//----------------------------------------------------------------------------- //----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh <izsh at fail0verflow.com>, Hagen Fritsch // Copyright (C) 2011 Gerhard de Koning Gans // Copyright (C) 2014 Midnitesnake & Andy Davies & Martin Holst Swende // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // High frequency iClass commands //----------------------------------------------------------------------------- #include "cmdhficlass.h" #define NUM_CSNS 9 #define ICLASS_KEYS_MAX 8 static int CmdHelp(const char *Cmd); static uint8_t iClass_Key_Table[ICLASS_KEYS_MAX][8] = { { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }, { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 } }; int usage_hf_iclass_sim(void) { PrintAndLogEx(NORMAL, "Usage: hf iclass sim <option> [CSN]"); PrintAndLogEx(NORMAL, " options"); PrintAndLogEx(NORMAL, " 0 <CSN> simulate the given CSN"); PrintAndLogEx(NORMAL, " 1 simulate default CSN"); PrintAndLogEx(NORMAL, " 2 Reader-attack, gather reader responses to extract elite key"); PrintAndLogEx(NORMAL, " 3 Full simulation using emulator memory (see 'hf iclass eload')"); PrintAndLogEx(NORMAL, " 4 Reader-attack, adapted for KeyRoll mode, gather reader responses to extract elite key"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf iclass sim 0 031FEC8AF7FF12E0"); PrintAndLogEx(NORMAL, " hf iclass sim 2"); PrintAndLogEx(NORMAL, " hf iclass eload 'tagdump.bin'"); PrintAndLogEx(NORMAL, " hf iclass sim 3"); PrintAndLogEx(NORMAL, " hf iclass sim 4"); return 0; } int usage_hf_iclass_eload(void) { PrintAndLogEx(NORMAL, "Loads iclass tag-dump into emulator memory on device"); PrintAndLogEx(NORMAL, "Usage: hf iclass eload f <filename>"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf iclass eload f iclass_tagdump-aa162d30f8ff12f1.bin"); return 0; } int usage_hf_iclass_decrypt(void) { PrintAndLogEx(NORMAL, "This is simple implementation, it tries to decrypt every block after block 6."); PrintAndLogEx(NORMAL, "Correct behaviour would be to decrypt only the application areas where the key is valid,"); PrintAndLogEx(NORMAL, "which is defined by the configuration block."); PrintAndLogEx(NORMAL, "OBS! In order to use this function, the file 'iclass_decryptionkey.bin' must reside"); PrintAndLogEx(NORMAL, "in the working directory. The file should be 16 bytes binary data"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: hf iclass decrypt f <tagdump>"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, "S hf iclass decrypt f tagdump_12312342343.bin"); return 0; } int usage_hf_iclass_encrypt(void) { PrintAndLogEx(NORMAL, "OBS! In order to use this function, the file 'iclass_decryptionkey.bin' must reside"); PrintAndLogEx(NORMAL, "in the working directory. The file should be 16 bytes binary data"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: hf iclass encrypt <BlockData>"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf iclass encrypt 0102030405060708"); PrintAndLogEx(NORMAL, ""); return 0; } int usage_hf_iclass_dump(void) { PrintAndLogEx(NORMAL, "Usage: hf iclass dump f <fileName> k <key> c <creditkey> [e|r|v]\n"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " f <filename> : specify a filename to save dump to"); PrintAndLogEx(NORMAL, " k <key> : <required> access Key as 16 hex symbols or 1 hex to select key from memory"); PrintAndLogEx(NORMAL, " c <creditkey>: credit key as 16 hex symbols or 1 hex to select key from memory"); PrintAndLogEx(NORMAL, " e : elite computations applied to key"); PrintAndLogEx(NORMAL, " r : raw, the key is interpreted as raw block 3/4"); PrintAndLogEx(NORMAL, " v : verbose output"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf iclass dump k 001122334455667B"); PrintAndLogEx(NORMAL, " hf iclass dump k AAAAAAAAAAAAAAAA c 001122334455667B"); PrintAndLogEx(NORMAL, " hf iclass dump k AAAAAAAAAAAAAAAA e"); return 0; } int usage_hf_iclass_clone(void) { PrintAndLogEx(NORMAL, "Usage: hf iclass clone f <tagfile.bin> b <first block> l <last block> k <KEY> c e|r"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " f <filename>: specify a filename to clone from"); PrintAndLogEx(NORMAL, " b <Block> : The first block to clone as 2 hex symbols"); PrintAndLogEx(NORMAL, " l <Last Blk>: Set the Data to write as 16 hex symbols"); PrintAndLogEx(NORMAL, " k <Key> : Access Key as 16 hex symbols or 1 hex to select key from memory"); PrintAndLogEx(NORMAL, " c : If 'c' is specified, the key set is assumed to be the credit key\n"); PrintAndLogEx(NORMAL, " e : If 'e' is specified, elite computations applied to key"); PrintAndLogEx(NORMAL, " r : If 'r' is specified, no computations applied to key"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf iclass clone f iclass_tagdump-121345.bin b 06 l 1A k 1122334455667788 e"); PrintAndLogEx(NORMAL, " hf iclass clone f iclass_tagdump-121345.bin b 05 l 19 k 0"); PrintAndLogEx(NORMAL, " hf iclass clone f iclass_tagdump-121345.bin b 06 l 19 k 0 e"); return 0; } int usage_hf_iclass_writeblock(void) { PrintAndLogEx(NORMAL, "Usage: hf iclass writeblk b <block> d <data> k <key> [c|e|r|v]\n"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " b <Block> : The block number as 2 hex symbols"); PrintAndLogEx(NORMAL, " d <data> : set the Data to write as 16 hex symbols"); PrintAndLogEx(NORMAL, " k <Key> : access Key as 16 hex symbols or 1 hex to select key from memory"); PrintAndLogEx(NORMAL, " c : credit key assumed\n"); PrintAndLogEx(NORMAL, " e : elite computations applied to key"); PrintAndLogEx(NORMAL, " r : raw, no computations applied to key"); PrintAndLogEx(NORMAL, " v : verbose output"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf iclass writeblk b 0A d AAAAAAAAAAAAAAAA k 001122334455667B"); PrintAndLogEx(NORMAL, " hf iclass writeblk b 1B d AAAAAAAAAAAAAAAA k 001122334455667B c"); return 0; } int usage_hf_iclass_readblock(void) { PrintAndLogEx(NORMAL, "Usage: hf iclass readblk b <block> k <key> [c|e|r|v]\n"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " b <block> : The block number as 2 hex symbols"); PrintAndLogEx(NORMAL, " k <key> : Access Key as 16 hex symbols or 1 hex to select key from memory"); PrintAndLogEx(NORMAL, " c : credit key assumed\n"); PrintAndLogEx(NORMAL, " e : elite computations applied to key"); PrintAndLogEx(NORMAL, " r : raw, no computations applied to key"); PrintAndLogEx(NORMAL, " v : verbose output"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf iclass readblk b 06 k 0011223344556677"); PrintAndLogEx(NORMAL, " hf iclass readblk b 1B k 0011223344556677 c"); PrintAndLogEx(NORMAL, " hf iclass readblk b 0A k 0"); return 0; } int usage_hf_iclass_readtagfile() { PrintAndLogEx(NORMAL, "Usage: hf iclass readtagfile <filename> [startblock] [endblock]"); return 0; } int usage_hf_iclass_calc_newkey(void) { PrintAndLogEx(NORMAL, "Calculate new key for updating\n"); PrintAndLogEx(NORMAL, "Usage: hf iclass calc_newkey o <Old key> n <New key> s [csn] e"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " o <oldkey> : *specify a key as 16 hex symbols or a key number as 1 symbol"); PrintAndLogEx(NORMAL, " n <newkey> : *specify a key as 16 hex symbols or a key number as 1 symbol"); PrintAndLogEx(NORMAL, " s <csn> : specify a card Serial number to diversify the key (if omitted will attempt to read a csn)"); PrintAndLogEx(NORMAL, " e : specify new key as elite calc"); PrintAndLogEx(NORMAL, " ee : specify old and new key as elite calc"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " e key to e key given csn : hf iclass calcnewkey o 1122334455667788 n 2233445566778899 s deadbeafdeadbeaf ee"); PrintAndLogEx(NORMAL, " std key to e key read csn : hf iclass calcnewkey o 1122334455667788 n 2233445566778899 e"); PrintAndLogEx(NORMAL, " std to std read csn : hf iclass calcnewkey o 1122334455667788 n 2233445566778899"); PrintAndLogEx(NORMAL, "\nNOTE: * = required\n"); return 0; } int usage_hf_iclass_managekeys(void) { PrintAndLogEx(NORMAL, "HELP : Manage iClass Keys in client memory:\n"); PrintAndLogEx(NORMAL, "Usage: hf iclass managekeys n [keynbr] k [key] f [filename] s l p\n"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " n <keynbr> : specify the keyNbr to set in memory"); PrintAndLogEx(NORMAL, " k <key> : set a key in memory"); PrintAndLogEx(NORMAL, " f <filename>: specify a filename to use with load or save operations"); PrintAndLogEx(NORMAL, " s : save keys in memory to file specified by filename"); PrintAndLogEx(NORMAL, " l : load keys to memory from file specified by filename"); PrintAndLogEx(NORMAL, " p : print keys loaded into memory\n"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " set key : hf iclass managekeys n 0 k 1122334455667788"); PrintAndLogEx(NORMAL, " save key file: hf iclass managekeys f mykeys.bin s"); PrintAndLogEx(NORMAL, " load key file: hf iclass managekeys f mykeys.bin l"); PrintAndLogEx(NORMAL, " print keys : hf iclass managekeys p\n"); return 0; } int usage_hf_iclass_reader(void) { PrintAndLogEx(NORMAL, "Act as a Iclass reader. Look for iClass tags until a key or the