs = mbedtls_timing_get_timer(&hires, 0); /* For some reason on Windows it looks like alarm has an extra delay * (maybe related to creating a new thread). Allow some room here. */ if (millisecs < 800 * secs || millisecs > 1200 * secs + 300) FAIL; } if (verbose != 0) mbedtls_printf("passed\n"); if (verbose != 0) mbedtls_printf(" TIMING test #2 (set/get_delay ): "); { a = 800; b = 400; mbedtls_timing_set_delay(&ctx, a, a + b); /* T = 0 */ busy_msleep(a - a / 4); /* T = a - a/4 */ if (mbedtls_timing_get_delay(&ctx) != 0) FAIL; busy_msleep(a / 4 + b / 4); /* T = a + b/4 */ if (mbedtls_timing_get_delay(&ctx) != 1) FAIL; busy_msleep(b); /* T = a + b + b/4 */ if (mbedtls_timing_get_delay(&ctx) != 2) FAIL; } mbedtls_timing_set_delay(&ctx, 0, 0); busy_msleep(200); if (mbedtls_timing_get_delay(&ctx) != -1) FAIL; if (verbose != 0) mbedtls_printf("passed\n"); if (verbose != 0) mbedtls_printf(" TIMING test #3 (hardclock / get_timer): "); /* * Allow one failure for possible counter wrapping. * On a 4Ghz 32-bit machine the cycle counter wraps about once per second; * since the whole test is about 10ms, it shouldn't happen twice in a row. */ hard_test: if (hardfail > 1) { if (verbose != 0) mbedtls_printf("failed (ignored)\n"); goto hard_test_done; } /* Get a reference ratio cycles/ms */ millisecs = 1; cycles = mbedtls_timing_hardclock(); busy_msleep(millisecs); cycles = mbedtls_timing_hardclock() - cycles; ratio = cycles / millisecs; /* Check that the ratio is mostly constant */ for (millisecs = 2; millisecs <= 4; millisecs++) { cycles = mbedtls_timing_hardclock(); busy_msleep(millisecs); cycles = mbedtls_timing_hardclock() - cycles; /* Allow variation up to 20% */ if (cycles / millisecs < ratio - ratio / 5 || cycles / millisecs > ratio + ratio / 5) { hardfail++; goto hard_test; } } if (verbose != 0) mbedtls_printf("passed\n"); hard_test_done: if (verbose != 0) mbedtls_printf("\n"); return (0); } #endif /* MBEDTLS_SELF_TEST */ #endif /* MBEDTLS_TIMING_C */