//----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // High frequency Legic commands //----------------------------------------------------------------------------- #include #include #include "proxmark3.h" #include "data.h" #include "ui.h" #include "cmdparser.h" #include "cmdhflegic.h" #include "cmdmain.h" #include "util.h" #include "crc.h" static int CmdHelp(const char *Cmd); int usage_legic_calccrc8(void){ PrintAndLog("Calculates the legic crc8 on the input hexbytes."); PrintAndLog("There must be an even number of hexsymbols as input."); PrintAndLog("Usage: hf legic crc8 "); PrintAndLog("Options :"); PrintAndLog(" : hex bytes in a string"); PrintAndLog(""); PrintAndLog("Sample : hf legic crc8 deadbeef1122"); return 0; } int usage_legic_load(void){ PrintAndLog("It loads datasamples from the file `filename` to device memory"); PrintAndLog("Usage: hf legic load "); PrintAndLog(" sample: hf legic load filename"); return 0; } /* * Output BigBuf and deobfuscate LEGIC RF tag data. * This is based on information given in the talk held * by Henryk Ploetz and Karsten Nohl at 26c3 */ int CmdLegicDecode(const char *Cmd) { // Index for the bytearray. int i = 0; int k = 0, segmentNum; int segment_len = 0; int segment_flag = 0; uint8_t stamp_len = 0; int crc = 0; int wrp = 0; int wrc = 0; uint8_t data_buf[1200]; // receiver buffer, should be 1024.. char token_type[4]; // copy data from proxmark into buffer GetFromBigBuf(data_buf, sizeof(data_buf), 0); if ( !WaitForResponseTimeout(CMD_ACK, NULL, 2000)){ PrintAndLog("Command execute timeout"); return 1; } // Output CDF System area (9 bytes) plus remaining header area (12 bytes) crc = data_buf[4]; uint32_t calc_crc = CRC8Legic(data_buf, 4); PrintAndLog("\nCDF: System Area"); PrintAndLog("------------------------------------------------------"); PrintAndLog("MCD: %02x, MSN: %02x %02x %02x, MCC: %02x %s", data_buf[0], data_buf[1], data_buf[2], data_buf[3], data_buf[4], (calc_crc == crc) ? "OK":"Fail" ); switch (data_buf[5] & 0x7f) { case 0x00 ... 0x2f: strncpy(token_type, "IAM",sizeof(token_type)); break; case 0x30 ... 0x6f: strncpy(token_type, "SAM",sizeof(token_type)); break; case 0x70 ... 0x7f: strncpy(token_type, "GAM",sizeof(token_type)); break; default: strncpy(token_type, "???",sizeof(token_type)); break; } stamp_len = 0xfc - data_buf[6]; PrintAndLog("DCF: %02x %02x, Token Type=%s (OLE=%01u), Stamp len=%02u", data_buf[5], data_buf[6], token_type, (data_buf[5]&0x80)>>7, stamp_len ); PrintAndLog("WRP=%02u, WRC=%01u, RD=%01u, raw=%02x, SSC=%02x", data_buf[7]&0x0f, (data_buf[7]&0x70)>>4, (data_buf[7]&0x80)>>7, data_buf[7], data_buf[8] ); PrintAndLog("Remaining Header Area"); PrintAndLog("%s", sprint_hex(data_buf+9, 13)); uint8_t segCrcBytes[8] = {0x00}; uint32_t segCalcCRC = 0; uint32_t segCRC = 0; // see if user area is xored or just zeros. int numOfZeros = 0; for (int index=22; index < 256; ++index){ if ( data_buf[index] == 0x00 ) ++numOfZeros; } // if possible zeros is less then 60%, lets assume data is xored // 256 - 22 (header) = 234 // 1024 - 22 (header) = 1002 int isXored = (numOfZeros*100/stamp_len) < 50; PrintAndLog("is data xored? %d ( %d %)", isXored, (numOfZeros*100/stamp_len)); print_hex_break( data_buf, 33, 16); PrintAndLog("\nADF: User Area"); PrintAndLog("------------------------------------------------------"); i = 22; // 64 potential segements // how to detect there is no segments?!? for ( segmentNum=0; segmentNum<64; segmentNum++ ) { segment_len = ((data_buf[i+1]^crc)&0x0f) * 256 + (data_buf[i]^crc); segment_flag = ((data_buf[i+1]^crc)&0xf0)>>4; wrp = (data_buf[i+2]^crc); wrc = ((data_buf[i+3]^crc)&0x70)>>4; bool hasWRC = (wrc > 0); bool hasWRP = (wrp > wrc); int wrp_len = (wrp - wrc); int remain_seg_payload_len = (segment_len - wrp - 5); // validate segment-crc segCrcBytes[0]=data_buf[0]; //uid0 segCrcBytes[1]=data_buf[1]; //uid1 