//----------------------------------------------------------------------------- // Copyright (C) 2016 iceman // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Analyse bytes commands //----------------------------------------------------------------------------- #include "cmdanalyse.h" #include // size_t #include #include // tolower #include #include "commonutil.h" // reflect... #include "comms.h" // clearCommandBuffer #include "cmdparser.h" // command_t #include "ui.h" // PrintAndLog #include "crc.h" #include "crc16.h" // crc16 ccitt #include "tea.h" #include "legic_prng.h" #include "cmddata.h" // demodbuffer #include "graph.h" #include "proxgui.h" #include "cliparser.h" #include "generator.h" // generate nuid static int CmdHelp(const char *Cmd); static uint8_t calculateLRC(uint8_t *bytes, uint8_t len) { uint8_t LRC = 0; for (uint8_t i = 0; i < len; i++) LRC ^= bytes[i]; return LRC; } /* static uint16_t matrixadd ( uint8_t* bytes, uint8_t len){ ----------- 0x9c | 1001 1100 0x97 | 1001 0111 0x72 | 0111 0010 0x5e | 0101 1110 ----------------- C32F 9d74 return 0; } */ /* static uint16_t shiftadd ( uint8_t* bytes, uint8_t len){ return 0; } */ static uint16_t calcSumCrumbAdd(uint8_t *bytes, uint8_t len, uint32_t mask) { uint16_t sum = 0; for (uint8_t i = 0; i < len; i++) { sum += CRUMB(bytes[i], 0); sum += CRUMB(bytes[i], 2); sum += CRUMB(bytes[i], 4); sum += CRUMB(bytes[i], 6); } sum &= mask; return sum; } static uint16_t calcSumCrumbAddOnes(uint8_t *bytes, uint8_t len, uint32_t mask) { return (~calcSumCrumbAdd(bytes, len, mask) & mask); } static uint16_t calcSumNibbleAdd(uint8_t *bytes, uint8_t len, uint32_t mask) { uint16_t sum = 0; for (uint8_t i = 0; i < len; i++) { sum += NIBBLE_LOW(bytes[i]); sum += NIBBLE_HIGH(bytes[i]); } sum &= mask; return sum; } static uint16_t calcSumNibbleAddOnes(uint8_t *bytes, uint8_t len, uint32_t mask) { return (~calcSumNibbleAdd(bytes, len, mask) & mask); } static uint16_t calcSumCrumbXor(uint8_t *bytes, uint8_t len, uint32_t mask) { uint16_t sum = 0; for (uint8_t i = 0; i < len; i++) { sum ^= CRUMB(bytes[i], 0); sum ^= CRUMB(bytes[i], 2); sum ^= CRUMB(bytes[i], 4); sum ^= CRUMB(bytes[i], 6); } sum &= mask; return sum; } static uint16_t calcSumNibbleXor(uint8_t *bytes, uint8_t len, uint32_t mask) { uint16_t sum = 0; for (uint8_t i = 0; i < len; i++) { sum ^= NIBBLE_LOW(bytes[i]); sum ^= NIBBLE_HIGH(bytes[i]); } sum &= mask; return sum; } static uint16_t calcSumByteXor(uint8_t *bytes, uint8_t len, uint32_t mask) { uint16_t sum = 0; for (uint8_t i = 0; i < len; i++) { sum ^= bytes[i]; } sum &= mask; return sum; } static uint16_t calcSumByteAdd(uint8_t *bytes, uint8_t len, uint32_t mask) { uint16_t sum = 0; for (uint8_t i = 0; i < len; i++) { sum += bytes[i]; } sum &= mask; return sum; } // Ones complement static uint16_t calcSumByteAddOnes(uint8_t *bytes, uint8_t len, uint32_t mask) { return (~calcSumByteAdd(bytes, len, mask) & mask); } static uint16_t calcSumByteSub(uint8_t *bytes, uint8_t len, uint32_t mask) { uint8_t sum = 0; for (uint8_t i = 0; i < len; i++) { sum -= bytes[i]; } sum &= mask; return sum; } static uint16_t calcSumByteSubOnes(uint8_t *bytes, uint8_t len, uint32_t mask) { return (~calcSumByteSub(bytes, len, mask) & mask); } static uint16_t calcSumNibbleSub(uint8_t *bytes, uint8_t len, uint32_t mask) { uint8_t sum = 0; for (uint8_t i = 0; i < len; i++) { sum -= NIBBLE_LOW(bytes[i]); sum -= NIBBLE_HIGH(bytes[i]); } sum &= mask; return sum; } static uint16_t calcSumNibbleSubOnes(uint8_t *bytes, uint8_t len, uint32_t mask) { return (~calcSumNibbleSub(bytes, len, mask) & mask); } // BSD shift checksum 8bit version static uint16_t calcBSDchecksum8(uint8_t *bytes, uint8_t len, uint32_t mask) { uint16_t sum = 0; for (uint8_t i = 0; i < len; i++) { sum = ((sum & 0xFF) >> 1) | ((sum & 0x1) << 7); // rotate accumulator sum += bytes[i]; // add next byte sum &= 0xFF; // } sum &= mask; return sum; } // BSD shift checksum 4bit version static uint16_t calcBSDchecksum4(uint8_t *bytes, uint8_t len, uint32_t mask) { uint16_t sum = 0; for (uint8_t i = 0; i < len; i++) { sum = ((sum & 0xF) >> 1) | ((sum & 0x1) << 3); // rotate accumulator