pm3 button is pressed\n"); PrintAndLogEx(NORMAL, "Usage: hf iclass reader [h] [1]\n"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h This help text"); PrintAndLogEx(NORMAL, " 1 read only 1 tag"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf iclass reader 1"); return 0; } int usage_hf_iclass_replay(void) { PrintAndLogEx(NORMAL, "Replay a collected mac message"); PrintAndLogEx(NORMAL, "Usage: hf iclass replay [h] <mac>"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h This help text"); PrintAndLogEx(NORMAL, " <mac> Mac bytes to replay (8 hexsymbols)"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf iclass replay 00112233"); return 0; } int usage_hf_iclass_sniff(void) { PrintAndLogEx(NORMAL, "Sniff the communication between reader and tag"); PrintAndLogEx(NORMAL, "Usage: hf iclass sniff [h]"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf iclass sniff"); return 0; } int usage_hf_iclass_loclass(void) { PrintAndLogEx(NORMAL, "Usage: hf iclass loclass [options]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, "h Show this help"); PrintAndLogEx(NORMAL, "t Perform self-test"); PrintAndLogEx(NORMAL, "f <filename> Bruteforce iclass dumpfile"); PrintAndLogEx(NORMAL, " An iclass dumpfile is assumed to consist of an arbitrary number of"); PrintAndLogEx(NORMAL, " malicious CSNs, and their protocol responses"); PrintAndLogEx(NORMAL, " The binary format of the file is expected to be as follows: "); PrintAndLogEx(NORMAL, " <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC>"); PrintAndLogEx(NORMAL, " <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC>"); PrintAndLogEx(NORMAL, " <8 byte CSN><8 byte CC><4 byte NR><4 byte MAC>"); PrintAndLogEx(NORMAL, " ... totalling N*24 bytes"); return 0; } int usage_hf_iclass_chk(void) { PrintAndLogEx(NORMAL, "Checkkeys loads a dictionary text file with 8byte hex keys to test authenticating against a iClass tag"); PrintAndLogEx(NORMAL, "Usage: hf iclass chk [h|e|r] [f (*.dic)]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h Show this help"); PrintAndLogEx(NORMAL, " f <filename> Dictionary file with default iclass keys"); PrintAndLogEx(NORMAL, " r raw"); PrintAndLogEx(NORMAL, " e elite"); PrintAndLogEx(NORMAL, " c credit key (if not use, default is debit)"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf iclass chk f default_iclass_keys.dic"); PrintAndLogEx(NORMAL, " hf iclass chk f default_iclass_keys.dic e"); return 0; } int usage_hf_iclass_lookup(void) { PrintAndLogEx(NORMAL, "Lookup keys takes some sniffed trace data and tries to verify what key was used against a dictionary file"); PrintAndLogEx(NORMAL, "Usage: hf iclass lookup [h|e|r] [f (*.dic)] [u <csn>] [p <epurse>] [m <macs>]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h Show this help"); PrintAndLogEx(NORMAL, " f <filename> Dictionary file with default iclass keys"); PrintAndLogEx(NORMAL, " u CSN"); PrintAndLogEx(NORMAL, " p EPURSE"); PrintAndLogEx(NORMAL, " m macs"); PrintAndLogEx(NORMAL, " r raw"); PrintAndLogEx(NORMAL, " e elite"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf iclass lookup u 9655a400f8ff12e0 p f0ffffffffffffff m 0000000089cb984b f default_iclass_keys.dic"); PrintAndLogEx(NORMAL, " hf iclass lookup u 9655a400f8ff12e0 p f0ffffffffffffff m 0000000089cb984b f default_iclass_keys.dic e"); return 0; } int usage_hf_iclass_permutekey(void) { PrintAndLogEx(NORMAL, "Permute function from 'heart of darkness' paper."); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: hf iclass permute [h] <r|f> <bytes>"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h This help"); PrintAndLogEx(NORMAL, " r reverse permuted key"); PrintAndLogEx(NORMAL, " f permute key"); PrintAndLogEx(NORMAL, " <bytes> input bytes"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf iclass permute r 0123456789abcdef"); return 0; } int xorbits_8(uint8_t val) { uint8_t res = val ^ (val >> 1); //1st pass res = res ^ (res >> 1); // 2nd pass res = res ^ (res >> 2); // 3rd pass res = res ^ (res >> 4); // 4th pass return res & 1; } int CmdHFiClassList(const char *Cmd) { //PrintAndLogEx(NORMAL, "Deprecated command, use 'hf list iclass' instead"); CmdTraceList("iclass"); return 0; } int CmdHFiClassSniff(const char *Cmd) { char cmdp = tolower(param_getchar(Cmd, 0)); if (cmdp == 'h') return usage_hf_iclass_sniff(); UsbCommand c = {CMD_SNIFF_ICLASS}; SendCommand(&c); return 0; } int CmdHFiClassSim(const char *Cmd) { char cmdp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) < 1 || cmdp == 'h') return usage_hf_iclass_sim(); uint8_t simType = 0; uint8_t CSN[8] = {0, 0, 0, 0, 0, 0, 0, 0}; simType = param_get8ex(Cmd, 0, 0, 10); if (simType == 0) { if (param_gethex(Cmd, 1, CSN, 16)) { PrintAndLogEx(WARNING, "A CSN should consist of 16 HEX symbols"); return usage_hf_iclass_sim(); } PrintAndLogEx(NORMAL, "--simtype:%02x csn:%s", simType, sprint_hex(CSN, 8)); } if (simType > 4) { PrintAndLogEx(WARNING, "Undefined simptype %d", simType); return usage_hf_iclass_sim(); } uint8_t numberOfCSNs = 0; /* // pre-defined 8 CSN by Holiman uint8_t csns[8*NUM_CSNS] = { 0x00, 0x0B, 0x0F, 0xFF, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x13, 0x94, 0x7E, 0x76, 0xFF, 0x12, 0xE0, 0x2A, 0x99, 0xAC, 0x79, 0xEC, 0xFF, 0x12, 0xE0, 0x17, 0x12, 0x01, 0xFD, 0xF7, 0xFF, 0x12, 0xE0, 0xCD, 0x56, 0x01, 0x7C, 0x6F, 0xFF, 0x12, 0xE0, 0x4B, 0x5E, 0x0B, 0x72, 0xEF, 0xFF, 0x12, 0xE0, 0x00, 0x73, 0xD8, 0x75, 0x58, 0xFF, 0x12, 0xE0, 0x0C, 0x90, 0x32, 0xF3, 0x5D, 0xFF, 0x12, 0xE0 }; */ /* pre-defined 9 CSN by iceman only one csn depend on several others. six depends only on the first csn, (0,1, 0x45) */ uint8_t csns[8 * NUM_CSNS] = { 0x01, 0x0A, 0x0F, 0xFF, 0xF7, 0xFF, 0x12, 0xE0, 0x0C, 0x06, 0x0C, 0xFE, 0xF7, 0xFF, 0x12, 0xE0, 0x10, 0x97, 0x83, 0x7B, 0xF7, 0xFF, 0x12, 0xE0, 0x13, 0x97, 0x82, 0x7A, 0xF7, 0xFF, 0x12, 0xE0, 0x07, 0x0E, 0x0D, 0xF9, 0xF7, 0xFF, 0x12, 0xE0, 0x14, 0x96, 0x84, 0x76, 0xF7, 0xFF, 0x12, 0xE0, 0x17, 0x96, 0x85, 0x71, 0xF7, 0xFF, 0x12, 0xE0, 0xCE, 0xC5, 0x0F, 0x77, 0xF7, 0xFF, 0x12, 0xE0, 0xD2, 0x5A, 0x82, 0xF8, 0xF7, 0xFF, 0x12, 0xE0 //0x04, 0x08, 0x9F, 0x78, 0x6E, 0xFF, 0x12, 0xE0 }; /* // pre-defined 15 CSN by Carl55 // remember to change the define NUM_CSNS to match. uint8_t csns[8*NUM_CSNS] = { 0x00, 0x0B, 0x0F, 0xFF, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x04, 0x0E, 0x08, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x09, 0x0D, 0x05, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x0A, 0x0C, 0x06, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x0F, 0x0B, 0x03, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x08, 0x0A, 0x0C, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x0D, 0x09, 0x09, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x0E, 0x08, 0x0A, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x03, 0x07, 0x17, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x3C, 0x06, 0xE0, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x01, 0x05, 0x1D, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x02, 0x04, 0x1E, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x07, 0x03, 0x1B, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x00, 0x02, 0x24, 0xF7, 0xFF, 0x12, 0xE0, 0x00, 0x05, 0x01, 0x21, 0xF7, 0xFF, 0x12, 0xE0 }; */ /* DUMPFILE FORMAT: * * <8-byte CSN><8-byte CC><4 byte NR><4 byte MAC>.... * So, it should wind up as * 8 * 24 bytes. * * The returndata from the pm3 is on the following format * <4 byte NR><4 byte MAC> * CC are all zeroes, CSN is the same as was sent in **/ uint8_t tries = 0; switch (simType) { case 2: { PrintAndLogEx(INFO, "Starting iCLASS sim 2 attack (elite mode)"); PrintAndLogEx(INFO, "press keyboard to cancel"); UsbCommand c = {CMD_SIMULATE_TAG_ICLASS, {simType, NUM_CSNS}}; UsbCommand resp = {0}; memcpy(c.d.asBytes, csns, 8 * NUM_CSNS); clearCommandBuffer(); SendCommand(&c); while (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) { tries++; if (ukbhit()) { int gc = getchar(); (void)gc; PrintAndLogEx(WARNING, "\naborted via keyboard."); return 0; } if (tries > 20) { PrintAndLogEx(WARNING, "\ntimeout while waiting for reply."); return 0; } } uint8_t num_mac = resp.arg[1]; bool success = (NUM_CSNS == num_mac); PrintAndLogEx(NORMAL, "[%c] %d out of %d MAC obtained [%s]", (success) ? '+' : '!', num_mac, NUM_CSNS, (success) ? "OK" : "FAIL"); if (num_mac == 0) break; size_t datalen = NUM_CSNS * 24; uint8_t *dump = calloc(datalen, sizeof(uint8_t)); if (!dump) { PrintAndLogEx(WARNING, "Failed to allocate memory"); return 2; } memset(dump, 0, datalen);//<-- Need zeroes for the EPURSE - field (offical) uint8_t i = 0; for (i = 0 ; i < NUM_CSNS ; i++) { //copy CSN memcpy(dump + i * 24, csns + i * 8, 8); //copy epurse memcpy(dump + i * 24 + 8, resp.d.asBytes + i * 16, 8); // NR_MAC (eight bytes from the response) ( 8b csn + 8b epurse == 16) memcpy(dump + i * 24 + 16, resp.d.asBytes + i * 16 + 8, 8); } /** Now, save to dumpfile **/ saveFile("iclass_mac_attack", "bin", dump, datalen); free(dump); break; } case 4: { // reader in key roll mode, when it has two keys it alternates when trying to