// //----------------------------------------------------------------------------- // Copyright (C) Proxmark3 contributors. See AUTHORS.md for details. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // // See LICENSE.txt for the text of the license. //----------------------------------------------------------------------------- // The main i2c code, for communications with smart card module //----------------------------------------------------------------------------- #include "i2c.h" #include "proxmark3_arm.h" #include "cmd.h" #include "BigBuf.h" #include "ticks.h" #include "dbprint.h" #include "util.h" #include "string.h" #define GPIO_RST AT91C_PIO_PA1 #define GPIO_SCL AT91C_PIO_PA5 #define GPIO_SDA AT91C_PIO_PA7 #define SCL_H HIGH(GPIO_SCL) #define SCL_L LOW(GPIO_SCL) #define SDA_H HIGH(GPIO_SDA) #define SDA_L LOW(GPIO_SDA) #define SCL_read ((AT91C_BASE_PIOA->PIO_PDSR & GPIO_SCL) == GPIO_SCL) #define SDA_read ((AT91C_BASE_PIOA->PIO_PDSR & GPIO_SDA) == GPIO_SDA) #define I2C_ERROR "I2C_WaitAck Error" // Direct use the loop to delay. 6 instructions loop, Masterclock 48MHz, // delay=1 is about 200kbps // timer. // I2CSpinDelayClk(4) = 12.31us // I2CSpinDelayClk(1) = 3.07us static volatile uint32_t c; static void __attribute__((optimize("O0"))) I2CSpinDelayClk(uint16_t delay) { for (c = delay * 2; c; c--) {}; } #define I2C_DELAY_1CLK I2CSpinDelayClk(1) #define I2C_DELAY_2CLK I2CSpinDelayClk(2) #define I2C_DELAY_XCLK(x) I2CSpinDelayClk((x)) // try i2c bus recovery at 100kHz = 5us high, 5us low void I2C_recovery(void) { DbpString("Performing i2c bus recovery"); // reset I2C SDA_H; SCL_H; //9nth cycle acts as NACK for (int i = 0; i < 10; i++) { SCL_H; WaitUS(5); SCL_L; WaitUS(5); } //a STOP signal (SDA from low to high while CLK is high) SDA_L; WaitUS(5); SCL_H; WaitUS(2); SDA_H; WaitUS(2); bool isok = (SCL_read && SDA_read); if (!SDA_read) DbpString("I2C bus recovery error: SDA still LOW"); if (!SCL_read) DbpString("I2C bus recovery error: SCL still LOW"); if (isok) DbpString("I2C bus recovery complete"); } void I2C_init(bool has_ticks) { // Configure reset pin, close up pull up, push-pull output, default high AT91C_BASE_PIOA->PIO_PPUDR = GPIO_RST; AT91C_BASE_PIOA->PIO_MDDR = GPIO_RST; // Configure I2C pin, open up, open leakage AT91C_BASE_PIOA->PIO_PPUER |= (GPIO_SCL | GPIO_SDA); AT91C_BASE_PIOA->PIO_MDER |= (GPIO_SCL | GPIO_SDA); // default three lines all pull up AT91C_BASE_PIOA->PIO_SODR |= (GPIO_SCL | GPIO_SDA | GPIO_RST); AT91C_BASE_PIOA->PIO_OER |= (GPIO_SCL | GPIO_SDA | GPIO_RST); AT91C_BASE_PIOA->PIO_PER |= (GPIO_SCL | GPIO_SDA | GPIO_RST); if (has_ticks) { WaitMS(2); } bool isok = (SCL_read && SDA_read); if (isok == false) I2C_recovery(); } // set the reset state void I2C_SetResetStatus(uint8_t LineRST, uint8_t LineSCK, uint8_t LineSDA) { if (LineRST) HIGH(GPIO_RST); else LOW(GPIO_RST); if (LineSCK) HIGH(GPIO_SCL); else