sum += NIBBLE_HIGH(bytes[i]); // add high nibble sum &= 0xF; // sum = ((sum & 0xF) >> 1) | ((sum & 0x1) << 3); // rotate accumulator sum += NIBBLE_LOW(bytes[i]); // add low nibble sum &= 0xF; // } sum &= mask; return sum; } // measuring LFSR maximum length static int CmdAnalyseLfsr(const char *Cmd) { CLIParserContext *ctx; CLIParserInit(&ctx, "analyse lfsr", "looks at LEGIC Prime's lfsr, iterates the first 48 values", "analyse lfsr --iv 55" ); void *argtable[] = { arg_param_begin, arg_str1(NULL, "iv", "", "init vector data (1 hex byte)"), arg_str0(NULL, "find", "", "lfsr data to find (1 hex byte)"), arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, true); int iv_len = 0; uint8_t idata[1] = {0}; int res = CLIParamHexToBuf(arg_get_str(ctx, 1), idata, sizeof(idata), &iv_len); if (res) { CLIParserFree(ctx); PrintAndLogEx(FAILED, "Error parsing IV byte"); return PM3_EINVARG; } int f_len = 0; uint8_t fdata[1] = {0}; res = CLIParamHexToBuf(arg_get_str(ctx, 2), fdata, sizeof(fdata), &f_len); CLIParserFree(ctx); if (res) { PrintAndLogEx(FAILED, "Error parsing FIND byte"); return PM3_EINVARG; } uint8_t iv = idata[0]; uint8_t find = fdata[0]; PrintAndLogEx(INFO, "LEGIC Prime lfsr"); PrintAndLogEx(INFO, "iv..... 0x%02X", iv); PrintAndLogEx(INFO, "----+------+-------+--------------"); PrintAndLogEx(INFO, " i# | lfsr | ^0x40 | 0x%02X ^ lfsr", find); PrintAndLogEx(INFO, "----+------+-------+--------------"); for (uint8_t i = 0x01; i < 0x30; i += 1) { legic_prng_init(iv); legic_prng_forward(i); uint16_t lfsr = legic_prng_get_bits(12); /* Any nonzero start state will work. */ PrintAndLogEx(INFO, " %02X | %03X | %03X | %03X", i, lfsr, 0x40 ^ lfsr, find ^ lfsr); } PrintAndLogEx(INFO, "----+------+-------+--------------"); return PM3_SUCCESS; } static int CmdAnalyseLCR(const char *Cmd) { CLIParserContext *ctx; CLIParserInit(&ctx, "analyse lcr", "Specifying the bytes of a UID with a known LRC will find the last byte value\n" "needed to generate that LRC with a rolling XOR. All bytes should be specified in HEX.", "analyse lcr -d 04008064BA -> Target (BA) requires final LRC XOR byte value: 5A" ); void *argtable[] = { arg_param_begin, arg_str1("d", "data", "", "bytes to calc missing XOR in a LCR"), arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, true); int dlen = 0; uint8_t data[100] = {0x00}; int res = CLIParamHexToBuf(arg_get_str(ctx, 1), data, sizeof(data), &dlen); CLIParserFree(ctx); if (res) { PrintAndLogEx(FAILED, "Error parsing bytes"); return PM3_EINVARG; } uint8_t finalXor = calculateLRC(data, dlen); PrintAndLogEx(SUCCESS, "Target [%02X] requires final LRC XOR byte value: " _YELLOW_("0x%02X"), data[dlen - 1], finalXor); PrintAndLogEx(NORMAL, ""); return PM3_SUCCESS; } static int CmdAnalyseCRC(const char *Cmd) { CLIParserContext *ctx; CLIParserInit(&ctx, "analyse crc", "A stub method to test different crc implementations inside the PM3 sourcecode.\n" "Just because you figured out the poly, doesn't mean you get the desired output", "analyse crc -d 137AF00A0A0D" ); void *argtable[] = { arg_param_begin, arg_str1("d", "data", "", "bytes to calc crc"), arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, true); int dlen = 0; uint8_t data[1024] = {0x00}; int res = CLIParamHexToBuf(arg_get_str(ctx, 1), data, sizeof(data), &dlen); CLIParserFree(ctx); if (res) { PrintAndLogEx(FAILED, "Error parsing bytes"); return PM3_EINVARG; } PrintAndLogEx(INFO, "\nTests with (%d) | %s", dlen, sprint_hex(data, dlen)); // 51 f5 7a d6 uint8_t uid[] = {0x51, 0xf5, 0x7a, 0xd6}; //12 34 56 init_table(CRC_LEGIC); uint8_t legic8 = CRC8Legic(uid, sizeof(uid)); PrintAndLogEx(INFO, "Legic 16 | %X (EF6F expected) [legic8 = %02x]", crc16_legic(data, dlen, legic8), legic8); init_table(CRC_FELICA); PrintAndLogEx(INFO, "FeliCa | %X ", crc16_xmodem(data, dlen)); PrintAndLogEx(INFO, "\nTests of reflection. Current methods in source code"); PrintAndLogEx(INFO, " reflect(0x3e23L,3) is %04X == 0x3e26", reflect(0x3e23L, 3)); PrintAndLogEx(INFO, " reflect8(0x80) is %02X == 0x01", reflect8(0x80)); PrintAndLogEx(INFO, " reflect16(0x8000) is %04X == 0x0001", reflect16(0xc6c6)); uint8_t b1, b2; // ISO14443 