verify. PrintAndLogEx(INFO, "Starting iCLASS sim 4 attack (elite mode, reader in key roll mode)"); PrintAndLogEx(INFO, "press keyboard to cancel"); UsbCommand c = {CMD_SIMULATE_TAG_ICLASS, {simType, NUM_CSNS}}; UsbCommand resp = {0}; memcpy(c.d.asBytes, csns, 8 * NUM_CSNS); clearCommandBuffer(); SendCommand(&c); while (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) { tries++; if (ukbhit()) { int gc = getchar(); (void)gc; PrintAndLogEx(WARNING, "\naborted via keyboard."); return 0; } if (tries > 20) { PrintAndLogEx(WARNING, "\ntimeout while waiting for reply."); return 0; } } uint8_t num_mac = resp.arg[1]; bool success = ((NUM_CSNS * 2) == num_mac); PrintAndLogEx(NORMAL, "[%c] %d out of %d MAC obtained [%s]", (success) ? '+' : '!', num_mac, NUM_CSNS * 2, (success) ? "OK" : "FAIL"); if (num_mac == 0) break; size_t datalen = NUM_CSNS * 24; uint8_t *dump = calloc(datalen, sizeof(uint8_t)); if (!dump) { PrintAndLogEx(WARNING, "Failed to allocate memory"); return 2; } #define MAC_ITEM_SIZE 24 //KEYROLL 1 //Need zeroes for the CC-field memset(dump, 0, datalen); for (uint8_t i = 0; i < NUM_CSNS ; i++) { // copy CSN memcpy(dump + i * MAC_ITEM_SIZE, csns + i * 8, 8); //CSN // copy EPURSE memcpy(dump + i * MAC_ITEM_SIZE + 8, resp.d.asBytes + i * 16, 8); // copy NR_MAC (eight bytes from the response) ( 8b csn + 8b epurse == 16) memcpy(dump + i * MAC_ITEM_SIZE + 16, resp.d.asBytes + i * 16 + 8, 8); } saveFile("iclass_mac_attack_keyroll_A", "bin", dump, datalen); //KEYROLL 2 memset(dump, 0, datalen); uint8_t resp_index = 0; for (uint8_t i = 0; i < NUM_CSNS; i++) { resp_index = (i + NUM_CSNS) * 16; // Copy CSN memcpy(dump + i * MAC_ITEM_SIZE, csns + i * 8, 8); // copy EPURSE memcpy(dump + i * MAC_ITEM_SIZE + 8, resp.d.asBytes + resp_index, 8); // copy NR_MAC (eight bytes from the response) ( 8b csn + 8 epurse == 16) memcpy(dump + i * MAC_ITEM_SIZE + 16, resp.d.asBytes + resp_index + 8, 8); resp_index++; } saveFile("iclass_mac_attack_keyroll_B", "bin", dump, datalen); free(dump); break; } case 1: case 3: default: { UsbCommand c = {CMD_SIMULATE_TAG_ICLASS, {simType, numberOfCSNs}}; memcpy(c.d.asBytes, CSN, 8); clearCommandBuffer(); SendCommand(&c); break; } } return 0; } int HFiClassReader(const char *Cmd, bool loop, bool verbose) { bool tagFound = false; uint32_t flags = FLAG_ICLASS_READER_CSN | FLAG_ICLASS_READER_CC | FLAG_ICLASS_READER_AIA | FLAG_ICLASS_READER_CONF | FLAG_ICLASS_READER_ONLY_ONCE | FLAG_ICLASS_READER_ONE_TRY; UsbCommand c = {CMD_READER_ICLASS, {flags, 0, 0}}; // loop in client not device - else on windows have a communication error UsbCommand resp; while (!ukbhit()) { clearCommandBuffer(); SendCommand(&c); if (WaitForResponseTimeout(CMD_ACK, &resp, 4500)) { uint8_t readStatus = resp.arg[0] & 0xff; uint8_t *data = resp.d.asBytes; if (verbose) PrintAndLogEx(NORMAL, "Readstatus:%02x", readStatus); // no tag found or button pressed if ((readStatus == 0 && !loop) || readStatus == 0xFF) { // abort if (verbose) { PrintAndLogEx(FAILED, "Quitting..."); DropField(); return 0; } } if (readStatus & FLAG_ICLASS_READER_CSN) { PrintAndLogEx(NORMAL, " CSN: %s", sprint_hex(data, 8)); tagFound = true; } if (readStatus & FLAG_ICLASS_READER_CC) { PrintAndLogEx(NORMAL, " CC: %s", sprint_hex(data + 16, 8)); } if (readStatus & FLAG_ICLASS_READER_CONF) { printIclassDumpInfo(data); } if (readStatus & FLAG_ICLASS_READER_AIA) { bool legacy = (memcmp((uint8_t *)(data + 8 * 5), "\xff\xff\xff\xff\xff\xff\xff\xff", 8) == 0); bool se_enabled = (memcmp((uint8_t *)(data + 8 * 5), "\xff\xff\xff\x00\x06\xff\xff\xff", 8) == 0); PrintAndLogEx(NORMAL, " App IA: %s", sprint_hex(data + 8 * 5, 8)); if (legacy) PrintAndLogEx(SUCCESS, " : Possible iClass (legacy credential tag)"); else if (se_enabled) PrintAndLogEx(SUCCESS, " : Possible iClass (SE credential tag)"); else PrintAndLogEx(WARNING, " : Possible iClass (NOT legacy tag)"); } if (tagFound && !loop) { DropField(); return 1; } } else { if (verbose) PrintAndLogEx(WARNING, "command execute timeout"); } if (!loop) break; } DropField(); return 0; } int CmdHFiClassReader(const char *Cmd) { char cmdp = tolower(param_getchar(Cmd, 0)); if (cmdp == 'h') return usage_hf_iclass_reader(); bool findone = (cmdp == '1') ? false : true; return HFiClassReader(Cmd, findone, true); } int CmdHFiClassReader_Replay(const char *Cmd) { char cmdp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) < 1 || cmdp == 'h') return usage_hf_iclass_replay(); uint8_t readerType = 0; uint8_t MAC[4] = {0x00, 0x00, 0x00, 0x00}; if (param_gethex(Cmd, 0, MAC, 8)) { PrintAndLogEx(FAILED, "MAC must include 8 HEX symbols"); return 1; } UsbCommand c = {CMD_READER_ICLASS_REPLAY, {readerType}}; memcpy(c.d.asBytes, MAC, 4); clearCommandBuffer(); SendCommand(&c); return 0; } int iclassEmlSetMem(uint8_t *data, int blockNum, int blocksCount) { UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNum, blocksCount, 0}}; memcpy(c.d.asBytes, data, blocksCount * 16); clearCommandBuffer(); SendCommand(&c); return 0; } int CmdHFiClassELoad(const char *Cmd) { char ctmp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) < 1 || ctmp == 'h') return usage_hf_iclass_eload(); if (ctmp != 'f') return usage_hf_iclass_eload(); //File handling and reading char filename[FILE_PATH_SIZE]; if (param_getstr(Cmd, 1, filename, FILE_PATH_SIZE) >= FILE_PATH_SIZE) { PrintAndLogEx(FAILED, "Filename too long"); return 1; } FILE *f = fopen(filename, "rb"); if (!f) { PrintAndLogEx(FAILED, "File: " _YELLOW_("%s") ": not found or locked.", filename); return 1; } // get filesize in order to malloc memory fseek(f, 0, SEEK_END); long fsize = ftell(f); fseek(f, 0, SEEK_SET); if (fsize < 0) { PrintAndLogDevice(WARNING, "error, when getting filesize"); fclose(f); return 1; } uint8_t *dump = calloc(fsize, sizeof(uint8_t)); if (!dump) { PrintAndLogDevice(WARNING, "error, cannot allocate memory "); fclose(f); return 1; } size_t bytes_read = fread(dump, 1, fsize, f); fclose(f); printIclassDumpInfo(dump); //Validate if (bytes_read < fsize) { PrintAndLogDevice(WARNING, "error, could only read %d bytes (should be %d)", bytes_read, fsize); free(dump); return 1; } //Send to device uint32_t bytes_sent = 0; uint32_t bytes_remaining = bytes_read; while (bytes_remaining > 0) { uint32_t bytes_in_packet = MIN(USB_CMD_DATA_SIZE, bytes_remaining); UsbCommand c = {CMD_ICLASS_EML_MEMSET, {bytes_sent, bytes_in_packet, 0}}; memcpy(c.d.asBytes, dump + bytes_sent, bytes_in_packet); clearCommandBuffer(); SendCommand(&c); bytes_remaining -= bytes_in_packet; bytes_sent += bytes_in_packet; } free(dump); PrintAndLogEx(SUCCESS, "sent %d bytes of data to device emulator memory", bytes_sent); return 0; } static int readKeyfile(const char *filename, size_t len, uint8_t *buffer) { FILE *f = fopen(filename, "rb"); if (!f) { PrintAndLogEx(WARNING, "Failed to read from file '%s'", filename); return 1; } fseek(f, 0, SEEK_END); long fsize = ftell(f); fseek(f, 0, SEEK_SET); size_t bytes_read = fread(buffer, 1, len, f); fclose(f); if (fsize != len) { PrintAndLogEx(WARNING, "Warning, file size is %d, expected %d", fsize, len); return 1; } if (bytes_read != len) { PrintAndLogEx(WARNING, "Warning, could only read %d bytes, expected %d", bytes_read, len); return 1; } return 0; } int CmdHFiClassDecrypt(const char *Cmd) { char opt = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) < 1 || opt == 'h') return usage_hf_iclass_decrypt(); uint8_t key[16] = { 0 }; if (readKeyfile("iclass_decryptionkey.bin", 16, key)) return usage_hf_iclass_decrypt(); PrintAndLogEx(SUCCESS, "decryption key loaded from file"); //Open the tagdump-file FILE *f; char filename[FILE_PATH_SIZE]; if (opt == 'f' && param_getstr(Cmd, 1, filename, sizeof(filename)) > 0) { f = fopen(filename, "rb"); if (!f) { PrintAndLogEx(WARNING, "could not find file %s", filename); return 1; } } else { return usage_hf_iclass_decrypt(); } fseek(f, 0, SEEK_END); long fsize = ftell(f); fseek(f, 0, SEEK_SET); if (fsize < 0) { PrintAndLogEx(WARNING, "error, when getting filesize"); fclose(f); return 2; } uint8_t *decrypted = calloc(fsize, sizeof(uint8_t)); if (!decrypted) { PrintAndLogEx(WARNING, "Failed to allocate memory"); fclose(f); return 1; } size_t bytes_read = fread(decrypted, 1, fsize, f); fclose(f); if (bytes_read == 0) { PrintAndLogEx(WARNING, "file reading error"); free(decrypted); return 3; } picopass_hdr *hdr = (picopass_hdr *)decrypted; uint8_t mem = hdr->conf.mem_config; uint8_t chip = hdr->conf.chip_config; uint8_t applimit = hdr->conf.app_limit; uint8_t kb = 2; uint8_t app_areas = 2; uint8_t max_blk = 31; getMemConfig(mem, chip, &max_blk, &app_areas, &kb); //Use the first block (CSN) for filename char outfilename[FILE_PATH_SIZE] = {0}; snprintf(outfilename, FILE_PATH_SIZE, "iclass_tagdump-%02x%02x%02x%02x%02x%02x%02x%02x-decrypted", hdr->csn[0], hdr->csn[1], hdr->csn[2], hdr->csn[3], hdr->csn[4], hdr->csn[5], hdr->csn[6], hdr->csn[7]); // tripledes mbedtls_des3_context ctx; mbedtls_des3_set2key_dec(&ctx, key); uint8_t enc_dump[8] = {0}; uint8_t empty[8] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; for (uint16_t blocknum = 0; blocknum < applimit; ++blocknum) { uint8_t idx = blocknum * 8; memcpy(enc_dump, decrypted + idx, 8); // block 7 or higher, and not empty 0xFF if (blocknum > 6 && memcmp(enc_dump, empty, 8) != 0) { mbedtls_des3_crypt_ecb(&ctx, enc_dump, decrypted + idx); } } saveFile(outfilename, "bin", decrypted, fsize); printIclassDumpContents(decrypted, 1, (fsize / 8), fsize); free(decrypted); return 0; } static int iClassEncryptBlkData(uint8_t *blkData) { uint8_t key[16] = { 0 }; if (readKeyfile("iclass_decryptionkey.bin", 16, key)) { usage_hf_iclass_encrypt(); return 1; } PrintAndLogEx(SUCCESS, "decryption file found"); uint8_t encryptedData[16]; uint8_t *encrypted = encryptedData; mbedtls_des3_context ctx; mbedtls_des3_set2key_enc(&ctx, key); mbedtls_des3_crypt_ecb(&ctx, blkData, encrypted); memcpy(blkData, encrypted, 8); return 1; } int CmdHFiClassEncryptBlk(const char *Cmd) { uint8_t blkData[8] = {0}; char opt = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) < 1 || opt == 'h') return usage_hf_iclass_encrypt(); //get the bytes to encrypt if (param_gethex(Cmd, 0, blkData, 16)) { PrintAndLogEx(NORMAL, "BlockData must include 16 HEX symbols"); return 0; } if (!iClassEncryptBlkData(blkData)) return 0; printvar("encrypted block", blkData, 8); return 1; } void Calc_wb_mac(uint8_t blockno, uint8_t *data, uint8_t *div_key, uint8_t MAC[4]) { uint8_t wb[9]; wb[0] = blockno; memcpy(wb + 1, data, 8); doMAC_N(wb, sizeof(wb), div_key, MAC); } static bool select_only(uint8_t *CSN, uint8_t *CCNR, bool use_credit_key, bool verbose) { UsbCommand resp; UsbCommand c = {CMD_READER_ICLASS, {0}}; c.arg[0] = FLAG_ICLASS_READER_ONLY_ONCE | FLAG_ICLASS_READER_CC | FLAG_ICLASS_READER_ONE_TRY; if (use_credit_key) c.arg[0] |= FLAG_ICLASS_READER_CEDITKEY; clearCommandBuffer(); SendCommand(&c); if (!WaitForResponseTimeout(CMD_ACK, &resp, 4000)) { PrintAndLogEx(WARNING, "command execute timeout"); return false; } uint8_t isOK = resp.arg[0] & 0xff; uint8_t *data = resp.d.asBytes; memcpy(CSN, data, 8); if (CCNR != NULL) memcpy(CCNR, data + 16, 8); if (isOK > 0 && verbose) { PrintAndLogEx(SUCCESS, "CSN | %s", sprint_hex(CSN, 8)); PrintAndLogEx(SUCCESS, "CCNR | %s", sprint_hex(CCNR, 8)); } if (isOK <= 1) { PrintAndLogEx(FAILED, "failed to obtain CC! Tag-select is aborting... (%d)", isOK); return false; } return true; } static bool select_and_auth(uint8_t *KEY, uint8_t *MAC, uint8_t *div_key, bool use_credit_key, bool elite, bool rawkey, bool verbose) { uint8_t CSN[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; uint8_t CCNR[12] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; if (!select_only(CSN, CCNR, use_credit_key, verbose)) { if (verbose) PrintAndLogEx(FAILED, "selecting tag failed"); return false; } //get div_key if (rawkey) memcpy(div_key, KEY, 8); else HFiClassCalcDivKey(CSN, KEY, div_key, elite); if (verbose) PrintAndLogEx(SUCCESS, "authing with %s: %s", rawkey ? "raw key" : "diversified key", sprint_hex(div_key, 8)); doMAC(CCNR, div_key, MAC); UsbCommand resp; UsbCommand d = {CMD_ICLASS_AUTHENTICATION, {0, 0, 0}}; memcpy(d.d.asBytes, MAC, 4); clearCommandBuffer(); SendCommand(&d); if (!WaitForResponseTimeout(CMD_ACK, &resp, 4000)) { if (verbose) PrintAndLogEx(FAILED, "auth command execute timeout"); return false; } uint8_t isOK = resp.arg[0] & 0xFF; if (!isOK) { if (verbose) PrintAndLogEx(FAILED, "authentication error"); return false; } return true; } int CmdHFiClassReader_Dump(const char *Cmd) { uint8_t MAC[4] = {0x00, 0x00, 0x00, 0x00}; uint8_t div_key[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; uint8_t c_div_key[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; uint8_t blockno = 0; uint8_t numblks = 0; uint8_t maxBlk = 31; uint8_t app_areas = 1; uint8_t kb = 2; uint8_t KEY[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; uint8_t CreditKEY[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; uint8_t keyNbr = 0; uint8_t dataLen = 0; uint8_t fileNameLen = 0; char filename[FILE_PATH_SIZE] = {0}; char tempStr[50] = {0}; bool have_debit_key = false; bool have_credit_key = false; bool use_credit_key = false; bool elite = false; bool rawkey = false; bool errors = false; bool verbose = false; uint8_t cmdp = 0; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_hf_iclass_dump(); case 'c': have_credit_key = true; dataLen = param_getstr(Cmd, cmdp + 1, tempStr, sizeof(tempStr)); if (dataLen == 16) { errors = param_gethex(tempStr, 0, CreditKEY, dataLen); } else if (dataLen == 1) { keyNbr = param_get8(Cmd, cmdp + 1); if (keyNbr < ICLASS_KEYS_MAX) { memcpy(CreditKEY, iClass_Key_Table[keyNbr], 8); } else { PrintAndLogEx(WARNING, "\nERROR: Credit KeyNbr is invalid\n"); errors = true; } } else { PrintAndLogEx(WARNING, "\nERROR: Credit Key is incorrect length\n"); errors = true; } cmdp += 2; break; case 'e': elite = true; cmdp++; break; case 'f': fileNameLen = param_getstr(Cmd, cmdp + 1, filename, sizeof(filename)); if (fileNameLen < 1) { PrintAndLogEx(WARNING, "no filename found after f"); errors = true; } cmdp += 2; break; case 'k': have_debit_key = true; dataLen = param_getstr(Cmd, cmdp + 1, tempStr, sizeof(tempStr)); if (dataLen == 16) { errors = param_gethex(tempStr, 0, KEY, dataLen); } else if (dataLen == 1) { keyNbr = param_get8(Cmd, cmdp + 1); if (keyNbr < ICLASS_KEYS_MAX) { memcpy(KEY, iClass_Key_Table[keyNbr], 8); } else { PrintAndLogEx(WARNING, "\nERROR: Credit KeyNbr is invalid\n"); errors = true; } } else { PrintAndLogEx(WARNING, "\nERROR: Credit Key is incorrect length\n"); errors = true; } cmdp += 2; break; case 'r': rawkey = true; cmdp++; break; case 'v': verbose = true; cmdp++; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'\n", param_getchar(Cmd, cmdp)); errors = true; break; } } if (errors || cmdp < 2) return usage_hf_iclass_dump(); // if no debit key given try credit key on AA1 (not for iclass but for some picopass this will work) if (!have_debit_key && have_credit_key) use_credit_key = true; uint32_t flags = FLAG_ICLASS_READER_CSN | FLAG_ICLASS_READER_CC | FLAG_ICLASS_READER_CONF | FLAG_ICLASS_READER_ONLY_ONCE | FLAG_ICLASS_READER_ONE_TRY; //get config and first 3 blocks UsbCommand c = {CMD_READER_ICLASS, {flags, 0, 0}}; UsbCommand resp; uint8_t tag_data[255 * 8]; clearCommandBuffer(); SendCommand(&c); if (!WaitForResponseTimeout(CMD_ACK, &resp, 4500)) { PrintAndLogEx(WARNING, "command execute timeout"); DropField(); return 0; } DropField(); uint8_t readStatus = resp.arg[0] & 0xff; uint8_t *data = resp.d.asBytes; if (readStatus == 0) { PrintAndLogEx(FAILED, "no tag found"); return 0; } if (readStatus & (FLAG_ICLASS_READER_CSN | FLAG_ICLASS_READER_CONF | FLAG_ICLASS_READER_CC)) { memcpy(tag_data, data, 8 * 3); blockno += 2; // 2 to force re-read of block 2 later. (seems to respond differently..) numblks = data[8]; getMemConfig(data[13], data[12], &maxBlk, &app_areas, &kb); // large memory - not able to dump pages currently if (numblks > maxBlk) numblks = maxBlk; } // authenticate debit key and get div_key - later store in dump block 3 if (!select_and_auth(KEY, MAC, div_key, use_credit_key, elite, rawkey, verbose)) { //try twice - for some reason it sometimes fails the first time... PrintAndLogEx(SUCCESS, "retry to select card"); if (!select_and_auth(KEY, MAC, div_key, use_credit_key, elite, rawkey, verbose)) { PrintAndLogEx(WARNING, "failed authenticating with debit key"); DropField(); return 0; } } // begin dump UsbCommand w = {CMD_ICLASS_DUMP, {blockno, numblks - blockno + 1}}; clearCommandBuffer(); SendCommand(&w); while (true) { printf("."); fflush(stdout); if (ukbhit()) { int gc = getchar(); (void)gc; PrintAndLogEx(WARNING, "\n[!] aborted via keyboard!\n"); DropField(); return 0; } if (WaitForResponseTimeout(CMD_ACK, &resp, 2000)) break; } // dump cmd switch off at device when finised. uint32_t blocksRead = resp.arg[1]; uint8_t isOK = resp.arg[0] & 0xff; if (!isOK && !blocksRead) { PrintAndLogEx(WARNING, "read block failed"); return 0; } uint32_t startindex = resp.arg[2]; if (blocksRead * 8 > sizeof(tag_data) - (blockno * 8)) { PrintAndLogEx(FAILED, "data exceeded buffer size!"); blocksRead = (sizeof(tag_data) / 8) - blockno; } // response ok - now get bigbuf content of the dump if (!GetFromDevice(BIG_BUF, tag_data + (blockno * 8), blocksRead * 8, startindex, NULL, 2500, false)) { PrintAndLogEx(WARNING, "command execution time out"); return 0; } size_t gotBytes = blocksRead * 8 + blockno * 8; // try AA2 if (have_credit_key) { //turn off hf field before authenticating with different key DropField(); memset(MAC, 0, 4); // AA2 authenticate credit key and git c_div_key - later store in dump block 4 if (!select_and_auth(CreditKEY, MAC, c_div_key, true, elite, rawkey, verbose)) { //try twice - for some reason it sometimes fails the first time... if (!select_and_auth(CreditKEY, MAC, c_div_key, true, elite, rawkey, verbose)) { PrintAndLogEx(WARNING, "failed authenticating with credit key"); DropField(); return 0; } } // do we still need to read more block? (aa2 enabled?) if (maxBlk > blockno + numblks + 1) { // setup dump and start w.arg[0] = blockno + blocksRead; w.arg[1] = maxBlk - (blockno + blocksRead); clearCommandBuffer(); SendCommand(&w); if (!WaitForResponseTimeout(CMD_ACK, &resp, 4500)) { PrintAndLogEx(WARNING, "command execute timeout 2"); return 0; } uint8_t isOK = resp.arg[0] & 0xff; blocksRead = resp.arg[1]; if (!isOK && !blocksRead) { PrintAndLogEx(WARNING, "read block failed 2"); return 0; } startindex = resp.arg[2]; if (blocksRead * 8 > sizeof(tag_data) - gotBytes) { PrintAndLogEx(FAILED, "data exceeded buffer size!"); blocksRead = (sizeof(tag_data) - gotBytes) / 8; } // get dumped data from bigbuf if (!GetFromDevice(BIG_BUF, tag_data + gotBytes, blocksRead * 8, startindex, NULL, 2500, false)) { PrintAndLogEx(WARNING, "command execution time out"); return 0; } gotBytes += blocksRead * 8; } } DropField(); // add diversified keys to dump if (have_debit_key) memcpy(tag_data + (3 * 8), div_key, 8); if (have_credit_key) memcpy(tag_data + (4 * 8), c_div_key, 8); // print the dump PrintAndLogEx(NORMAL, "------+--+-------------------------+\n"); PrintAndLogEx(NORMAL, "CSN |00| %s|\n", sprint_hex(tag_data, 8)); printIclassDumpContents(tag_data, 1, (gotBytes / 8), gotBytes); if (filename[0] == 0) { snprintf(filename, FILE_PATH_SIZE, "iclass_tagdump-%02x%02x%02x%02x%02x%02x%02x%02x", tag_data[0], tag_data[1], tag_data[2], tag_data[3], tag_data[4], tag_data[5], tag_data[6], tag_data[7]); } // save the dump to .bin file PrintAndLogEx(SUCCESS, "saving dump file - %d blocks read", gotBytes / 8); saveFile(filename, "bin", tag_data, gotBytes); return 1; } static int WriteBlock(uint8_t blockno, uint8_t *bldata, uint8_t *KEY, bool use_credit_key, bool elite, bool rawkey, bool verbose) { uint8_t MAC[4] = {0x00, 0x00, 0x00, 0x00}; uint8_t div_key[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; if (!select_and_auth(KEY, MAC, div_key, use_credit_key, elite, rawkey, verbose)) return 0; UsbCommand resp; Calc_wb_mac(blockno, bldata, div_key, MAC); UsbCommand w = {CMD_ICLASS_WRITEBLOCK, {blockno}}; memcpy(w.d.asBytes, bldata, 8); memcpy(w.d.asBytes + 8, MAC, 4); clearCommandBuffer(); SendCommand(&w); if (!WaitForResponseTimeout(CMD_ACK, &resp, 4500)) { if (verbose) PrintAndLogEx(WARNING, "Write Command execute timeout"); return 0; } uint8_t isOK = resp.arg[0] & 0xff; if (isOK) PrintAndLogEx(SUCCESS, "Write block successful"); else PrintAndLogEx(WARNING, "Write block failed"); return isOK; } int CmdHFiClass_WriteBlock(const char *Cmd) { uint8_t blockno = 0; uint8_t bldata[8] = {0, 0, 0, 0, 0, 0, 0, 0}; uint8_t KEY[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; uint8_t keyNbr = 0; uint8_t dataLen = 0; char tempStr[50] = {0}; bool use_credit_key = false; bool elite = false; bool rawkey = false; bool errors = false; bool verbose = false; uint8_t cmdp = 0; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_hf_iclass_writeblock(); case 'b': if (param_gethex(Cmd, cmdp + 1, &blockno, 2)) { PrintAndLogEx(WARNING, "Block No must include 2 HEX symbols\n"); errors = true; } cmdp += 2; break; case 'c': use_credit_key = true; cmdp++; break; case 'd': if (param_gethex(Cmd, cmdp + 1, bldata, 16)) { PrintAndLogEx(WARNING, "Data must include 16 HEX symbols\n"); errors = true; } cmdp += 2; break; case 'e': elite = true; cmdp++; break; case 'k': dataLen = param_getstr(Cmd, cmdp + 1, tempStr, sizeof(tempStr)); if (dataLen == 16) { errors = param_gethex(tempStr, 0, KEY, dataLen); } else if (dataLen == 1) { keyNbr = param_get8(Cmd, cmdp + 1); if (keyNbr < ICLASS_KEYS_MAX) { memcpy(KEY, iClass_Key_Table[keyNbr], 8); } else { PrintAndLogEx(WARNING, "\nERROR: Credit KeyNbr is invalid\n"); errors = true; } } else { PrintAndLogEx(WARNING, "\nERROR: Credit Key is incorrect length\n"); errors = true; } cmdp += 2; break; case 'r': rawkey = true; cmdp++; break; case 'v': verbose = true; cmdp++; break; default: PrintAndLogEx(WARNING, "unknown parameter '%c'\n", param_getchar(Cmd, cmdp)); errors = true; break; } } if (errors || cmdp < 6) return usage_hf_iclass_writeblock(); int ans = WriteBlock(blockno, bldata, KEY, use_credit_key, elite, rawkey, verbose); DropField(); return ans; } int CmdHFiClassCloneTag(const char *Cmd) { char filename[FILE_PATH_SIZE] = { 0x00 }; char tempStr[50] = {0}; uint8_t KEY[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; uint8_t keyNbr = 0; uint8_t fileNameLen = 0; uint8_t startblock = 0; uint8_t endblock = 0; uint8_t dataLen = 0; bool use_credit_key = false; bool elite = false; bool rawkey = false; bool errors = false; bool verbose = false; uint8_t cmdp = 0; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_hf_iclass_clone(); case 'b': if (param_gethex(Cmd, cmdp + 1, &startblock, 2)) { PrintAndLogEx(WARNING, "start block No must include 2 HEX symbols\n"); errors = true; } cmdp += 2; break; case 'c': use_credit_key = true; cmdp++; break; case 'e': elite = true; cmdp++; break; case 'f': fileNameLen = param_getstr(Cmd, cmdp + 1, filename, sizeof(filename)); if (fileNameLen < 1) { PrintAndLogEx(WARNING, "No filename found after f"); errors = true; } cmdp += 2; break; case 'k': dataLen = param_getstr(Cmd, cmdp + 1, tempStr, sizeof(tempStr)); if (dataLen == 16) { errors = param_gethex(tempStr, 0, KEY, dataLen); } else if (dataLen == 1) { keyNbr = param_get8(Cmd, cmdp + 1); if (keyNbr < ICLASS_KEYS_MAX) { memcpy(KEY, iClass_Key_Table[keyNbr], 8); } else { PrintAndLogEx(WARNING, "\nERROR: Credit KeyNbr is invalid\n"); errors = true; } } else { PrintAndLogEx(WARNING, "\nERROR: Credit Key is incorrect length\n"); errors = true; } cmdp += 2; break; case 'l': if (param_gethex(Cmd, cmdp + 1, &endblock, 2)) { PrintAndLogEx(WARNING, "start Block No must include 2 HEX symbols\n"); errors = true; } cmdp += 2; break; case 'r': rawkey = true; cmdp++; break; case 'v': verbose = true; cmdp++; break; default: PrintAndLogEx(WARNING, "unknown parameter '%c'\n", param_getchar(Cmd, cmdp)); errors = true; break; } } if (errors || cmdp < 8) return usage_hf_iclass_clone(); FILE *f; iclass_block_t tag_data[USB_CMD_DATA_SIZE / 12]; if ((endblock - startblock + 1) * 12 > USB_CMD_DATA_SIZE) { PrintAndLogEx(NORMAL, "Trying to write too many blocks at once. Max: %d", USB_CMD_DATA_SIZE / 8); } // file handling and reading f = fopen(filename, "rb"); if (!f) { PrintAndLogEx(WARNING, "failed to read file '%s'", filename); return 1; } if (startblock < 5) { PrintAndLogEx(WARNING, "you cannot write key blocks this way. yet... make your start block > 4"); fclose(f); return 0; } // now read data from the file from block 6 --- 19 // ok we will use this struct [data 8 bytes][MAC 4 bytes] for each block calculate all mac number for each data // then copy to usbcommand->asbytes; the max is 32 - 6 = 24 block 12 bytes each block 288 bytes then we can only accept to clone 21 blocks at the time, // else we have to create a share memory int i; fseek(f, startblock * 8, SEEK_SET); size_t bytes_read = fread(tag_data, sizeof(iclass_block_t), endblock - startblock + 1, f); if (bytes_read == 0) { PrintAndLogEx(WARNING, "file reading error."); fclose(f); return 2; } fclose(f); uint8_t MAC[4] = {0x00, 0x00, 0x00, 0x00}; uint8_t div_key[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; if (!select_and_auth(KEY, MAC, div_key, use_credit_key, elite, rawkey, verbose)) { return 0; } UsbCommand w = {CMD_ICLASS_CLONE, {startblock, endblock}}; uint8_t *ptr; // calculate all mac for every the block we will write for (i = startblock; i <= endblock; i++) { Calc_wb_mac(i, tag_data[i - startblock].d, div_key, MAC); // usb command d start pointer = d + (i - 6) * 12 // memcpy(pointer,tag_data[i - 6],8) 8 bytes // memcpy(pointer + 8,mac,sizoof(mac) 4 bytes; // next one ptr = w.d.asBytes + (i - startblock) * 12; memcpy(ptr, &(tag_data[i - startblock].d[0]), 8); memcpy(ptr + 8, MAC, 4); } uint8_t p[12]; for (i = 0; i <= endblock - startblock; i++) { memcpy(p, w.d.asBytes + (i * 12), 12); PrintAndLogEx(NORMAL, "Block |%02x|", i + startblock); PrintAndLogEx(NORMAL, " %02x%02x%02x%02x%02x%02x%02x%02x |", p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]); PrintAndLogEx(NORMAL, " MAC |%02x%02x%02x%02x|\n", p[8], p[9], p[10], p[11]); } UsbCommand resp; clearCommandBuffer(); SendCommand(&w); if (!WaitForResponseTimeout(CMD_ACK, &resp, 4500)) { PrintAndLogEx(WARNING, "command execute timeout"); return 0; } return 1; } static int ReadBlock(uint8_t *KEY, uint8_t blockno, uint8_t keyType, bool elite, bool rawkey, bool verbose, bool auth) { uint8_t MAC[4] = {0x00, 0x00, 0x00, 0x00}; uint8_t div_key[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; // block 0,1 should always be able to read, and block 5 on some cards. if (auth || blockno >= 2) { if (!select_and_auth(KEY, MAC, div_key, (keyType == 0x18), elite, rawkey, verbose)) return 0; } else { uint8_t CSN[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; uint8_t CCNR[12] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; if (!select_only(CSN, CCNR, (keyType == 0x18), verbose)) return 0; } UsbCommand resp; UsbCommand c = {CMD_ICLASS_READBLOCK, {blockno}}; clearCommandBuffer(); SendCommand(&c); if (!WaitForResponseTimeout(CMD_ACK, &resp, 4500)) { PrintAndLogEx(WARNING, "Command execute timeout"); return 0; } uint8_t isOK = resp.arg[0] & 0xff; if (!isOK) { PrintAndLogEx(WARNING, "read block failed"); return 0; } //data read is stored in: resp.d.asBytes[0-15] PrintAndLogEx(NORMAL, "block %02X: %s\n", blockno, sprint_hex(resp.d.asBytes, 8)); return 1; } int CmdHFiClass_ReadBlock(const char *Cmd) { uint8_t blockno = 0; uint8_t keyType = 0x88; //debit key uint8_t KEY[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; uint8_t keyNbr = 0; uint8_t dataLen = 0; char tempStr[50] = {0}; bool elite = false; bool rawkey = false; bool errors = false; bool auth = false; bool verbose = false; uint8_t cmdp = 0; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_hf_iclass_readblock(); case 'b': if (param_gethex(Cmd, cmdp + 1, &blockno, 2)) { PrintAndLogEx(WARNING, "Block No must include 2 HEX symbols\n"); errors = true; } cmdp += 2; break; case 'c': keyType = 0x18; cmdp++; break; case 'e': elite = true; cmdp++; break; case 'k': auth = true; dataLen = param_getstr(Cmd, cmdp + 1, tempStr, sizeof(tempStr)); if (dataLen == 16) { errors = param_gethex(tempStr, 0, KEY, dataLen); } else if (dataLen == 1) { keyNbr = param_get8(Cmd, cmdp + 1); if (keyNbr < ICLASS_KEYS_MAX) { memcpy(KEY, iClass_Key_Table[keyNbr], 8); } else { PrintAndLogEx(WARNING, "\nERROR: Credit KeyNbr is invalid\n"); errors = true; } } else { PrintAndLogEx(WARNING, "\nERROR: Credit Key is incorrect length\n"); errors = true; } cmdp += 2; break; case 'r': rawkey = true; cmdp++; break; case 'v': verbose = true; cmdp++; break; default: PrintAndLogEx(WARNING, "unknown parameter '%c'\n", param_getchar(Cmd, cmdp)); errors = true; break; } } if (errors || cmdp < 4) return usage_hf_iclass_readblock(); if (!auth) PrintAndLogEx(FAILED, "warning: no authentication used with read, only a few specific blocks can be read accurately without authentication."); return ReadBlock(KEY, blockno, keyType, elite, rawkey, verbose, auth); } int CmdHFiClass_loclass(const char *Cmd) { char opt = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) < 1 || opt == 'h') usage_hf_iclass_loclass(); char fileName[FILE_PATH_SIZE] = {0}; if (opt == 'f') { if (param_getstr(Cmd, 1, fileName, sizeof(fileName)) > 0) { return bruteforceFileNoKeys(fileName); } else { PrintAndLogEx(WARNING, "You must specify a filename"); return 0; } } else if (opt == 't') { int errors = testCipherUtils(); errors += testMAC(); errors += doKeyTests(0); errors += testElite(); if (errors) PrintAndLogDevice(WARNING, "There were errors!!!"); return errors; } return 0; } void printIclassDumpContents(uint8_t *iclass_dump, uint8_t startblock, uint8_t endblock, size_t filesize) { uint8_t mem_config; memcpy(&mem_config, iclass_dump + 13, 1); uint8_t maxmemcount; uint8_t filemaxblock = filesize / 8; if (mem_config & 0x80) maxmemcount = 255; else maxmemcount = 31; if (startblock == 0) startblock = 6; if ((endblock > maxmemcount) || (endblock == 0)) endblock = maxmemcount; // remember endblock needs to relate to zero-index arrays. if (endblock > filemaxblock - 1) endblock = filemaxblock - 1; //PrintAndLog ("startblock: %d, endblock: %d, filesize: %d, maxmemcount: %d, filemaxblock: %d",startblock, endblock,filesize, maxmemcount, filemaxblock); int i = startblock; PrintAndLogEx(NORMAL, "------+--+-------------------------+\n"); while (i <= endblock) { uint8_t *blk = iclass_dump + (i * 8); PrintAndLogEx(NORMAL, " |%02X| %s\n", i, sprint_hex_ascii(blk, 8)); i++; } PrintAndLogEx(NORMAL, "------+--+-------------------------+\n"); } int CmdHFiClassReadTagFile(const char *Cmd) { int startblock = 0; int endblock = 0; char tempnum[5]; FILE *f; char filename[FILE_PATH_SIZE]; if (param_getstr(Cmd, 0, filename, sizeof(filename)) < 1) return usage_hf_iclass_readtagfile(); if (param_getstr(Cmd, 1, tempnum, sizeof(tempnum)) < 1) startblock = 0; else sscanf(tempnum, "%d", &startblock); if (param_getstr(Cmd, 2, tempnum, sizeof(tempnum)) < 1) endblock = 0; else sscanf(tempnum, "%d", &endblock); // file handling and reading f = fopen(filename, "rb"); if (!f) { PrintAndLogEx(WARNING, "Failed to read from file '%s'", filename); return 1; } fseek(f, 0, SEEK_END); long fsize = ftell(f); fseek(f, 0, SEEK_SET); if (fsize < 0) { PrintAndLogEx(WARNING, "Error, when getting filesize"); fclose(f); return 1; } uint8_t *dump = calloc(fsize, sizeof(uint8_t)); if (!dump) { PrintAndLogEx(WARNING, "Failed to allocate memory"); fclose(f); return 1; } size_t bytes_read = fread(dump, 1, fsize, f); fclose(f); uint8_t *csn = dump; PrintAndLogEx(NORMAL, "------+--+-------------------------+\n"); PrintAndLogEx(NORMAL, "CSN |00| %s|\n", sprint_hex(csn, 8)); printIclassDumpContents(dump, startblock, endblock, bytes_read); free(dump); return 0; } void HFiClassCalcDivKey(uint8_t *CSN, uint8_t *KEY, uint8_t *div_key, bool elite) { uint8_t keytable[128] = {0}; uint8_t key_index[8] = {0}; if (elite) { uint8_t key_sel[8] = { 0 }; uint8_t key_sel_p[8] = { 0 }; hash2(KEY, keytable); hash1(CSN, key_index); for (uint8_t i = 0; i < 8 ; i++) key_sel[i] = keytable[key_index[i]] & 0xFF; //Permute from iclass format to standard format permutekey_rev(key_sel, key_sel_p); diversifyKey(CSN, key_sel_p, div_key); } else { diversifyKey(CSN, KEY, div_key); } } //when told CSN, oldkey, newkey, if new key is elite (elite), and if old key was elite (oldElite) //calculate and return xor_div_key (ready for a key write command) //print all div_keys if verbose static void HFiClassCalcNewKey(uint8_t *CSN, uint8_t *OLDKEY, uint8_t *NEWKEY, uint8_t *xor_div_key, bool elite, bool oldElite, bool verbose) { uint8_t old_div_key[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; uint8_t new_div_key[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; //get old div key HFiClassCalcDivKey(CSN, OLDKEY, old_div_key, oldElite); //get new div key HFiClassCalcDivKey(CSN, NEWKEY, new_div_key, elite); for (uint8_t i = 0; i < sizeof(old_div_key); i++) { xor_div_key[i] = old_div_key[i] ^ new_div_key[i]; } if (verbose) { PrintAndLogEx(SUCCESS, "Old div key : %s\n", sprint_hex(old_div_key, 8)); PrintAndLogEx(SUCCESS, "New div key : %s\n", sprint_hex(new_div_key, 8)); PrintAndLogEx(SUCCESS, "Xor div key : %s\n", sprint_hex(xor_div_key, 8)); } } int CmdHFiClassCalcNewKey(const char *Cmd) { uint8_t OLDKEY[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; uint8_t NEWKEY[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; uint8_t xor_div_key[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; uint8_t CSN[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; uint8_t CCNR[12] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; uint8_t keyNbr = 0; uint8_t dataLen = 0; char tempStr[50] = {0}; bool givenCSN = false; bool oldElite = false; bool elite = false; bool errors = false; uint8_t cmdp = 0; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_hf_iclass_calc_newkey(); case 'e': dataLen = param_getstr(Cmd, cmdp, tempStr, sizeof(tempStr)); if (dataLen == 2) oldElite = true; elite = true; cmdp++; break; case 'n': dataLen = param_getstr(Cmd, cmdp + 1, tempStr, sizeof(tempStr)); if (dataLen == 16) { errors = param_gethex(tempStr, 0, NEWKEY, dataLen); } else if (dataLen == 1) { keyNbr = param_get8(Cmd, cmdp + 1); if (keyNbr < ICLASS_KEYS_MAX) { memcpy(NEWKEY, iClass_Key_Table[keyNbr], 8); } else { PrintAndLogEx(WARNING, "\nERROR: NewKey Nbr is invalid\n"); errors = true; } } else { PrintAndLogEx(WARNING, "\nERROR: NewKey is incorrect length\n"); errors = true; } cmdp += 2; break; case 'o': dataLen = param_getstr(Cmd, cmdp + 1, tempStr, sizeof(tempStr)); if (dataLen == 16) { errors = param_gethex(tempStr, 0, OLDKEY, dataLen); } else if (dataLen == 1) { keyNbr = param_get8(Cmd, cmdp + 1); if (keyNbr < ICLASS_KEYS_MAX) { memcpy(OLDKEY, iClass_Key_Table[keyNbr], 8); } else { PrintAndLogEx(WARNING, "\nERROR: Credit KeyNbr is invalid\n"); errors = true; } } else { PrintAndLogEx(WARNING, "\nERROR: Credit Key is incorrect length\n"); errors = true; } cmdp += 2; break; case 's': givenCSN = true; if (param_gethex(Cmd, cmdp + 1, CSN, 16)) return usage_hf_iclass_calc_newkey(); cmdp += 2; break; default: PrintAndLogEx(WARNING, "unknown parameter '%c'\n", param_getchar(Cmd, cmdp)); errors = true; break; } } if (errors || cmdp < 4) return usage_hf_iclass_calc_newkey(); if (!givenCSN) if (!select_only(CSN, CCNR, false, true)) return 0; HFiClassCalcNewKey(CSN, OLDKEY, NEWKEY, xor_div_key, elite, oldElite, true); return 0; } static int loadKeys(char *filename) { FILE *f; f = fopen(filename, "rb"); if (!f) { PrintAndLogEx(WARNING, "Failed to read from file '%s'", filename); return 0; } fseek(f, 0, SEEK_END); long fsize = ftell(f); fseek(f, 0, SEEK_SET); if (fsize < 0) { PrintAndLogEx(WARNING, "Error, when getting filesize"); fclose(f); return 1; } uint8_t *dump = calloc(fsize, sizeof(uint8_t)); if (!dump) { PrintAndLogEx(WARNING, "Failed to allocate memory"); fclose(f); return 1; } size_t bytes_read = fread(dump, 1, fsize, f); fclose(f); if (bytes_read > ICLASS_KEYS_MAX * 8) { PrintAndLogEx(WARNING, "File is too