LOW(GPIO_SCL); if (LineSDA) HIGH(GPIO_SDA); else LOW(GPIO_SDA); } // Reset the SIM_Adapter, then enter the main program // Note: the SIM_Adapter will not enter the main program after power up. Please run this function before use SIM_Adapter. void I2C_Reset_EnterMainProgram(void) { StartTicks(); I2C_init(true); I2C_SetResetStatus(0, 0, 0); WaitMS(30); I2C_SetResetStatus(1, 0, 0); WaitMS(30); I2C_SetResetStatus(1, 1, 1); WaitMS(10); } // Reset the SIM_Adapter, then enter the bootloader program // Reserve for firmware update. void I2C_Reset_EnterBootloader(void) { StartTicks(); I2C_init(true); I2C_SetResetStatus(0, 1, 1); WaitMS(100); I2C_SetResetStatus(1, 1, 1); WaitMS(10); } // Wait for the clock to go High. static bool WaitSCL_H_delay(uint32_t delay) { while (delay--) { if (SCL_read) { return true; } I2C_DELAY_1CLK; } return false; } // 5000 * 3.07us = 15350 us = 15.35 ms // 15000 * 3.07us = 46050 us = 46.05 ms static bool WaitSCL_H(void) { return WaitSCL_H_delay(5000); } static bool WaitSCL_L_delay(uint32_t delay) { while (delay--) { if (SCL_read == false) { return true; } I2C_DELAY_1CLK; } return false; } // 5000 * 3.07us = 15350us. 15.35ms // 15000 * 3.07us = 46050us. 46.05ms static bool WaitSCL_L(void) { return WaitSCL_L_delay(5000); } // Wait max 1800ms or until SCL goes LOW. // It timeout reading response from card // Which ever comes first static bool WaitSCL_L_timeout(void) { volatile uint32_t delay = 1200; while (delay--) { // exit on SCL LOW if (SCL_read == false) return true; WaitMS(1); } return (delay == 0); } static bool I2C_Start(void) { I2C_DELAY_2CLK; I2C_DELAY_2CLK; SDA_H; I2C_DELAY_1CLK; SCL_H; if (WaitSCL_H() == false) { return false; } I2C_DELAY_2CLK; if (SCL_read == false) { return false; } if (SDA_read == false) { return false; } SDA_L; I2C_DELAY_2CLK; return true; } static bool I2C_WaitForSim(uint32_t wait) { // wait for data from card if (WaitSCL_L_timeout() == false) { return false; } // 8051 speaks with smart card. // 1000*50*3.07 = 153.5ms // 1000*110*3.07 = 337.7ms (337700) // 4 560 000 * 3.07 = 13999,2ms (13999200) // 1byte transfer == 1ms with max frame being 256bytes // fct WaitSCL_H_delay uses a I2C_DELAY_1CLK in the loop with "wait" as number of iterations. // I2C_DELAY_1CLK == I2CSpinDelayClk(1) = 3.07us return WaitSCL_H_delay(wait); } // send i2c STOP static void I2C_Stop(void) { SCL_L; I2C_DELAY_2CLK; SDA_L; I2C_DELAY_2CLK; SCL_H; I2C_DELAY_2CLK; if (WaitSCL_H() == false) { return; } SDA_H; I2C_DELAY_2CLK; I2C_DELAY_2CLK; I2C_DELAY_2CLK; I2C_DELAY_2CLK; } // Send i2c ACK static void I2C_Ack(void) { SCL_L; I2C_DELAY_2CLK; SDA_L; I2C_DELAY_2CLK; SCL_H; I2C_DELAY_2CLK; if (WaitSCL_H() == false) { return; } SCL_L; I2C_DELAY_2CLK; } // Send i2c NACK static void I2C_NoAck(void) { SCL_L; I2C_DELAY_2CLK; SDA_H; I2C_DELAY_2CLK; SCL_H; I2C_DELAY_2CLK; if (WaitSCL_H() == false) { return; } SCL_L; I2C_DELAY_2CLK; } static bool I2C_WaitAck(void) { SCL_L; I2C_DELAY_1CLK; SDA_H; I2C_DELAY_1CLK; SCL_H; if (WaitSCL_H() == false) { return false; } I2C_DELAY_2CLK; I2C_DELAY_2CLK; if (SDA_read) { SCL_L; return false; } SCL_L; return true; } static void I2C_SendByte(uint8_t data) { uint8_t bits = 8; while (bits--) { SCL_L; I2C_DELAY_1CLK; if (data & 0x80) SDA_H; else SDA_L; data <<= 1; I2C_DELAY_1CLK; SCL_H; if (WaitSCL_H() == false) { return; } I2C_DELAY_2CLK; } SCL_L; } static int16_t I2C_ReadByte(void) { uint8_t bits = 8, b = 0; SDA_H; while (bits--) { b <<= 1; SCL_L; if (WaitSCL_L() == false) { return -2; } I2C_DELAY_1CLK; SCL_H; if (WaitSCL_H() == false) { return -1; } I2C_DELAY_1CLK; if (SDA_read) { b |= 0x01; } } SCL_L; return b; } // Sends one byte (command to be written, SlaveDevice address) bool I2C_WriteCmd(uint8_t device_cmd, uint8_t device_address) { bool _break = true; do { if (I2C_Start() == false) { return false; } I2C_SendByte(device_address & 0xFE); if (I2C_WaitAck() == false) { break; } I2C_SendByte(device_cmd); if (I2C_WaitAck() == false) { break; } _break = false; } while (false); I2C_Stop(); if (_break) { if (g_dbglevel > 3) DbpString(I2C_ERROR); return false; } return true; } // Sends 1 byte data (data to be written, command to be written , SlaveDevice address) bool I2C_WriteByte(uint8_t data, uint8_t device_cmd, uint8_t device_address) { bool _break = true; do { if (I2C_Start() == false) { return false; } I2C_SendByte(device_address & 0xFE); if (I2C_WaitAck() == false) { break; } I2C_SendByte(device_cmd); if (I2C_WaitAck() == false) { break; } I2C_SendByte(data); if (I2C_WaitAck() == false) { break; } _break = false; } while (false); I2C_Stop(); if (_break) { if (g_dbglevel > 3) DbpString(I2C_ERROR); return false; } return true; } // Sends array of data (array, length, command to be written , SlaveDevice address) // len = uint16 because we need to write up to 256 bytes bool I2C_BufferWrite(const uint8_t *data, uint16_t len, uint8_t device_cmd, uint8_t device_address) { bool _break = true; do { if (I2C_Start() == false) { return false; } I2C_SendByte(device_address & 0xFE); if (I2C_WaitAck() == false) { break; } I2C_SendByte(device_cmd); if (I2C_WaitAck() == false) { break; } while (len) { I2C_SendByte(*data); if (I2C_WaitAck() == false) break; len--; data++; } if (len == 0) { _break = false; } } while (false); I2C_Stop(); if (_break) { if (g_dbglevel > 3) DbpString(I2C_ERROR); return false; } return true; } // read one array of data (Data array, Readout length, command to be written , SlaveDevice address ). // len = uint16 because we need to read up to 256bytes int16_t I2C_BufferRead(uint8_t *data, uint16_t len, uint8_t device_cmd, uint8_t device_address) { // sanity check if (data == NULL || len == 0) { return 0; } // uint8_t *pd = data; // extra wait 500us (514us measured) // 200us (xx measured) WaitUS(600); bool _break = true; do { if (I2C_Start() == false) { return 0; } // 0xB0 / 0xC0 == i2c write I2C_SendByte(device_address & 0xFE); if (I2C_WaitAck() == false) { break; } I2C_SendByte(device_cmd); if (I2C_WaitAck() == false) { break; } // 0xB1 / 0xC1 == i2c read I2C_Start(); I2C_SendByte(device_address | 1); if (I2C_WaitAck() == false) { break; } _break = false; } while (false); if (_break) { I2C_Stop(); if (g_dbglevel > 3) DbpString(I2C_ERROR); return 0; } uint16_t readcount = 0; uint16_t recv_len = 0; while (len) { int16_t tmp = I2C_ReadByte(); if (tmp < 0) { return tmp; } *data = (uint8_t)tmp & 0xFF; len--; // Starting firmware v4 the length is encoded on the first two bytes. switch (readcount) { case 0: { // Length (MSB) recv_len = (*data) << 8; break; } case 1: { // Length (LSB) recv_len += *data; // Adjust len if needed if (len > recv_len) { len = recv_len; } break; } default: { // Data byte received data++; break; } } readcount++; // acknowledgements. After last byte send NACK. if (len == 0) { I2C_NoAck(); } else { I2C_Ack(); } } I2C_Stop(); // Dbprintf("rec len... %u readcount... %u", recv_len, readcount); // Dbhexdump(readcount, pd, false); if (readcount < 2) { return 0; } // return bytecount - bytes encoding length return readcount - 2; } int16_t I2C_ReadFW(uint8_t *data, uint8_t len, uint8_t msb, uint8_t lsb, uint8_t device_address) { //START, 0xB0, 0x00, 0x00, START, 0xB1, xx, yy, zz, ......, STOP bool _break = true; uint8_t readcount = 0; // sending do { if (I2C_Start() == false) { return 0; } // 0xB0 / 0xC0 i2c write I2C_SendByte(device_address & 0xFE); if (I2C_WaitAck() == false) break; I2C_SendByte(msb); if (I2C_WaitAck() == false) { break; } I2C_SendByte(lsb); if (I2C_WaitAck() == false) { break; } // 0xB1 / 0xC1 i2c read I2C_Start(); I2C_SendByte(device_address | 1); if (I2C_WaitAck() == false) { break; } _break = false; } while (false); if (_break) { I2C_Stop(); if (g_dbglevel > 3) DbpString(I2C_ERROR); return 0; } // reading while (len) { int16_t tmp = I2C_ReadByte(); if (tmp < 0) { return tmp; } *data = (uint8_t)tmp & 0xFF; data++; readcount++; len--; // acknowledgements. After last byte send NACK. if (len == 0) I2C_NoAck(); else I2C_Ack(); } I2C_Stop(); return readcount; } bool I2C_WriteFW(const uint8_t *data, uint8_t len, uint8_t msb, uint8_t lsb, uint8_t device_address) { //START, 0xB0, 0x00, 0x00, xx, yy, zz, ......, STOP bool _break = true; do { if (I2C_Start() == false) { return false; } // 0xB0 == i2c write I2C_SendByte(device_address & 0xFE); if (I2C_WaitAck() == false) { break; } I2C_SendByte(msb); if (I2C_WaitAck() == false) { break; } I2C_SendByte(lsb); if (I2C_WaitAck() == false) { break; } while (len) { I2C_SendByte(*data); if (I2C_WaitAck() == false) { break; } len--; data++; } if (len == 0) { _break = false; } } while (false); I2C_Stop(); if (_break) { if (g_dbglevel > 3) DbpString(I2C_ERROR); return false; } return true; } void I2C_print_status(void) { DbpString(_CYAN_("Smart card module (ISO 7816)")); uint8_t major, minor; if (I2C_get_version(&major, &minor) == PM3_SUCCESS) { Dbprintf(" version................. " _YELLOW_("v%x.%02d"), major, minor); if (major < 4) { DbpString(" " _RED_("Outdated firmware.") " Please upgrade to v4.x or above."); } } else { DbpString(" version................. " _RED_("FAILED")); } } int I2C_get_version(uint8_t *major, uint8_t *minor) { uint8_t resp[] = {0, 0, 0, 0}; I2C_Reset_EnterMainProgram(); uint8_t len = I2C_BufferRead(resp, sizeof(resp), I2C_DEVICE_CMD_GETVERSION, I2C_DEVICE_ADDRESS_MAIN); if (len > 1) { *major = resp[0]; *minor = resp[1]; return PM3_SUCCESS; } return PM3_EDEVNOTSUPP; } // Will read response from smart card module, retries 3 times to get the data. bool sc_rx_bytes(uint8_t *dest, uint16_t *destlen, uint32_t wait) { uint8_t i = 10; int16_t len = 0; while (i--) { I2C_WaitForSim(wait); len = I2C_BufferRead(dest, *destlen, I2C_DEVICE_CMD_READ, I2C_DEVICE_ADDRESS_MAIN); LED_C_ON(); if (len > 1) { break; } else if (len == 1) { continue; } else if (len <= 0) { return false; } } if (len < 1) { return false; } *destlen = len; return true; } bool GetATR(smart_card_atr_t *card_ptr, bool verbose) { if (card_ptr == NULL) { return false; } card_ptr->atr_len = 0; memset(card_ptr->atr, 0, sizeof(card_ptr->atr)); // Send ATR // start [C0 01] stop start C1 len aa bb cc stop] I2C_WriteCmd(I2C_DEVICE_CMD_GENERATE_ATR, I2C_DEVICE_ADDRESS_MAIN); // wait for sim card to answer. // 1byte = 1ms , max frame 256bytes. Should wait 256ms atleast just in case. if (I2C_WaitForSim(SIM_WAIT_DELAY) == false) { return false; } // read bytes from module uint16_t len = sizeof(card_ptr->atr); if (sc_rx_bytes(card_ptr->atr, &len, SIM_WAIT_DELAY) == false) { return false; } if (len > sizeof(card_ptr->atr)) { len = sizeof(card_ptr->atr); } uint8_t pos_td = 1; if ((card_ptr->atr[1] & 0x10) == 0x10) pos_td++; if ((card_ptr->atr[1] & 0x20) == 0x20) pos_td++; if ((card_ptr->atr[1] & 0x40) == 0x40) pos_td++; // T0 indicate presence T=0 vs T=1. T=1 has checksum TCK if ((card_ptr->atr[1] & 0x80) == 0x80) { pos_td++; // 1 == T1 , presence of checksum TCK if ((card_ptr->atr[pos_td] & 0x01) == 0x01) { uint8_t chksum = 0; // xor property. will be zero when xored with chksum. for (uint16_t i = 1; i < len; ++i) chksum ^= card_ptr->atr[i]; if (chksum) { if (g_dbglevel > 2) DbpString("Wrong ATR checksum"); } } } card_ptr->atr_len = (uint8_t)(len & 0xff); if (verbose) { LogTrace(card_ptr->atr, card_ptr->atr_len, 0, 0, NULL, false); } return true; } void SmartCardAtr(void) { LED_D_ON(); set_tracing(true); I2C_Reset_EnterMainProgram(); smart_card_atr_t card; if (GetATR(&card, true)) { reply_ng(CMD_SMART_ATR, PM3_SUCCESS, (uint8_t *)&card, sizeof(smart_card_atr_t)); } else { reply_ng(CMD_SMART_ATR, PM3_ETIMEOUT, NULL, 0); } set_tracing(false); LEDsoff(); // StopTicks(); } void SmartCardRaw(const smart_card_raw_t *p) { LED_D_ON(); uint16_t len = 0; uint8_t *resp = BigBuf_malloc(ISO7816_MAX_FRAME); // check if alloacted... smartcard_command_t flags = p->flags; if ((flags & SC_CLEARLOG) == SC_CLEARLOG) clear_trace(); if ((flags & SC_LOG) == SC_LOG) set_tracing(true); else set_tracing(false); if ((flags & SC_CONNECT) == SC_CONNECT) { I2C_Reset_EnterMainProgram(); if ((flags & SC_SELECT) == SC_SELECT) { smart_card_atr_t card; bool gotATR = GetATR(&card, true); //reply_old(CMD_ACK, gotATR, sizeof(smart_card_atr_t), 0, &card, sizeof(smart_card_atr_t)); if (gotATR == false) { reply_ng(CMD_SMART_RAW, PM3_ESOFT, NULL, 0); goto OUT; } } } if (((flags & SC_RAW) == SC_RAW) || ((flags & SC_RAW_T0) == SC_RAW_T0)) { uint32_t wait = SIM_WAIT_DELAY; if ((flags & SC_WAIT) == SC_WAIT) { wait = (uint32_t)((p->wait_delay * 1000) / 3.07); } LogTrace(p->data, p->len, 0, 0, NULL, true); bool res = I2C_BufferWrite( p->data, p->len, (((flags & SC_RAW_T0) == SC_RAW_T0) ? I2C_DEVICE_CMD_SEND_T0 : I2C_DEVICE_CMD_SEND), I2C_DEVICE_ADDRESS_MAIN ); if (res == false && g_dbglevel > 3) { DbpString(I2C_ERROR); reply_ng(CMD_SMART_RAW, PM3_ESOFT, NULL, 0); goto OUT; } // read bytes from module len = ISO7816_MAX_FRAME; res = sc_rx_bytes(resp, &len, wait); if (res) { LogTrace(resp, len, 0, 0, NULL, false); } else { len = 0; } } reply_ng(CMD_SMART_RAW, PM3_SUCCESS, resp, len); OUT: BigBuf_free(); set_tracing(false); LEDsoff(); } void SmartCardUpgrade(uint64_t arg0) { LED_C_ON(); #define I2C_BLOCK_SIZE 128 // write. Sector0, with 11,22,33,44 // erase is 128bytes, and takes 50ms to execute I2C_Reset_EnterBootloader(); bool isOK = true; uint16_t length = arg0, pos = 0; uint8_t *fwdata = BigBuf_get_addr(); uint8_t *verfiydata = BigBuf_malloc(I2C_BLOCK_SIZE); while (length) { uint8_t msb = (pos >> 8) & 0xFF; uint8_t lsb = pos & 0xFF; Dbprintf("FW %02X%02X", msb, lsb); size_t size = MIN(I2C_BLOCK_SIZE, length); // write int16_t res = I2C_WriteFW(fwdata + pos, size, msb, lsb, I2C_DEVICE_ADDRESS_BOOT); if (!res) { DbpString("Writing failed"); isOK = false; break; } // writing takes time. WaitMS(50); // read res = I2C_ReadFW(verfiydata, size, msb, lsb, I2C_DEVICE_ADDRESS_BOOT); if (res <= 0) { DbpString("Reading back failed"); isOK = false; break; } // cmp if (0 != memcmp(fwdata + pos, verfiydata, size)) { DbpString("not equal data"); isOK = false; break; } length -= size; pos += size; } reply_ng(CMD_SMART_UPGRADE, (isOK) ? PM3_SUCCESS : PM3_ESOFT, NULL, 0); LED_C_OFF(); BigBuf_free(); } void SmartCardSetBaud(uint64_t arg0) { } void SmartCardSetClock(uint64_t arg0) { LED_D_ON(); set_tracing(true); I2C_Reset_EnterMainProgram(); // Send SIM CLC // start [C0 05 xx] stop I2C_WriteByte(arg0, I2C_DEVICE_CMD_SIM_CLC, I2C_DEVICE_ADDRESS_MAIN); reply_ng(CMD_SMART_SETCLOCK, PM3_SUCCESS, NULL, 0); set_tracing(false); LEDsoff(); }