crc B compute_crc(CRC_14443_B, data, dlen, &b1, &b2); uint16_t crcBB_1 = b1 << 8 | b2; uint16_t bbb = Crc16ex(CRC_14443_B, data, dlen); PrintAndLogEx(INFO, "ISO14443 crc B | %04x == %04x \n", crcBB_1, bbb); // Test of CRC16, '123456789' string. // PrintAndLogEx(INFO, "\n\nStandard test with 31 32 33 34 35 36 37 38 39 '123456789'\n\n"); uint8_t dataStr[] = { 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39 }; legic8 = CRC8Legic(dataStr, sizeof(dataStr)); //these below has been tested OK. PrintAndLogEx(INFO, "Confirmed CRC Implementations"); PrintAndLogEx(INFO, "-------------------------------------\n"); PrintAndLogEx(INFO, "CRC 8 based\n\n"); PrintAndLogEx(INFO, "LEGIC: CRC8 : %X (C6 expected)", legic8); PrintAndLogEx(INFO, "MAXIM: CRC8 : %X (A1 expected)", CRC8Maxim(dataStr, sizeof(dataStr))); PrintAndLogEx(INFO, "-------------------------------------\n"); PrintAndLogEx(INFO, "CRC16 based\n\n"); // input from commandline PrintAndLogEx(INFO, "CCITT | %X (29B1 expected)", Crc16ex(CRC_CCITT, dataStr, sizeof(dataStr))); uint8_t poll[] = {0xb2, 0x4d, 0x12, 0x01, 0x01, 0x2e, 0x3d, 0x17, 0x26, 0x47, 0x80, 0x95, 0x00, 0xf1, 0x00, 0x00, 0x00, 0x01, 0x43, 0x00, 0xb3, 0x7f}; PrintAndLogEx(INFO, "FeliCa | %04X (B37F expected)", Crc16ex(CRC_FELICA, poll + 2, sizeof(poll) - 4)); PrintAndLogEx(INFO, "FeliCa | %04X (0000 expected)", Crc16ex(CRC_FELICA, poll + 2, sizeof(poll) - 2)); uint8_t sel_corr[] = { 0x40, 0xe1, 0xe1, 0xff, 0xfe, 0x5f, 0x02, 0x3c, 0x43, 0x01}; PrintAndLogEx(INFO, "iCLASS | %04x (0143 expected)", Crc16ex(CRC_ICLASS, sel_corr, sizeof(sel_corr) - 2)); PrintAndLogEx(INFO, "---------------------------------------------------------------\n\n\n"); // ISO14443 crc A compute_crc(CRC_14443_A, dataStr, sizeof(dataStr), &b1, &b2); uint16_t crcAA = b1 << 8 | b2; PrintAndLogEx(INFO, "ISO14443 crc A | %04x or %04x (BF05 expected)\n", crcAA, Crc16ex(CRC_14443_A, dataStr, sizeof(dataStr))); // ISO14443 crc B compute_crc(CRC_14443_B, dataStr, sizeof(dataStr), &b1, &b2); uint16_t crcBB = b1 << 8 | b2; PrintAndLogEx(INFO, "ISO14443 crc B | %04x or %04x (906E expected)\n", crcBB, Crc16ex(CRC_14443_B, dataStr, sizeof(dataStr))); // ISO15693 crc (x.25) compute_crc(CRC_15693, dataStr, sizeof(dataStr), &b1, &b2); uint16_t crcCC = b1 << 8 | b2; PrintAndLogEx(INFO, "ISO15693 crc X25| %04x or %04x (906E expected)\n", crcCC, Crc16ex(CRC_15693, dataStr, sizeof(dataStr))); // ICLASS compute_crc(CRC_ICLASS, dataStr, sizeof(dataStr), &b1, &b2); uint16_t crcDD = b1 << 8 | b2; PrintAndLogEx(INFO, "ICLASS crc | %04x or %04x\n", crcDD, Crc16ex(CRC_ICLASS, dataStr, sizeof(dataStr))); // FeliCa compute_crc(CRC_FELICA, dataStr, sizeof(dataStr), &b1, &b2); uint16_t crcEE = b1 << 8 | b2; PrintAndLogEx(INFO, "FeliCa | %04x or %04x (31C3 expected)\n", crcEE, Crc16ex(CRC_FELICA, dataStr, sizeof(dataStr))); return PM3_SUCCESS; } static int CmdAnalyseCHKSUM(const char *Cmd) { CLIParserContext *ctx; CLIParserInit(&ctx, "analyse chksum", "The bytes will be added with eachother and than limited with the applied mask\n" "Finally compute ones' complement of the least significant bytes.", "analyse chksum -d 137AF00A0A0D -> expected output: 0x61\n" "analyse chksum -d 137AF00A0A0D -m FF" ); void *argtable[] = { arg_param_begin, arg_str1("d", "data", "", "bytes to calc checksum"), arg_str0("m", "mask", "", "bit mask to limit the output (4 hex bytes max)"), arg_lit0("v", "verbose", "verbose"), arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, true); int dlen = 0; uint8_t data[100] = {0x00}; memset(data, 0x0, sizeof(data)); int res = CLIParamHexToBuf(arg_get_str(ctx, 1), data, sizeof(data), &dlen); if (res) { CLIParserFree(ctx); PrintAndLogEx(FAILED, "Error parsing bytes"); return PM3_EINVARG; } const char *s = arg_get_str(ctx, 2)->sval[0]; bool verbose = arg_get_lit(ctx, 3); CLIParserFree(ctx); uint32_t mlen = 0; if (s) mlen = strlen(s); if (mlen > 8) { PrintAndLogEx(FAILED, "Mask value is max 4 hex bytes"); return PM3_EINVARG; } uint32_t mask = 0; if (mlen == 0) { mask = 0xFFFF; } else { for (int i = 0; i < mlen; i++) { char c = s[i]; // capitalize if (c >= 'a' && c <= 'f') c -= 32; // convert to numeric value if (c >= '0' && c <= '9') c -= '0'; else if (c >= 'A' && c <= 'F') c -= 'A' - 10; else continue; mask <<= 4; mask |= c; } } PrintAndLogEx(INFO, "Mask value 0x%x", mask); if (verbose) { PrintAndLogEx(INFO, " add | sub | add 1's compl | sub 1's compl | xor"); PrintAndLogEx(INFO, "byte nibble crumb | byte nibble | byte nibble cumb | byte nibble | byte nibble cumb | BSD |"); PrintAndLogEx(INFO, "------------------+-------------+------------------+-----------------+--------------------"); } PrintAndLogEx(INFO, "0x%X 0x%X 0x%X | 0x%X 0x%X | 0x%X 0x%X 0x%X | 0x%X 0x%X | 0x%X 0x%X 0x%X | 0x%X 0x%X |\n", calcSumByteAdd(data, dlen, mask) , calcSumNibbleAdd(data, dlen, mask) , calcSumCrumbAdd(data, dlen, mask) , calcSumByteSub(data, dlen, mask) , calcSumNibbleSub(data, dlen, mask) , calcSumByteAddOnes(data, dlen, mask) , calcSumNibbleAddOnes(data, dlen, mask) , calcSumCrumbAddOnes(data, dlen, mask) , calcSumByteSubOnes(data, dlen, mask) , calcSumNibbleSubOnes(data, dlen, mask) , calcSumByteXor(data, dlen, mask) , calcSumNibbleXor(data, dlen, mask) , calcSumCrumbXor(data, dlen, mask) , calcBSDchecksum8(data, dlen, mask) , calcBSDchecksum4(data, dlen, mask) ); return PM3_SUCCESS; } static int CmdAnalyseDates(const char *Cmd) { CLIParserContext *ctx; CLIParserInit(&ctx, "analyse dates", "Tool to look for date/time stamps in a given array of bytes", "analyse dates" ); void *argtable[] = { arg_param_begin, arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, true); CLIParserFree(ctx); PrintAndLogEx(NORMAL, "To be implemented. Feel free to contribute!"); return PM3_SUCCESS; } static int CmdAnalyseTEASelfTest(const char *Cmd) { CLIParserContext *ctx; CLIParserInit(&ctx, "analyse tea", "Crypto TEA self tests", "analyse tea -d 1122334455667788" ); void *argtable[] = { arg_param_begin, arg_str1("d", "data", "", "bytes to encrypt ( 8 hex bytes )"), arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, true); int dlen = 0; uint8_t data[8] = {0x00}; int res = CLIParamHexToBuf(arg_get_str(ctx, 1), data, sizeof(data), &dlen); CLIParserFree(ctx); if (res) { PrintAndLogEx(FAILED, "Error parsing bytes"); return PM3_EINVARG; } uint8_t v_le[8]; memset(v_le, 0x00, sizeof(v_le)); uint8_t *v_ptr = v_le; SwapEndian64ex(data, 8, 4, v_ptr); // ENCRYPTION KEY: uint8_t key[16] = {0x55, 0xFE, 0xF6, 0x30, 0x62, 0xBF, 0x0B, 0xC1, 0xC9, 0xB3, 0x7C, 0x34, 0x97, 0x3E, 0x29, 0xFB }; uint8_t keyle[16]; uint8_t *key_ptr = keyle; SwapEndian64ex(key, sizeof(key), 4, key_ptr); PrintAndLogEx(INFO, "TEA crypto testing"); PrintAndLogEx(INFO, "-----------------------------------+---------"); PrintAndLogEx(INFO, "LE enc.... %s", sprint_hex_ascii(v_ptr, 8)); tea_decrypt(v_ptr, key_ptr); PrintAndLogEx(INFO, "LE dec.... %s", sprint_hex_ascii(v_ptr, 8)); tea_encrypt(v_ptr, key_ptr); PrintAndLogEx(INFO, "enc1...... %s", sprint_hex_ascii(v_ptr, 8)); tea_encrypt(v_ptr, key_ptr); PrintAndLogEx(INFO, "enc2...... %s", sprint_hex_ascii(v_ptr, 8)); PrintAndLogEx(NORMAL, ""); return PM3_SUCCESS; } static int CmdAnalyseA(const char *Cmd) { CLIParserContext *ctx; CLIParserInit(&ctx, "analyse a", "Iceman's personal garbage test command", "analyse a -d 137AF00A0A0D" ); void *argtable[] = { arg_param_begin, arg_str1("d", "data", "", "bytes to manipulate"), arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, true); int dlen = 0; uint8_t data[100] = {0x00}; memset(data, 0x0, sizeof(data)); int res = CLIParamHexToBuf(arg_get_str(ctx, 1), data, sizeof(data), &dlen); if (res) { CLIParserFree(ctx); PrintAndLogEx(FAILED, "Error parsing bytes"); return PM3_EINVARG; } CLIParserFree(ctx); return PM3_SUCCESS; /* //uint8_t syncBit = 99; // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111) // we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's) # define SYNC_16BIT 0xB24D uint32_t shiftReg = param_get32ex(Cmd, 0, 0xb24d, 16); uint8_t bt = param_get8ex(Cmd, 1, 0xBB, 16); uint8_t byte_offset = 99; // reverse byte uint8_t rev = reflect8(bt); PrintAndLogEx(INFO, "input %02x | %02x \n", bt, rev); // add byte to shift register shiftReg = shiftReg << 8 | rev; PrintAndLogEx(INFO, "shiftreg after %08x | pattern %08x \n", shiftReg, SYNC_16BIT); uint8_t n0 = 0, n1 = 0; n0 = (rev & (uint8_t)(~(0xFF >> (8 - 4)))) >> 4; n1 = (n1 << 4) | (rev & (uint8_t)(~(0xFF << 4))); PrintAndLogEx(INFO, "rev %02X | %02X %s | %02X %s |\n", rev, n0, pb(n0), n1, pb(n1)); */ /* for (int i = 0; i < 16; i++) { PrintAndLogEx(INFO, " (shiftReg >> %d) & 0xFFFF == %08x ---", i, ((shiftReg >> i) & 0xFFFF)); // kolla om SYNC_PATTERN finns. if (((shiftReg >> 7) & 0xFFFF) == SYNC_16BIT) byte_offset = 7; else if (((shiftReg >> 6) & 0xFFFF) == SYNC_16BIT) byte_offset = 6; else if (((shiftReg >> 5) & 0xFFFF) == SYNC_16BIT) byte_offset = 5; else if (((shiftReg >> 4) & 0xFFFF) == SYNC_16BIT) byte_offset = 4; else if (((shiftReg >> 3) & 0xFFFF) == SYNC_16BIT) byte_offset = 3; else if (((shiftReg >> 2) & 0xFFFF) == SYNC_16BIT) byte_offset = 2; else if (((shiftReg >> 1) & 0xFFFF) == SYNC_16BIT) byte_offset = 1; else if (((shiftReg >> 0) & 0xFFFF) == SYNC_16BIT) byte_offset = 0; PrintAndLogEx(INFO, "Offset %u \n", byte_offset); if (byte_offset != 99) break; shiftReg >>= 1; } uint8_t p1 = (rev & (uint8_t)(~(0xFF << byte_offset))); PrintAndLogEx(INFO, "Offset %u | leftovers %02x %s \n", byte_offset, p1, pb(p1)); */ /* pm3 --> da hex2bin 4db2 0100110110110010 */ //return PM3_SUCCESS; /* // split byte into two parts. uint8_t offset = 3, n0 = 0, n1 = 0; rev = 0xB2; for (uint8_t m=0; m<8; m++) { offset = m; n0 = (rev & (uint8_t)(~(0xFF >> (8-offset)))) >> offset; n1 = (n1 << offset) | (rev & (uint8_t)(~(0xFF << offset))); PrintAndLogEx(INFO, "rev %02X | %02X %s | %02X %s |\n", rev, n0, pb(n0), n1, pb(n1) ); n0 = 0, n1 = 0; // PrintAndLogEx(INFO, " (0xFF >> offset) == %s |\n", pb( (0xFF >> offset)) ); //PrintAndLogEx(INFO, "~(0xFF >> (8-offset)) == %s |\n", pb( (uint8_t)(~(0xFF >> (8-offset))) ) ); //PrintAndLogEx(INFO, " rev & xxx == %s\n\n", pb( (rev & (uint8_t)(~(0xFF << offset))) )); } return PM3_SUCCESS; // from A -- x bits into B and the rest into C. for ( uint8_t i=0; i<8; i++){ PrintAndLogEx(INFO, "%u | %02X %s | %02X %s |\n", i, a, pb(a), b, pb(b) ); b = a & (a & (0xFF >> (8-i))); a >>=1; } */ // return PM3_SUCCESS; /* // 14443-A uint8_t u14_c[] = {0x09, 0x78, 0x00, 0x92, 0x02, 0x54, 0x13, 0x02, 0x04, 0x2d, 0xe8 }; // atqs w crc uint8_t u14_w[] = {0x09, 0x78, 0x00, 0x92, 0x02, 0x54, 0x13, 0x02, 0x04, 0x2d, 0xe7 }; // atqs w crc PrintAndLogEx(FAILED, "14a check wrong crc | %s\n", (check_crc(CRC_14443_A, u14_w, sizeof(u14_w))) ? "YES" : "NO"); PrintAndLogEx(SUCCESS, "14a check correct crc | %s\n", (check_crc(CRC_14443_A, u14_c, sizeof(u14_c))) ? "YES" : "NO"); // 14443-B uint8_t u14b[] = {0x05, 0x00, 0x08, 0x39, 0x73}; PrintAndLogEx(INFO, "14b check crc | %s\n", (check_crc(CRC_14443_B, u14b, sizeof(u14b))) ? "YES" : "NO"); // 15693 test uint8_t u15_c[] = {0x05, 0x00, 0x08, 0x39, 0x73}; // correct uint8_t u15_w[] = {0x05, 0x00, 0x08, 0x39, 0x72}; // wrong PrintAndLogEx(FAILED, "15 check wrong crc | %s\n", (check_crc(CRC_15693, u15_w, sizeof(u15_w))) ? "YES" : "NO"); PrintAndLogEx(SUCCESS, "15 check correct crc | %s\n", (check_crc(CRC_15693, u15_c, sizeof(u15_c))) ? "YES" : "NO"); // iCLASS test - wrong crc , swapped bytes. uint8_t iclass_w[] = { 0x40, 0xe1, 0xe1, 0xff, 0xfe, 0x5f, 0x02, 0x3c, 0x01, 0x43}; uint8_t iclass_c[] = { 0x40, 0xe1, 0xe1, 0xff, 0xfe, 0x5f, 0x02, 0x3c, 0x43, 0x01}; PrintAndLogEx(FAILED, "iCLASS check wrong crc | %s\n", (check_crc(CRC_ICLASS, iclass_w, sizeof(iclass_w))) ? "YES" : "NO"); PrintAndLogEx(SUCCESS, "iCLASS check correct crc | %s\n", (check_crc(CRC_ICLASS, iclass_c, sizeof(iclass_c))) ? "YES" : "NO"); // FeliCa test uint8_t felica_w[] = {0x12, 0x01, 0x01, 0x2e, 0x3d, 0x17, 0x26, 0x47, 0x80, 0x95, 0x00, 0xf1, 0x00, 0x00, 0x00, 0x01, 0x43, 0x00, 0xb3, 0x7e}; uint8_t felica_c[] = {0x12, 0x01, 0x01, 0x2e, 0x3d, 0x17, 0x26, 0x47, 0x80, 0x95, 0x00, 0xf1, 0x00, 0x00, 0x00, 0x01, 0x43, 0x00, 0xb3, 0x7f}; PrintAndLogEx(FAILED, "FeliCa check wrong crc | %s\n", (check_crc(CRC_FELICA, felica_w, sizeof(felica_w))) ? "YES" : "NO"); PrintAndLogEx(SUCCESS, "FeliCa check correct crc | %s\n", (check_crc(CRC_FELICA, felica_c, sizeof(felica_c))) ? "YES" : "NO"); PrintAndLogEx(NORMAL, "\n"); return PM3_SUCCESS; */ //piwi // uid(2e086b1a) nt(230736f6) ks(0b0008000804000e) nr(000000000) // uid(2e086b1a) nt(230736f6) ks(0e0b0e0b090c0d02) nr(000000001) // uid(2e086b1a) nt(230736f6) ks(0e05060e01080b08) nr(000000002) //uint64_t d1[] = {0x2e086b1a, 0x230736f6, 0x0000001, 0x0e0b0e0b090c0d02}; //uint64_t d2[] = {0x2e086b1a, 0x230736f6, 0x0000002, 0x0e05060e01080b08}; // uid(17758822) nt(c0c69e59) ks(080105020705040e) nr(00000001) // uid(17758822) nt(c0c69e59) ks(01070a05050c0705) nr(00000002) //uint64_t d1[] = {0x17758822, 0xc0c69e59, 0x0000001, 0x080105020705040e}; //uint64_t d2[] = {0x17758822, 0xc0c69e59, 0x0000002, 0x01070a05050c0705}; // uid(6e442129) nt(8f699195) ks(090d0b0305020f02) nr(00000001) // uid(6e442129) nt(8f699195) ks(03030508030b0c0e) nr(00000002) // uid(6e442129) nt(8f699195) ks(02010f030c0d050d) nr(00000003) // uid(6e442129) nt(8f699195) ks(00040f0f0305030e) nr(00000004) //uint64_t d1[] = {0x6e442129, 0x8f699195, 0x0000001, 0x090d0b0305020f02}; //uint64_t d2[] = {0x6e442129, 0x8f699195, 0x0000004, 0x00040f0f0305030e}; /* uid(3e172b29) nt(039b7bd2) ks(0c0e0f0505080800) nr(00000001) uid(3e172b29) nt(039b7bd2) ks(0e06090d03000b0f) nr(00000002) */ /* uint64_t *keylistA = NULL, *keylistB = NULL; uint32_t keycountA = 0, keycountB = 0; // uint64_t d1[] = {0x3e172b29, 0x039b7bd2, 0x0000001, 0, 0x0c0e0f0505080800}; // uint64_t d2[] = {0x3e172b29, 0x039b7bd2, 0x0000002, 0, 0x0e06090d03000b0f}; uint64_t d1[] = {0x6e442129, 0x8f699195, 0x0000001, 0, 0x090d0b0305020f02}; uint64_t d2[] = {0x6e442129, 0x8f699195, 0x0000004, 0, 0x00040f0f0305030e}; keycountA = nonce2key(d1[0], d1[1], d1[2], 0, d1[3], d1[4], &keylistA); keycountB = nonce2key(d2[0], d2[1], d2[2], 0, d2[3], d2[4], &keylistB); switch (keycountA) { case 0: PrintAndLogEx(FAILED, "Key test A failed\n"); break; case 1: PrintAndLogEx(SUCCESS, "KEY A | %012" PRIX64 " ", keylistA[0]); break; } switch (keycountB) { case 0: PrintAndLogEx(FAILED, "Key test B failed\n"); break; case 1: PrintAndLogEx(SUCCESS, "KEY B | %012" PRIX64 " ", keylistB[0]); break; } free(keylistA); free(keylistB); */ // qsort(keylist, keycount, sizeof(*keylist), compare_uint64); // keycount = intersection(last_keylist, keylist); /* uint64_t keys[] = { 0x7b5b8144a32f, 0x76b46ccc461e, 0x03c3c36ea7a2, 0x171414d31961, 0xe2bfc7153eea, 0x48023d1d1985, 0xff7e1a410953, 0x49a3110249d3, 0xe3515546d015, 0x667c2ac86f85, 0x5774a8d5d6a9, 0xe401c2ca602c, 0x3be7e5020a7e, 0x66dbec3cf90b, 0x4e13f1534605, 0x5c172e1e78c9, 0xeafe51411fbf, 0xc579f0fcdd8f, 0x2146a0d745c3, 0xab31ca60171a, 0x3169130a5035, 0xde5e11ea4923, 0x96fe2aeb9924, 0x828b61e6fcba, 0x8211b0607367, 0xe2936b320f76, 0xaff501e84378, 0x82b31cedb21b, 0xb725d31d4cd3, 0x3b984145b2f1, 0x3b4adb3e82ba, 0x8779075210fe }; uint64_t keya[] = { 0x7b5b8144a32f, 0x76b46ccc461e, 0x03c3c36ea7a2, 0x171414d31961, 0xe2bfc7153eea, 0x48023d1d1985, 0xff7e1a410953, 0x49a3110249d3, 0xe3515546d015, 0x667c2ac86f85, 0x5774a8d5d6a9, 0xe401c2ca602c, 0x3be7e5020a7e, 0x66dbec3cf90b, 0x4e13f1534605, 0x5c172e1e78c9 }; uint64_t keyb[] = { 0xeafe51411fbf, 0xc579f0fcdd8f, 0x2146a0d745c3, 0xab31ca60171a, 0x3169130a5035, 0xde5e11ea4923, 0x96fe2aeb9924, 0x828b61e6fcba, 0x8211b0607367, 0xe2936b320f76, 0xaff501e84378, 0x82b31cedb21b, 0xb725d31d4cd3, 0x3b984145b2f1, 0x3b4adb3e82ba, 0x8779075210fe }; */ /* uint64_t xor[] = { 0x0DEFED88E531, 0x7577AFA2E1BC, 0x14D7D7BDBEC3, 0xF5ABD3C6278B, 0xAABDFA08276F, 0xB77C275C10D6, 0xB6DD0B434080, 0xAAF2444499C6, 0x852D7F8EBF90, 0x3108821DB92C, 0xB3756A1FB685, 0xDFE627C86A52, 0x5D3C093EF375, 0x28C81D6FBF0E, 0x1204DF4D3ECC, 0xB6E97F5F6776, 0x2F87A1BDC230, 0xE43F502B984C, 0x8A776AB752D9, 0x9A58D96A472F, 0xEF3702E01916, 0x48A03B01D007, 0x14754B0D659E, 0x009AD1868FDD, 0x6082DB527C11, 0x4D666ADA4C0E, 0x2D461D05F163, 0x3596CFF0FEC8, 0x8CBD9258FE22, 0x00D29A7B304B, 0xBC33DC6C9244 }; uint64_t xorA[] = { 0x0DEFED88E531, 0x7577AFA2E1BC, 0x14D7D7BDBEC3, 0xF5ABD3C6278B, 0xAABDFA08276F, 0xB77C275C10D6, 0xB6DD0B434080, 0xAAF2444499C6, 0x852D7F8EBF90, 0x3108821DB92C, 0xB3756A1FB685, 0xDFE627C86A52, 0x5D3C093EF375, 0x28C81D6FBF0E, 0x1204DF4D3ECC }; uint64_t xorB[] = { 0x2F87A1BDC230, 0xE43F502B984C, 0x8A776AB752D9, 0x9A58D96A472F, 0xEF3702E01916, 0x48A03B01D007, 0x14754B0D659E, 0x009AD1868FDD, 0x6082DB527C11, 0x4D666ADA4C0E, 0x2D461D05F163, 0x3596CFF0FEC8, 0x8CBD9258FE22, 0x00D29A7B304B, 0xBC33DC6C9244 }; */ /* // xor key A | xor key B 1 | 0DEFED88E531 | 2F87A1BDC230 2 | 7577AFA2E1BC | E43F502B984C 3 | 14D7D7BDBEC3 | 8A776AB752D9 4 | F5ABD3C6278B | 9A58D96A472F 5 | AABDFA08276F | EF3702E01916 6 | B77C275C10D6 | 48A03B01D007 7 | B6DD0B434080 | 14754B0D659E 8 | AAF2444499C6 | 009AD1868FDD 9 | 852D7F8EBF90 | 6082DB527C11 10 | 3108821DB92C | 4D666ADA4C0E 11 | B3756A1FB685 | 2D461D05F163 12 | DFE627C86A52 | 3596CFF0FEC8 13 | 5D3C093EF375 | 8CBD9258FE22 14 | 28C81D6FBF0E | 00D29A7B304B 15 | 1204DF4D3ECC | BC33DC6C9244 */ // generate xor table :) /* for (uint8_t i=0; i<31; i++){ uint64_t a = keys[i] ^ keys[i+1]; PrintAndLogEx(INFO, "%u | %012" PRIX64 " | \n", i, a); } */ /* uint32_t id = param_get32ex(Cmd, 0, 0x93290142, 16); uint8_t uid[6] = {0}; num_to_bytes(id,4,uid); uint8_t key_s0a[] = { uid[1] ^ uid[2] ^ uid[3] ^ 0x11, uid[1] ^ 0x72, uid[2] ^ 0x80, (uid[0] + uid[1] + uid[2] + uid[3] ) ^ uid[3] ^ 0x19, 0xA3, 0x2F }; PrintAndLogEx(INFO, "UID | %s\n", sprint_hex(uid,4 )); PrintAndLogEx(INFO, "KEY A | %s\n", sprint_hex(key_s0a, 6)); // arrays w all keys uint64_t foo[32] = {0}; //A foo[0] = bytes_to_num(key_s0a, 6); //B //foo[16] = 0xcafe71411fbf; foo[16] = 0xeafe51411fbf; for (uint8_t i=0; i<15; i++){ foo[i+1] = foo[i] ^ xorA[i]; foo[i+16+1] = foo[i+16] ^ xorB[i]; } for (uint8_t i=0; i<15; i++){ uint64_t a = foo[i]; uint64_t b = foo[i+16]; PrintAndLogEx(INFO, "%02u | %012" PRIX64 " %s | %012" PRIX64 " %s\n", i, a, ( a == keya[i])?"ok":"err", b, ( b == keyb[i])?"ok":"err" ); } */ // return PM3_SUCCESS; } static int CmdAnalyseNuid(const char *Cmd) { CLIParserContext *ctx; CLIParserInit(&ctx, "analyse nuid", "Generate 4byte NUID from 7byte UID", "analyse nuid -d 11223344556677" ); void *argtable[] = { arg_param_begin, arg_str0("d", "data", "", "bytes to send"), arg_lit0("t", "test", "self test"), arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, true); int uidlen = 0; uint8_t uid[7] = {0}; int res = CLIParamHexToBuf(arg_get_str(ctx, 1), uid, sizeof(uid), &uidlen); bool selftest = arg_get_lit(ctx, 2); CLIParserFree(ctx); if (res) { PrintAndLogEx(FAILED, "Error parsing bytes"); return PM3_EINVARG; } uint8_t nuid[4] = {0}; /* src: https://www.nxp.com/docs/en/application-note/AN10927.pdf */ /* selftest1 UID 040D681AB52281 -> NUID 8F430FEF */ /* selftest2 UID 04183F09321B85 -> NUID 4F505D7D */ if (selftest) { uint8_t uid_test1[] = {0x04, 0x0d, 0x68, 0x1a, 0xb5, 0x22, 0x81}; uint8_t nuid_test1[] = {0x8f, 0x43, 0x0f, 0xef}; uint8_t uid_test2[] = {0x04, 0x18, 0x3f, 0x09, 0x32, 0x1b, 0x85}; uint8_t nuid_test2[] = {0x4f, 0x50, 0x5d, 0x7d}; memcpy(uid, uid_test1, sizeof(uid)); mfc_generate4b_nuid(uid, nuid); PrintAndLogEx(INFO, "Self tests"); bool test1 = (0 == memcmp(nuid, nuid_test1, sizeof(nuid))); PrintAndLogEx((test1) ? SUCCESS : FAILED, "1. %s -> %s ( %s )" , sprint_hex_inrow(uid_test1, sizeof(uid_test1)) , sprint_hex(nuid, sizeof(nuid)) , test1 ? _GREEN_("ok") : _RED_("fail") ); memcpy(uid, uid_test2, sizeof(uid)); mfc_generate4b_nuid(uid, nuid); bool test2 = (0 == memcmp(nuid, nuid_test2, sizeof(nuid))); PrintAndLogEx((test2) ? SUCCESS : FAILED, "2. %s -> %s ( %s )\n" , sprint_hex_inrow(uid_test2, sizeof(uid_test2)) , sprint_hex(nuid, sizeof(nuid)) , test2 ? _GREEN_("ok") : _RED_("fail") ); return PM3_SUCCESS; } if (uidlen != 7) { PrintAndLogEx(FAILED, "Error parsing bytes"); return PM3_EINVARG; } mfc_generate4b_nuid(uid, nuid); PrintAndLogEx(INFO, "UID | %s \n", sprint_hex(uid, 7)); PrintAndLogEx(INFO, "NUID | %s \n", sprint_hex(nuid, 4)); return PM3_SUCCESS; } static int CmdAnalyseDemodBuffer(const char *Cmd) { CLIParserContext *ctx; CLIParserInit(&ctx, "analyse demodbuff", "loads a binary string into demod buffer", "analyse demodbuff -d 0011101001001011" ); void *argtable[] = { arg_param_begin, arg_str1("d", "data", "", "binary string to load"), arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, true); const char *s = arg_get_str(ctx, 1)->sval[0]; CLIParserFree(ctx); if (s == NULL) { PrintAndLogEx(FAILED, "Must provide a binary string"); return PM3_EINVARG; } int len = MIN(strlen(s), MAX_DEMOD_BUF_LEN); // add 1 for null terminator. uint8_t *data = calloc(len + 1, sizeof(uint8_t)); if (data == NULL) return PM3_EMALLOC; for (int i = 0; i <= strlen(s); i++) { char c = s[i]; if (c == '1') DemodBuffer[i] = 1; if (c == '0') DemodBuffer[i] = 0; PrintAndLogEx(NORMAL, "%c" NOLF, c); } PrintAndLogEx(NORMAL, ""); DemodBufferLen = len; free(data); PrintAndLogEx(HINT, "Use `" _YELLOW_("data print") "` to view demod buffer"); return PM3_SUCCESS; } static int CmdAnalyseFreq(const char *Cmd) { CLIParserContext *ctx; CLIParserInit(&ctx, "analyse freq", "calc wave lengths", "analyse freq" ); void *argtable[] = { arg_param_begin, arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, true); CLIParserFree(ctx); const double c = 299792458; double len_125 = c / 125000; double len_134 = c / 134000; double len_1356 = c / 13560000; double rf_range_125 = len_125 / (M_PI * 2); double rf_range_134 = len_134 / (M_PI * 2); double rf_range_1356 = len_1356 / (M_PI * 2); PrintAndLogEx(INFO, "Wavelengths"); PrintAndLogEx(INFO, " 125 kHz has %f m, rf range %f m", len_125, rf_range_125); PrintAndLogEx(INFO, " 134 kHz has %f m, rf range %f m", len_134, rf_range_134); PrintAndLogEx(INFO, " 13.56 mHz has %f m, rf range %f m", len_1356, rf_range_1356); return PM3_SUCCESS; } static int CmdAnalyseFoo(const char *Cmd) { CLIParserContext *ctx; CLIParserInit(&ctx, "analyze foo", "experiments of cliparse", "analyse foo -r a0000000a0002021" ); void *argtable[] = { arg_param_begin, arg_strx0("r", "raw", "", "raw bytes (strx)"), arg_param_end }; CLIExecWithReturn(ctx, Cmd, argtable, false); // raw param int datalen = 256; uint8_t data[256]; CLIGetHexWithReturn(ctx, 1, data, &datalen); int data3len = 512; uint8_t data3[512]; CLIGetStrWithReturn(ctx, 1, data3, &data3len); CLIParserFree(ctx); PrintAndLogEx(INFO, "-r"); PrintAndLogEx(INFO, "Got: %s", sprint_hex_inrow(data, datalen)); PrintAndLogEx(INFO, "Got: %s", data3); ClearGraph(false); GraphTraceLen = 15000; for (int i = 0; i < 4095; i++) { int o = 0; // 0010 0000 if (i & 0x2000) o |= 0x80; // corr_i_accum[13] // 0001 1100 if (i & 0x1C00) o |= 0x40; // corr_i_accum[12] | corr_i_accum[11] | corr_i_accum[10] // 0000 1110 if (i & 0x0E00) o |= 0x20; // corr_i_accum[12] | corr_i_accum[11] | corr_i_accum[9], o |= (i & 0x1F0) >> 4; // corr_i_accum[8:4] GraphBuffer[i] = o; } for (int i = 0; i < 4095; i++) { int o = 0; // Send 8 bits of in phase tag signal //if (corr_i_accum[13:11] == 3'b000 || corr_i_accum[13:11] == 3'b111) if ((i & 0x3800) == 0 || (i & 0x3800) == 0x3800) { o |= (i & 0xFF0) >> 4; // corr_i_out <= corr_i_accum[11:4]; } else { // truncate to maximum value //if (corr_i_accum[13] == 1'b0) if ((i & 0x2000) == 0) { o |= 0x7f; // corr_i_out <= 8'b01111111; } } GraphBuffer[i + 5000] = o; } for (int i = 0; i < 4095; i++) { int o = i >> 5; GraphBuffer[i + 10000] = o; } RepaintGraphWindow(); ShowGraphWindow(); return PM3_SUCCESS; } static command_t CommandTable[] = { {"help", CmdHelp, AlwaysAvailable, "This help"}, {"lcr", CmdAnalyseLCR, AlwaysAvailable, "Generate final byte for XOR LRC"}, {"crc", CmdAnalyseCRC, AlwaysAvailable, "Stub method for CRC evaluations"}, {"chksum", CmdAnalyseCHKSUM, AlwaysAvailable, "Checksum with adding, masking and one's complement"}, {"dates", CmdAnalyseDates, AlwaysAvailable, "Look for datestamps in a given array of bytes"}, {"tea", CmdAnalyseTEASelfTest, AlwaysAvailable, "Crypto TEA test"}, {"lfsr", CmdAnalyseLfsr, AlwaysAvailable, "LFSR tests"}, {"a", CmdAnalyseA, AlwaysAvailable, "num bits test"}, {"nuid", CmdAnalyseNuid, AlwaysAvailable, "create NUID from 7byte UID"}, {"demodbuff", CmdAnalyseDemodBuffer, AlwaysAvailable, "Load binary string to demodbuffer"}, {"freq", CmdAnalyseFreq, AlwaysAvailable, "Calc wave lengths"}, {"foo", CmdAnalyseFoo, AlwaysAvailable, "muxer"}, {NULL, NULL, NULL, NULL} }; static int CmdHelp(const char *Cmd) { (void)Cmd; // Cmd is not used so far CmdsHelp(CommandTable); return 0; } int CmdAnalyse(const char *Cmd) { clearCommandBuffer(); return CmdsParse(CommandTable, Cmd); }