long to load - bytes: %u", bytes_read); free(dump); return 0; } uint8_t i = 0; for (; i < bytes_read / 8; i++) memcpy(iClass_Key_Table[i], dump + (i * 8), 8); free(dump); PrintAndLogEx(SUCCESS, "%u keys loaded", i); return 1; } static int saveKeys(char *filename) { FILE *f; f = fopen(filename, "wb"); if (!f) { PrintAndLogEx(NORMAL, "[!] error opening file %s\n", filename); return 0; } for (uint8_t i = 0; i < ICLASS_KEYS_MAX; i++) { if (fwrite(iClass_Key_Table[i], 8, 1, f) != 1) { PrintAndLogEx(WARNING, "save key failed to write to file: %s", filename); break; } } fclose(f); return 0; } static int printKeys(void) { PrintAndLogEx(NORMAL, ""); for (uint8_t i = 0; i < ICLASS_KEYS_MAX; i++) PrintAndLogEx(NORMAL, "%u: %s", i, sprint_hex(iClass_Key_Table[i], 8)); PrintAndLogEx(NORMAL, ""); return 0; } int CmdHFiClassManageKeys(const char *Cmd) { uint8_t keyNbr = 0; uint8_t dataLen = 0; uint8_t KEY[8] = {0}; char filename[FILE_PATH_SIZE]; uint8_t fileNameLen = 0; bool errors = false; uint8_t operation = 0; char tempStr[20]; uint8_t cmdp = 0; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_hf_iclass_managekeys(); case 'f': fileNameLen = param_getstr(Cmd, cmdp + 1, filename, sizeof(filename)); if (fileNameLen < 1) { PrintAndLogEx(WARNING, "No filename found after f"); errors = true; } cmdp += 2; break; case 'n': keyNbr = param_get8(Cmd, cmdp + 1); if (keyNbr >= ICLASS_KEYS_MAX) { PrintAndLogEx(WARNING, "Invalid block number"); errors = true; } cmdp += 2; break; case 'k': operation += 3; //set key dataLen = param_getstr(Cmd, cmdp + 1, tempStr, sizeof(tempStr)); if (dataLen == 16) { //ul-c or ev1/ntag key length errors = param_gethex(tempStr, 0, KEY, dataLen); } else { PrintAndLogEx(WARNING, "\nERROR: Key is incorrect length\n"); errors = true; } cmdp += 2; break; case 'p': operation += 4; //print keys in memory cmdp++; break; case 'l': operation += 5; //load keys from file cmdp++; break; case 's': operation += 6; //save keys to file cmdp++; break; default: PrintAndLogEx(WARNING, "unknown parameter '%c'\n", param_getchar(Cmd, cmdp)); errors = true; break; } } if (errors) return usage_hf_iclass_managekeys(); if (operation == 0) { PrintAndLogEx(WARNING, "no operation specified (load, save, or print)\n"); return usage_hf_iclass_managekeys(); } if (operation > 6) { PrintAndLogEx(WARNING, "Too many operations specified\n"); return usage_hf_iclass_managekeys(); } if (operation > 4 && fileNameLen == 0) { PrintAndLogEx(WARNING, "You must enter a filename when loading or saving\n"); return usage_hf_iclass_managekeys(); } switch (operation) { case 3: memcpy(iClass_Key_Table[keyNbr], KEY, 8); return 1; case 4: return printKeys(); case 5: return loadKeys(filename); case 6: return saveKeys(filename); break; } return 0; } int CmdHFiClassCheckKeys(const char *Cmd) { // empty string if (strlen(Cmd) == 0) return usage_hf_iclass_chk(); uint8_t CSN[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; uint8_t CCNR[12] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; // elite key, raw key, standard key bool use_elite = false; bool use_raw = false; bool use_credit_key = false; bool found_debit = false; //bool found_credit = false; bool got_csn = false; bool errors = false; uint8_t cmdp = 0x00; char filename[FILE_PATH_SIZE] = {0}; uint8_t fileNameLen = 0; uint8_t *keyBlock = NULL; iclass_premac_t *pre = NULL; int keycnt = 0; // time uint64_t t1 = msclock(); while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_hf_iclass_chk(); case 'f': fileNameLen = param_getstr(Cmd, cmdp + 1, filename, sizeof(filename)); if (fileNameLen < 1) { PrintAndLogEx(WARNING, "no filename found after f"); errors = true; } cmdp += 2; break; case 'e': use_elite = true; cmdp++; break; case 'c': use_credit_key = true; cmdp++; break; case 'r': use_raw = true; cmdp++; break; default: PrintAndLogEx(WARNING, "unknown parameter '%c'\n", param_getchar(Cmd, cmdp)); errors = true; break; } } if (errors) return usage_hf_iclass_chk(); // Get CSN / UID and CCNR PrintAndLogEx(SUCCESS, "Reading tag CSN"); for (uint8_t i = 0; i < 10 && !got_csn; i++) { if (select_only(CSN, CCNR, false, false)) { got_csn = true; } else { PrintAndLogEx(WARNING, "one more try\n"); } } if (!got_csn) { PrintAndLogEx(WARNING, "can't select card, aborting..."); return 1; } // load keys into keyblock int res = LoadDictionaryKeyFile(filename, &keyBlock, &keycnt); if (res > 0) { free(keyBlock); return 1; } pre = calloc(keycnt, sizeof(iclass_premac_t)); if (!pre) { free(keyBlock); return 1; } PrintAndLogEx(SUCCESS, "Generating diversified keys, MAC"); if (use_elite) PrintAndLogEx(SUCCESS, "Using elite algo"); if (use_raw) PrintAndLogEx(SUCCESS, "Using raw mode"); PrintAndLogEx(SUCCESS, "Searching for %s key", (use_credit_key) ? "CREDIT" : "DEBIT"); PrintAndLogEx(SUCCESS, "Tag info"); PrintAndLogEx(SUCCESS, "CSN | %s", sprint_hex(CSN, sizeof(CSN))); PrintAndLogEx(SUCCESS, "CCNR | %s", sprint_hex(CCNR, sizeof(CCNR))); res = GenerateMacFromKeyFile(CSN, CCNR, use_raw, use_elite, keyBlock, keycnt, pre); if (res > 0) { free(keyBlock); free(pre); return 1; } //PrintPreCalcMac(keyBlock, keycnt, pre); // max 42 keys inside USB_COMMAND. 512/4 = 103 mac uint32_t chunksize = keycnt > (USB_CMD_DATA_SIZE / 4) ? (USB_CMD_DATA_SIZE / 4) : keycnt; bool lastChunk = false; // main keychunk loop for (uint32_t i = 0; i < keycnt; i += chunksize) { uint64_t t2 = msclock(); uint8_t timeout = 0; if (ukbhit()) { int gc = getchar(); (void)gc; PrintAndLogEx(WARNING, "\n[!] Aborted via keyboard!\n"); goto out; } uint32_t keys = ((keycnt - i) > chunksize) ? chunksize : keycnt - i; // last chunk? if (keys == keycnt - i) lastChunk = true; UsbCommand c = {CMD_ICLASS_CHECK_KEYS, { (lastChunk << 8), keys, 0}}; // bit 16 // - 1 indicates credit key // - 0 indicates debit key (default) c.arg[0] |= (use_credit_key << 16); memcpy(c.d.asBytes, pre + i, 4 * keys); clearCommandBuffer(); SendCommand(&c); UsbCommand resp; while (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) { timeout++; printf("."); fflush(stdout); if (timeout > 120) { PrintAndLogEx(WARNING, "\nNo response from Proxmark. Aborting..."); goto out; } } uint8_t found = resp.arg[1] & 0xFF; uint8_t isOK = resp.arg[0] & 0xFF; t2 = msclock() - t2; switch (isOK) { case 1: { found_debit = true; PrintAndLogEx(NORMAL, "\n[-] Chunk [%d/%d]: %.1fs [%s] found key %s (index %u)" , i , keycnt , (float)(t2 / 1000.0) , (use_credit_key) ? "credit" : "debit" , sprint_hex(keyBlock + (i + found) * 8, 8) , found ); break; } case 0: { PrintAndLogEx(NORMAL, "\n[-] Chunk [%d/%d] : %.1fs [%s]" , i , keycnt , (float)(t2 / 1000.0) , (use_credit_key) ? "credit" : "debit" ); break; } case 99: { } default: break; } // both keys found. if (found_debit) { PrintAndLogEx(SUCCESS, "All keys found, exiting"); break; } } // end chunks of keys out: t1 = msclock() - t1; PrintAndLogEx(SUCCESS, "\nTime in iclass checkkeys: %.0f seconds\n", (float)t1 / 1000.0); DropField(); free(pre); free(keyBlock); return 0; } static int cmp_uint32(const void *a, const void *b) { const iclass_prekey_t *x = (const iclass_prekey_t *)a; const iclass_prekey_t *y = (const iclass_prekey_t *)b; uint32_t mx = bytes_to_num((uint8_t *)x->mac, 4); uint32_t my = bytes_to_num((uint8_t *)y->mac, 4); if (mx < my) return -1; else return mx > my; } // this method tries to identify in which configuration mode a iClass / iClass SE reader is in. // Standard or Elite / HighSecurity mode. It uses a default key dictionary list in order to work. int CmdHFiClassLookUp(const char *Cmd) { uint8_t CSN[8]; uint8_t EPURSE[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; uint8_t MACS[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; uint8_t CCNR[12]; uint8_t MAC_TAG[4] = { 0, 0, 0, 0 }; // elite key, raw key, standard key bool use_elite = false; bool use_raw = false; bool errors = false; uint8_t cmdp = 0x00; char filename[FILE_PATH_SIZE] = {0}; uint8_t fileNameLen = 0; uint8_t *keyBlock = NULL; iclass_prekey_t *prekey = NULL; int keycnt = 0, len = 0; // if empty string if (strlen(Cmd) == 0) errors = true; // time uint64_t t1 = msclock(); while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_hf_iclass_lookup(); case 'f': fileNameLen = param_getstr(Cmd, cmdp + 1, filename, sizeof(filename)); if (fileNameLen < 1) { PrintAndLogEx(WARNING, "No filename found after f"); errors = true; } cmdp += 2; break; case 'u': param_gethex_ex(Cmd, cmdp + 1, CSN, &len); if (len >> 1 != sizeof(CSN)) { PrintAndLogEx(WARNING, "Wrong CSN length, expected %d got [%d]", sizeof(CSN), len >> 1); errors = true; } cmdp += 2; break; case 'm': param_gethex_ex(Cmd, cmdp + 1, MACS, &len); if (len >> 1 != sizeof(MACS)) { PrintAndLogEx(WARNING, "Wrong MACS length, expected %d got [%d] ", sizeof(MACS), len >> 1); errors = true; } else { memcpy(MAC_TAG, MACS + 4, 4); } cmdp += 2; break; case 'p': param_gethex_ex(Cmd, cmdp + 1, EPURSE, &len); if (len >> 1 != sizeof(EPURSE)) { PrintAndLogEx(WARNING, "Wrong EPURSE length, expected %d got [%d] ", sizeof(EPURSE), len >> 1); errors = true; } cmdp += 2; break; case 'e': use_elite = true; cmdp++; break; case 