segCrcBytes[2]=data_buf[2]; //uid2 segCrcBytes[3]=data_buf[3]; //uid3 segCrcBytes[4]=(data_buf[i]^crc); //hdr0 segCrcBytes[5]=(data_buf[i+1]^crc); //hdr1 segCrcBytes[6]=(data_buf[i+2]^crc); //hdr2 segCrcBytes[7]=(data_buf[i+3]^crc); //hdr3 segCalcCRC = CRC8Legic(segCrcBytes, 8); segCRC = data_buf[i+4]^crc; PrintAndLog("Segment %02u \nraw header | 0x%02X 0x%02X 0x%02X 0x%02X \nSegment len: %u, Flag: 0x%X (valid:%01u, last:%01u), WRP: %02u, WRC: %02u, RD: %01u, CRC: 0x%02X (%s)", segmentNum, data_buf[i]^crc, data_buf[i+1]^crc, data_buf[i+2]^crc, data_buf[i+3]^crc, segment_len, segment_flag, (segment_flag & 0x4) >> 2, (segment_flag & 0x8) >> 3, wrp, wrc, ((data_buf[i+3]^crc) & 0x80) >> 7, segCRC, ( segCRC == segCalcCRC ) ? "OK" : "fail" ); i += 5; if ( hasWRC ) { PrintAndLog("WRC protected area: (I %d | K %d| WRC %d)", i, k, wrc); PrintAndLog("\nrow | data"); PrintAndLog("-----+------------------------------------------------"); // de-xor? if not zero, assume it needs xoring. if ( isXored) { for ( k=i; k < wrc; ++k) data_buf[k] ^= crc; } print_hex_break( data_buf+i, wrc, 16); i += wrc; } if ( hasWRP ) { PrintAndLog("Remaining write protected area: (I %d | K %d | WRC %d | WRP %d WRP_LEN %d)",i, k, wrc, wrp, wrp_len); PrintAndLog("\nrow | data"); PrintAndLog("-----+------------------------------------------------"); if (isXored) { for (k=i; k < wrp_len; ++k) data_buf[k] ^= crc; } print_hex_break( data_buf+i, wrp_len, 16); i += wrp_len; // does this one work? if( wrp_len == 8 ) PrintAndLog("Card ID: %2X%02X%02X", data_buf[i-4]^crc, data_buf[i-3]^crc, data_buf[i-2]^crc); } PrintAndLog("Remaining segment payload: (I %d | K %d | Remain LEN %d)", i, k, remain_seg_payload_len); PrintAndLog("\nrow | data"); PrintAndLog("-----+------------------------------------------------"); if ( isXored ) { for ( k=i; k < remain_seg_payload_len; ++k) data_buf[k] ^= crc; } print_hex_break( data_buf+i, remain_seg_payload_len, 16); i += remain_seg_payload_len; PrintAndLog("-----+------------------------------------------------\n"); // end with last segment if (segment_flag & 0x8) return 0; } // end for loop return 0; } int CmdLegicRFRead(const char *Cmd) { int byte_count=0, offset=0; sscanf(Cmd, "%i %i", &offset, &byte_count); if(byte_count == 0) byte_count = -1; if(byte_count + offset > 1024) byte_count = 1024 - offset; UsbCommand c= {CMD_READER_LEGIC_RF, {offset, byte_count, 0}}; clearCommandBuffer(); SendCommand(&c); return 0; } int CmdLegicLoad(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); if ( cmdp == 'H' || cmdp == 'h' || cmdp == 0x00) return usage_legic_load(); char filename[FILE_PATH_SIZE] = {0x00}; int len = strlen(Cmd); if (len > FILE_PATH_SIZE) { PrintAndLog("Filepath too long (was %s bytes), max allowed is %s ", len, FILE_PATH_SIZE); return 0; } memcpy(filename, Cmd, len); FILE *f = fopen(filename, "r"); if(!f) { PrintAndLog("couldn't open '%s'", Cmd); return -1; } char line[80]; int offset = 0; uint8_t data[USB_CMD_DATA_SIZE] = {0x00}; int index = 0; int totalbytes = 0; while ( fgets(line, sizeof(line), f) ) { int res = sscanf(line, "%x %x %x %x %x %x %x %x", (unsigned int *)&data[index], (unsigned int *)&data[index + 1], (unsigned int *)&data[index + 2], (unsigned int *)&data[index + 3], (unsigned int *)&data[index + 4], (unsigned int *)&data[index + 5], (unsigned int *)&data[index + 6], (unsigned int *)&data[index + 7]); if(res != 8) { PrintAndLog("Error: could not read samples"); fclose(f); return -1; } index += res; if ( index == USB_CMD_DATA_SIZE ){ // PrintAndLog("sent %d | %d | %d", index, offset, totalbytes); UsbCommand c = { CMD_DOWNLOADED_SIM_SAMPLES_125K, {offset, 0, 0}}; memcpy(c.d.asBytes, data, sizeof(data)); clearCommandBuffer(); SendCommand(&c); if ( !WaitForResponseTimeout(CMD_ACK, NULL, 1500)){ PrintAndLog("Command execute timeout"); fclose(f); return 1; } offset += index; totalbytes += index; index = 0; } } fclose(f); // left over bytes? if ( index != 0 ) { UsbCommand c = { CMD_DOWNLOADED_SIM_SAMPLES_125K, {offset, 0, 0}}; memcpy(c.d.asBytes, data, 8); clearCommandBuffer(); SendCommand(&c); if ( !WaitForResponseTimeout(CMD_ACK, NULL, 1500)){ PrintAndLog("Command execute timeout"); return 1; } totalbytes += index; } PrintAndLog("loaded %u samples", totalbytes); return 0; } int CmdLegicSave(const char *Cmd) { int requested = 1024; int offset = 0; int delivered = 0; char filename[FILE_PATH_SIZE]; uint8_t got[1024] = {0x00}; sscanf(Cmd, " %s %i %i", filename, &requested, &offset); /* If no length given save entire legic read buffer */ /* round up to nearest 8 bytes so the saved data can be used with legicload */ if (requested == 0) requested = 1024; if (requested % 8 != 0) { int remainder = requested % 8; requested = requested + 8 - remainder; } if (offset + requested > sizeof(got)) { PrintAndLog("Tried to read past end of buffer, + > 1024"); return 0; } GetFromBigBuf(got, requested, offset); if ( !WaitForResponseTimeout(CMD_ACK, NULL, 2000)){ PrintAndLog("Command execute timeout"); return 1; } FILE *f = fopen(filename, "w"); if(!f) { PrintAndLog("couldn't open '%s'", Cmd+1); return -1; } for (int j = 0; j < requested; j += 8) { fprintf(f, "%02x %02x %02x %02x %02x %02x %02x %02x\n", got[j+0], got[j+1], got[j+2], got[j+3], got[j+4], got[j+5], got[j+6], got[j+7] ); delivered += 8; if (delivered >= requested) break; } fclose(f); PrintAndLog("saved %u samples", delivered); return 0; } //TODO: write a help text (iceman) int CmdLegicRfSim(const char *Cmd) { UsbCommand c = {CMD_SIMULATE_TAG_LEGIC_RF, {6,3,0}}; sscanf(Cmd, " %"lli" %"lli" %"lli, &c.arg[0], &c.arg[1], &c.arg[2]); clearCommandBuffer(); SendCommand(&c); return 0; } //TODO: write a help text (iceman) int CmdLegicRfWrite(const char *Cmd) { UsbCommand c = {CMD_WRITER_LEGIC_RF}; int res = sscanf(Cmd, " 0x%"llx" 0x%"llx, &c.arg[0], &c.arg[1]); if(res != 2) { PrintAndLog("Please specify the offset and length as two hex strings"); return -1; } clearCommandBuffer(); SendCommand(&c); return 0; } int CmdLegicRfFill(const char *Cmd) { UsbCommand cmd = {CMD_WRITER_LEGIC_RF}; int res = sscanf(Cmd, " 0x%"llx" 0x%"llx" 0x%"llx, &cmd.arg[0], &cmd.arg[1], &cmd.arg[2]); if(res != 3) { PrintAndLog("Please specify the offset, length and value as two hex strings"); return -1; } int i; UsbCommand c = {CMD_DOWNLOADED_SIM_SAMPLES_125K, {0, 0, 0}}; for(i = 0; i < 48; i++) { c.d.asBytes[i] = cmd.arg[2]; } for(i = 0; i < 22; i++) { c.arg[0] = i*48; SendCommand(&c); WaitForResponse(CMD_ACK,NULL); } clearCommandBuffer(); SendCommand(&cmd); return 0; } int CmdLegicCalcCrc8(const char *Cmd){ int len = strlen(Cmd); if (len & 1 ) return usage_legic_calccrc8(); // add 1 for null terminator. uint8_t *data = malloc(len+1); if ( data == NULL ) return 1; if (!param_gethex(Cmd, 0, data, len )) return usage_legic_calccrc8(); uint32_t checksum = CRC8Legic(data, len/2); PrintAndLog("Bytes: %s || CRC8: %X", sprint_hex(data, len/2), checksum ); free(data); return 0; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"decode", CmdLegicDecode, 0, "Display deobfuscated and decoded LEGIC RF tag data (use after hf legic reader)"}, {"read", CmdLegicRFRead, 0, "[offset][length] -- read bytes from a LEGIC card"}, {"save", CmdLegicSave, 0, " [] -- Store samples"}, {"load", CmdLegicLoad, 0, " -- Restore samples"}, {"sim", CmdLegicRfSim, 0, "[phase drift [frame drift [req/resp drift]]] Start tag simulator (use after load or read)"}, {"write", CmdLegicRfWrite,0, " -- Write sample buffer (user after load or read)"}, {"fill", CmdLegicRfFill, 0, " -- Fill/Write tag with constant value"}, {"crc8", CmdLegicCalcCrc8, 1, "Calculate Legic CRC8 over given hexbytes"}, {NULL, NULL, 0, NULL} }; int CmdHFLegic(const char *Cmd) { clearCommandBuffer(); CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }