//----------------------------------------------------------------------------- // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // See LICENSE.txt for the text of the license. //----------------------------------------------------------------------------- // LEGIC RF simulation code //----------------------------------------------------------------------------- #include "legicrf.h" #include "crc.h" /* legic crc-4 */ #include "legic_prng.h" /* legic PRNG impl */ #include "legic.h" /* legic_card_select_t struct */ #include "proxmark3_arm.h" #include "cmd.h" #include "BigBuf.h" #include "fpgaloader.h" #include "ticks.h" #include "dbprint.h" #include "util.h" #include "string.h" #include "protocols.h" static uint8_t *legic_mem; /* card memory, used for read, write */ static legic_card_select_t card;/* metadata of currently selected card */ static crc_t legic_crc; //----------------------------------------------------------------------------- // Frame timing and pseudorandom number generator // // The Prng is forwarded every 100us (TAG_BIT_PERIOD), except when the reader is // transmitting. In that case the prng has to be forwarded every bit transmitted: // - 60us for a 0 (RWD_TIME_0) // - 100us for a 1 (RWD_TIME_1) // // The data dependent timing makes writing comprehensible code significantly // harder. The current approach forwards the prng data based if there is data on // air and time based, using GET_TICKS, during computational and wait periodes. // // To not have the necessity to calculate/guess execution time dependent timeouts // tx_frame and rx_frame use a shared timestamp to coordinate tx and rx timeslots. //----------------------------------------------------------------------------- static uint32_t last_frame_end; /* ts of last bit of previews rx or tx frame */ #define RWD_TIME_PAUSE 30 /* 20us */ #define RWD_TIME_1 150 /* READER_TIME_PAUSE 20us off + 80us on = 100us */ #define RWD_TIME_0 90 /* READER_TIME_PAUSE 20us off + 40us on = 60us */ #define RWD_FRAME_WAIT 330 /* 220us from TAG frame end to READER frame start */ #define TAG_FRAME_WAIT 495 /* 330us from READER frame end to TAG frame start */ #define TAG_BIT_PERIOD 150 /* 100us */ #define TAG_WRITE_TIMEOUT 60 /* 40 * 100us (write should take at most 3.6ms) */ #define LEGIC_CARD_MEMSIZE 1024 /* The largest Legic Prime card is 1k */ #define WRITE_LOWERLIMIT 4 /* UID and MCC are not writable */ static uint32_t input_threshold = 8; /* heuristically determined, lower values */ /* lead to detecting false ack during write */ //----------------------------------------------------------------------------- // I/O interface abstraction (FPGA -> ARM) //----------------------------------------------------------------------------- static uint16_t rx_frame_from_fpga(void) { for (;;) { WDT_HIT(); // wait for frame be become available in rx holding register if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { return AT91C_BASE_SSC->SSC_RHR; } } return 0; } //----------------------------------------------------------------------------- // Demodulation (Reader) //----------------------------------------------------------------------------- // Returns a demodulated bit // // The FPGA running xcorrelation samples the subcarrier at ~13.56 MHz. The mode // was initially designed to receive BSPK/2-PSK. Hance, it reports an I/Q pair // every 4.7us (8 bits i and 8 bits q). // // The subcarrier amplitude can be calculated using Pythagoras sqrt(i^2 + q^2). // To reduce CPU time the amplitude is approximated by using linear functions: // am = MAX(ABS(i),ABS(q)) + 1/2*MIN(ABS(i),ABSq)) // // The bit time is 99.1us (21 I/Q pairs). The receiver skips the first 5 samples // and averages the next (most stable) 8 samples. The final 8 samples are dropped // also. // // The demodulated should be aligned to the bit period by the caller. This is // done in rx_bit and rx_ack. // // Note: The demodulator would be drifting (18.9us * 5 != 100us), rx_frame // has a delay loop that aligns rx_bit calls to the TAG tx timeslots. // // Note: inlining this function would fail with -Os static bool rx_bit(void) { int32_t sum_cq = 0; int32_t sum_ci = 0; // skip first 5 I/Q pairs for (size_t i = 0; i < 5; ++i) { (void)rx_frame_from_fpga(); } // sample next 8 I/Q pairs for (uint8_t i = 0; i < 8; ++i) { uint16_t iq = rx_frame_from_fpga(); int8_t ci = (int8_t)(iq >> 8); int8_t cq = (int8_t)(iq & 0xff); sum_ci += ci; sum_cq += cq; } // calculate power int32_t power = (MAX(ABS(sum_ci), ABS(sum_cq)) + (MIN(ABS(sum_ci), ABS(sum_cq)) >> 1)); // compare average (power / 8) to threshold return ((power >> 3) > input_threshold); } //----------------------------------------------------------------------------- // Modulation // // I've tried to modulate the Legic specific pause-puls using ssc and the default // ssc clock of 105.4 kHz (bit periode of 9.4us) - previous commit. However, // the timing was not precise enough. By increasing the ssc clock this could // be circumvented, but the adventage over bitbang would be little. //----------------------------------------------------------------------------- static void tx_bit(bool bit) { // insert pause HIGH(GPIO_SSC_DOUT); last_frame_end += RWD_TIME_PAUSE; while (GET_TICKS < last_frame_end) { }; // return to carrier on, wait for bit periode to end LOW(GPIO_SSC_DOUT); last_frame_end += (bit ? RWD_TIME_1 : RWD_TIME_0) - RWD_TIME_PAUSE; while (GET_TICKS < last_frame_end) { }; } //----------------------------------------------------------------------------- // Frame Handling (Reader) // // The LEGIC RF protocol from card to reader does not include explicit frame // start/stop information or length information. The reader must know beforehand // how many bits it wants to receive. // Notably: a card sending a stream of 0-bits is indistinguishable from no card // present. //----------------------------------------------------------------------------- static void tx_frame(uint32_t frame, uint8_t len) { FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_MODE_SEND_FULL_MOD); // wait for next tx timeslot last_frame_end += RWD_FRAME_WAIT; while (GET_TICKS < last_frame_end) { }; // backup ts for trace log uint32_t last_frame_start = last_frame_end; // transmit frame, MSB first for (uint8_t i = 0; i < len; ++i) { bool bit = (frame >> i) & 0x01; tx_bit(bit ^ legic_prng_get_bit()); legic_prng_forward(1); }; // add pause to mark end of the frame HIGH(GPIO_SSC_DOUT); last_frame_end += RWD_TIME_PAUSE; while (GET_TICKS < last_frame_end) { }; LOW(GPIO_SSC_DOUT); // log uint8_t cmdbytes[] = {len, BYTEx(frame, 0), BYTEx(frame, 1), BYTEx(frame, 2)}; LogTrace(cmdbytes, sizeof(cmdbytes), last_frame_start, last_frame_end, NULL, true); } static uint32_t rx_frame(uint8_t len) { FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_212_KHZ | FPGA_HF_READER_MODE_RECEIVE_IQ); // hold sampling until card is expected to respond last_frame_end += TAG_FRAME_WAIT; while (GET_TICKS < last_frame_end) { }; // backup ts for trace log uint32_t last_frame_start = last_frame_end; uint32_t frame = 0; for (uint8_t i = 0; i < len; ++i) { frame |= (rx_bit() ^ legic_prng_get_bit()) << i; legic_prng_forward(1); // rx_bit runs only 95us, resync to TAG_BIT_PERIOD last_frame_end += TAG_BIT_PERIOD; while (GET_TICKS < last_frame_end) { }; } // log uint8_t cmdbytes[] = {len, BYTEx(frame, 0), BYTEx(frame, 1)}; LogTrace(cmdbytes, sizeof(cmdbytes), last_frame_start, last_frame_end, NULL, false); return frame; } static bool rx_ack(void) { // change fpga into rx mode FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_212_KHZ | FPGA_HF_READER_MODE_RECEIVE_IQ); // hold sampling until card is expected to respond last_frame_end += TAG_FRAME_WAIT; while (GET_TICKS < last_frame_end) { }; // backup ts for trace log uint32_t last_frame_start = last_frame_end; uint32_t ack = 0; for (uint8_t i = 0; i < TAG_WRITE_TIMEOUT; ++i) { // sample bit ack = rx_bit(); legic_prng_forward(1); // rx_bit runs only 95us, resync to TAG_BIT_PERIOD last_frame_end += TAG_BIT_PERIOD; while (GET_TICKS < last_frame_end) { }; // check if it was an ACK if (ack) { break; } } // log uint8_t cmdbytes[] = {1, BYTEx(ack, 0)}; LogTrace(cmdbytes, sizeof(cmdbytes), last_frame_start, last_frame_end, NULL, false); return ack; } //----------------------------------------------------------------------------- // Legic Reader //----------------------------------------------------------------------------- static int init_card(uint8_t cardtype, legic_card_select_t *p_card) { p_card->tagtype = cardtype; switch (p_card->tagtype) { case 0x0d: p_card->cmdsize = 6; p_card->addrsize = 5; p_card->cardsize = 22; break; case 0x1d: p_card->cmdsize = 9; p_card->addrsize = 8; p_card->cardsize = 256; break; case 0x3d: p_card->cmdsize = 11; p_card->addrsize = 10; p_card->cardsize = 1024; break; default: p_card->cmdsize = 0; p_card->addrsize = 0; p_card->cardsize = 0; return PM3_ESOFT; } return PM3_SUCCESS; } static void init_reader(void) { // configure FPGA FpgaDownloadAndGo(FPGA_BITSTREAM_HF); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER | FPGA_HF_READER_SUBCARRIER_212_KHZ | FPGA_HF_READER_MODE_RECEIVE_IQ); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); LED_A_ON(); // configure SSC with defaults FpgaSetupSsc(FPGA_MAJOR_MODE_HF_READER); // re-claim GPIO_SSC_DOUT as GPIO and enable output AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; LOW(GPIO_SSC_DOUT); // reserve a cardmem, meaning we can use the tracelog function in bigbuff easier. legic_mem = BigBuf_get_EM_addr(); if (legic_mem) { memset(legic_mem, 0x00, LEGIC_CARD_MEMSIZE); } // start trace clear_trace(); set_tracing(true); // init crc calculator crc_init(&legic_crc, 4, 0x19 >> 1, 0x05, 0); // start us timer StartTicks(); } // Setup reader to card connection // // The setup consists of a three way handshake: // - Transmit initialisation vector 7 bits // - Receive card type 6 bits // - Transmit Acknowledge 6 bits static uint32_t setup_phase(uint8_t iv) { // init coordination timestamp last_frame_end = GET_TICKS; // Switch on carrier and let the card charge for 5ms. last_frame_end += 7500; while (GET_TICKS < last_frame_end) { }; legic_prng_init(0); tx_frame(iv, 7); // configure prng legic_prng_init(iv); legic_prng_forward(2); // receive card type int32_t card_type = rx_frame(6); legic_prng_forward(3); // send obsfuscated acknowledgment frame switch (card_type) { case 0x0D: tx_frame(0x19, 6); // MIM22 | READCMD = 0x18 | 0x01 break; case 0x1D: case 0x3D: tx_frame(0x39, 6); // MIM256 | READCMD = 0x38 | 0x01 break; } return card_type; } static uint8_t calc_crc4(uint16_t cmd, uint8_t cmd_sz, uint8_t value) { crc_clear(&legic_crc); crc_update(&legic_crc, (value << cmd_sz) | cmd, 8 + cmd_sz); return crc_finish(&legic_crc); } static int16_t read_byte(uint16_t index, uint8_t cmd_sz) { uint16_t cmd = (index << 1) | LEGIC_READ; // read one byte LED_B_ON(); legic_prng_forward(2); tx_frame(cmd, cmd_sz); legic_prng_forward(2); uint32_t frame = rx_frame(12); LED_B_OFF(); // split frame into data and crc uint8_t byte = BYTEx(frame, 0); uint8_t crc = BYTEx(frame, 1); // check received against calculated crc uint8_t calc_crc = calc_crc4(cmd, cmd_sz, byte); if (calc_crc != crc) { Dbprintf("!!! crc mismatch: %x != %x !!!", calc_crc, crc); return -1; } legic_prng_forward(1); return byte; } // Transmit write command, wait until (3.6ms) the tag sends back an unencrypted // ACK ('1' bit) and forward the prng time based. static bool write_byte(uint16_t index, uint8_t byte, uint8_t addr_sz) { uint32_t cmd = index << 1 | LEGIC_WRITE; // prepare command uint8_t crc = calc_crc4(cmd, addr_sz + 1, byte); // calculate crc cmd |= byte << (addr_sz + 1); // append value cmd |= (crc & 0xF) << (addr_sz + 1 + 8); // and crc // send write command LED_C_ON(); legic_prng_forward(2); tx_frame(cmd, addr_sz + 1 + 8 + 4); // cmd_sz = addr_sz + cmd + data + crc legic_prng_forward(3); LED_C_OFF(); // wait for ack return rx_ack(); } //----------------------------------------------------------------------------- // Command Line Interface // // Only this functions are public / called from appmain.c //----------------------------------------------------------------------------- legic_card_select_t *getLegicCardInfo(void) { return &card; } void LegicRfInfo(void) { // configure ARM and FPGA init_reader(); // establish shared secret and detect card type uint8_t card_type = setup_phase(0x01); if (init_card(card_type, &card) != PM3_SUCCESS) { reply_ng(CMD_HF_LEGIC_INFO, PM3_EINIT, NULL, 0); goto OUT; } // read UID for (uint8_t i = 0; i < sizeof(card.uid); ++i) { int16_t byte = read_byte(i, card.cmdsize); if (byte == -1) { reply_ng(CMD_HF_LEGIC_INFO, PM3_EFAILED, NULL, 0); goto OUT; } card.uid[i] = byte & 0xFF; } // read MCC and check against UID int16_t mcc = read_byte(4, card.cmdsize); int16_t calc_mcc = CRC8Legic(card.uid, 4); if (mcc != calc_mcc) { reply_ng(CMD_HF_LEGIC_INFO, PM3_ESOFT, NULL, 0); goto OUT; } // OK reply_ng(CMD_HF_LEGIC_INFO, PM3_SUCCESS, (uint8_t *)&card, sizeof(legic_card_select_t)); OUT: switch_off(); StopTicks(); } int LegicRfReaderEx(uint16_t offset, uint16_t len, uint8_t iv) { int res = PM3_SUCCESS; // configure ARM and FPGA init_reader(); // establish shared secret and detect card type uint8_t card_type = setup_phase(iv); if (init_card(card_type, &card) != PM3_SUCCESS) { res = PM3_ESOFT; goto OUT; } // do not read beyond card memory if (len + offset > card.cardsize) { len = card.cardsize - offset; } for (uint16_t i = 0; i < len; ++i) { int16_t byte = read_byte(offset + i, card.cmdsize); if (byte == -1) { res = PM3_EOVFLOW; goto OUT; } legic_mem[i] = byte; if (i < 4) { card.uid[i] = byte; } } OUT: switch_off(); StopTicks(); return res; } void LegicRfReader(uint16_t offset, uint16_t len, uint8_t iv) { // configure ARM and FPGA init_reader(); // establish shared secret and detect card type uint8_t card_type = setup_phase(iv); if (init_card(card_type, &card) != PM3_SUCCESS) { reply_ng(CMD_HF_LEGIC_READER, PM3_EINIT, NULL, 0); goto OUT; } // do not read beyond card memory if (len + offset > card.cardsize) { len = card.cardsize - offset; } for (uint16_t i = 0; i < len; ++i) { int16_t byte = read_byte(offset + i, card.cmdsize); if (byte == -1) { reply_ng(CMD_HF_LEGIC_READER, PM3_EFAILED, NULL, 0); goto OUT; } legic_mem[i] = byte; if (i < 4) { card.uid[i] = byte; } } // OK reply_ng(CMD_HF_LEGIC_READER, PM3_SUCCESS, (uint8_t *)&len, sizeof(len)); OUT: switch_off(); StopTicks(); } void LegicRfWriter(uint16_t offset, uint16_t len, uint8_t iv, const uint8_t *data) { // configure ARM and FPGA init_reader(); // uid is not writeable if (offset <= WRITE_LOWERLIMIT) { reply_ng(CMD_HF_LEGIC_WRITER, PM3_EINVARG, NULL, 0); goto OUT; } // establish shared secret and detect card type uint8_t card_type = setup_phase(iv); if (init_card(card_type, &card) != PM3_SUCCESS) { reply_ng(CMD_HF_LEGIC_WRITER, PM3_EINIT, NULL, 0); goto OUT; } // do not write beyond card memory if (len + offset > card.cardsize) { len = card.cardsize - offset; } // write in reverse order, only then is DCF (decremental field) writable while (len-- > 0 && BUTTON_PRESS() == false) { if (write_byte(len + offset, data[len], card.addrsize) == false) { Dbprintf("operation failed | %02X | %02X | %02X", len + offset, len, data[len]); reply_ng(CMD_HF_LEGIC_WRITER, PM3_EFAILED, NULL, 0); goto OUT; } } // OK reply_ng(CMD_HF_LEGIC_WRITER, PM3_SUCCESS, (uint8_t *)&len, sizeof(len)); OUT: switch_off(); StopTicks(); } void LegicRfSetThreshold(uint32_t threshold) { input_threshold = threshold; }