'r': use_raw = true; cmdp++; break; default: PrintAndLogEx(WARNING, "unknown parameter '%c'\n", param_getchar(Cmd, cmdp)); errors = true; break; } } if (errors) return usage_hf_iclass_lookup(); // stupid copy.. CCNR is a combo of epurse and reader nonce memcpy(CCNR, EPURSE, 8); memcpy(CCNR + 8, MACS, 4); PrintAndLogEx(SUCCESS, "CSN | %s", sprint_hex(CSN, sizeof(CSN))); PrintAndLogEx(SUCCESS, "Epurse | %s", sprint_hex(EPURSE, sizeof(EPURSE))); PrintAndLogEx(SUCCESS, "MACS | %s", sprint_hex(MACS, sizeof(MACS))); PrintAndLogEx(SUCCESS, "CCNR | %s", sprint_hex(CCNR, sizeof(CCNR))); PrintAndLogEx(SUCCESS, "MAC_TAG | %s", sprint_hex(MAC_TAG, sizeof(MAC_TAG))); int res = LoadDictionaryKeyFile(filename, &keyBlock, &keycnt); if (res > 0) { free(keyBlock); return 1; } //iclass_prekey_t prekey = calloc(keycnt, sizeof(iclass_prekey_t)); if (!prekey) { free(keyBlock); return 1; } PrintAndLogEx(FAILED, "Generating diversified keys and MAC"); res = GenerateFromKeyFile(CSN, CCNR, use_raw, use_elite, keyBlock, keycnt, prekey); if (res > 0) { free(keyBlock); free(prekey); return 1; } PrintAndLogEx(FAILED, "Sorting"); // sort mac list. qsort(prekey, keycnt, sizeof(iclass_prekey_t), cmp_uint32); //PrintPreCalc(prekey, keycnt); PrintAndLogEx(FAILED, "Searching"); iclass_prekey_t *item; iclass_prekey_t lookup; memcpy(lookup.mac, MAC_TAG, 4); // binsearch item = (iclass_prekey_t *) bsearch(&lookup, prekey, keycnt, sizeof(iclass_prekey_t), cmp_uint32); if (item != NULL) PrintAndLogEx(SUCCESS, "\n[debit] found key %s", sprint_hex(item->key, 8)); t1 = msclock() - t1; PrintAndLogEx(NORMAL, "\nTime in iclass : %.0f seconds\n", (float)t1 / 1000.0); free(prekey); free(keyBlock); PrintAndLogEx(NORMAL, ""); return 0; } int LoadDictionaryKeyFile(char *filename, uint8_t **keys, int *keycnt) { char buf[17]; FILE *f; uint8_t *p; int keyitems = 0; if (!(f = fopen(filename, "r"))) { PrintAndLogEx(FAILED, "File: " _YELLOW_("%s") ": not found or locked.", filename); return 1; } while (fgets(buf, sizeof(buf), f)) { if (strlen(buf) < 16 || buf[15] == '\n') continue; //goto next line while (fgetc(f) != '\n' && !feof(f)) {}; //The line start with # is comment, skip if (buf[0] == '#') continue; // doesn't this only test first char only? if (!isxdigit(buf[0])) { PrintAndLogEx(ERR, "file content error. '%s' must include 16 HEX symbols", buf); continue; } // null terminator (skip the rest of the line) buf[16] = 0; p = realloc(*keys, 8 * (keyitems += 64)); if (!p) { PrintAndLogEx(ERR, "cannot allocate memory for default keys"); fclose(f); return 2; } *keys = p; memset(*keys + 8 * (*keycnt), 0, 8); num_to_bytes(strtoull(buf, NULL, 16), 8, *keys + 8 * (*keycnt)); (*keycnt)++; memset(buf, 0, sizeof(buf)); } fclose(f); PrintAndLogEx(SUCCESS, "Loaded " _GREEN_("%2d") " keys from %s", *keycnt, filename); return 0; } // precalc diversified keys and their MAC int GenerateMacFromKeyFile(uint8_t *CSN, uint8_t *CCNR, bool use_raw, bool use_elite, uint8_t *keys, int keycnt, iclass_premac_t *list) { uint8_t key[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; uint8_t div_key[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; for (int i = 0; i < keycnt; i++) { memcpy(key, keys + 8 * i, 8); if (use_raw) memcpy(div_key, key, 8); else HFiClassCalcDivKey(CSN, key, div_key, use_elite); doMAC(CCNR, div_key, list[i].mac); } return 0; } int GenerateFromKeyFile(uint8_t *CSN, uint8_t *CCNR, bool use_raw, bool use_elite, uint8_t *keys, int keycnt, iclass_prekey_t *list) { uint8_t div_key[8] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}; for (int i = 0; i < keycnt; i++) { memcpy(list[i].key, keys + 8 * i, 8); // generate diversifed key if (use_raw) memcpy(div_key, list[i].key, 8); else HFiClassCalcDivKey(CSN, list[i].key, div_key, use_elite); // generate MAC doMAC(CCNR, div_key, list[i].mac); } return 0; } // print diversified keys void PrintPreCalcMac(uint8_t *keys, int keycnt, iclass_premac_t *pre_list) { iclass_prekey_t *b = calloc(keycnt, sizeof(iclass_prekey_t)); if (!b) return; for (int i = 0; i < keycnt; i++) { memcpy(b[i].key, keys + 8 * i, 8); memcpy(b[i].mac, pre_list[i].mac, 4); } PrintPreCalc(b, keycnt); free(b); } void PrintPreCalc(iclass_prekey_t *list, int itemcnt) { PrintAndLogEx(NORMAL, "-----+------------------+---------"); PrintAndLogEx(NORMAL, "#key | key | mac"); PrintAndLogEx(NORMAL, "-----+------------------+---------"); for (int i = 0; i < itemcnt; i++) { if (i < 10) { PrintAndLogEx(NORMAL, "[%2d] | %016" PRIx64 " | %08" PRIx32, i, bytes_to_num(list[i].key, 8), bytes_to_num(list[i].mac, 4)); } else if (i == 10) { PrintAndLogEx(SUCCESS, "... skip printing the rest"); } } } static void permute(uint8_t *data, uint8_t len, uint8_t *output) { #define KEY_SIZE 8 if (len > KEY_SIZE) { for (uint8_t m = 0; m < len; m += KEY_SIZE) { permute(data + m, KEY_SIZE, output + m); } return; } if (len != KEY_SIZE) { PrintAndLogEx(NORMAL, "[!] wrong key size\n"); return; } uint8_t i, j, p, mask; for (i = 0; i < KEY_SIZE; ++i) { p = 0; mask = 0x80 >> i; for (j = 0; j < KEY_SIZE; ++j) { p >>= 1; if (data[j] & mask) p |= 0x80; } output[i] = p; } } static void permute_rev(uint8_t *data, uint8_t len, uint8_t *output) { permute(data, len, output); permute(output, len, data); permute(data, len, output); } static void simple_crc(uint8_t *data, uint8_t len, uint8_t *output) { uint8_t crc = 0; for (uint8_t i = 0; i < len; ++i) { // seventh byte contains the crc. if ((i & 0x7) == 0x7) { output[i] = crc ^ 0xFF; crc = 0; } else { output[i] = data[i]; crc ^= data[i]; } } } // DES doesn't use the MSB. static void shave(uint8_t *data, uint8_t len) { for (uint8_t i = 0; i < len; ++i) data[i] &= 0xFE; } static void generate_rev(uint8_t *data, uint8_t len) { uint8_t *key = calloc(len, sizeof(uint8_t)); PrintAndLogEx(SUCCESS, "input permuted key | %s \n", sprint_hex(data, len)); permute_rev(data, len, key); PrintAndLogEx(SUCCESS, " unpermuted key | %s \n", sprint_hex(key, len)); shave(key, len); PrintAndLogEx(SUCCESS, " key | %s \n", sprint_hex(key, len)); free(key); } static void generate(uint8_t *data, uint8_t len) { uint8_t *key = calloc(len, sizeof(uint8_t)); uint8_t *pkey = calloc(len, sizeof(uint8_t)); PrintAndLogEx(SUCCESS, " input key | %s \n", sprint_hex(data, len)); permute(data, len, pkey); PrintAndLogEx(SUCCESS, "permuted key | %s \n", sprint_hex(pkey, len)); simple_crc(pkey, len, key); PrintAndLogEx(SUCCESS, " CRC'ed key | %s \n", sprint_hex(key, len)); free(key); free(pkey); } int CmdHFiClassPermuteKey(const char *Cmd) { uint8_t key[8] = {0}; uint8_t key_std_format[8] = {0}; uint8_t key_iclass_format[8] = {0}; uint8_t data[16] = {0}; bool isReverse = false; int len = 0; char cmdp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) == 0 || cmdp == 'h') return usage_hf_iclass_permutekey(); isReverse = (cmdp == 'r'); param_gethex_ex(Cmd, 1, data, &len); if (len % 2) return usage_hf_iclass_permutekey(); len >>= 1; memcpy(key, data, 8); if (isReverse) { generate_rev(data, len); permutekey_rev(key, key_std_format); PrintAndLogEx(SUCCESS, "holiman iclass key | %s \n", sprint_hex(key_std_format, 8)); } else { generate(data, len); permutekey(key, key_iclass_format); PrintAndLogEx(SUCCESS, "holiman std key | %s \n", sprint_hex(key_iclass_format, 8)); } return 0; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"calcnewkey", CmdHFiClassCalcNewKey, 1, "[options..] Calc Diversified keys (blocks 3 & 4) to write new keys"}, {"chk", CmdHFiClassCheckKeys, 1, " Check keys"}, {"clone", CmdHFiClassCloneTag, 0, "[options..] Authenticate and Clone from iClass bin file"}, {"decrypt", CmdHFiClassDecrypt, 1, "[f <fname>] Decrypt tagdump" }, {"dump", CmdHFiClassReader_Dump, 0, "[options..] Authenticate and Dump iClass tag's AA1"}, {"eload", CmdHFiClassELoad, 0, "[f <fname>] (experimental) Load data into iClass emulator memory"}, {"encryptblk", CmdHFiClassEncryptBlk, 1, "<BlockData> Encrypt given block data"}, {"list", CmdHFiClassList, 0, " (Deprecated) List iClass history"}, {"loclass", CmdHFiClass_loclass, 1, "[options..] Use loclass to perform bruteforce of reader attack dump"}, {"lookup", CmdHFiClassLookUp, 1, "[options..] Uses authentication trace to check for key in dictionary file"}, {"managekeys", CmdHFiClassManageKeys, 1, "[options..] Manage the keys to use with iClass"}, {"permutekey", CmdHFiClassPermuteKey, 0, " Permute function from 'heart of darkness' paper"}, {"readblk", CmdHFiClass_ReadBlock, 0, "[options..] Authenticate and Read iClass block"}, {"reader", CmdHFiClassReader, 0, " Act like an iClass reader"}, {"readtagfile", CmdHFiClassReadTagFile, 1, "[options..] Display Content from tagfile"}, {"replay", CmdHFiClassReader_Replay, 0, "<mac> Read an iClass tag via Reply Attack"}, {"sim", CmdHFiClassSim, 0, "[options..] Simulate iClass tag"}, {"sniff", CmdHFiClassSniff, 0, " Eavesdrop iClass communication"}, {"writeblk", CmdHFiClass_WriteBlock, 0, "[options..] Authenticate and Write iClass block"}, {NULL, NULL, 0, NULL} }; int CmdHFiClass(const char *Cmd) { clearCommandBuffer(); CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }