//----------------------------------------------------------------------------- // Jonathan Westhues, Sept 2005 // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Utility functions used in many places, not specific to any piece of code. //----------------------------------------------------------------------------- #include "proxmark3.h" #include "util.h" #include "string.h" #include "apps.h" size_t nbytes(size_t nbits) { return (nbits/8)+((nbits%8)>0); } uint32_t SwapBits(uint32_t value, int nrbits) { int i; uint32_t newvalue = 0; for(i = 0; i < nrbits; i++) { newvalue ^= ((value >> i) & 1) << (nrbits - 1 - i); } return newvalue; } void num_to_bytes(uint64_t n, size_t len, uint8_t* dest) { while (len--) { dest[len] = (uint8_t) n; n >>= 8; } } uint64_t bytes_to_num(uint8_t* src, size_t len) { uint64_t num = 0; while (len--) { num = (num << 8) | (*src); src++; } return num; } void LEDsoff() { LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF(); } // LEDs: R(C) O(A) G(B) -- R(D) [1, 2, 4 and 8] void LED(int led, int ms) { if (led & LED_RED) LED_C_ON(); if (led & LED_ORANGE) LED_A_ON(); if (led & LED_GREEN) LED_B_ON(); if (led & LED_RED2) LED_D_ON(); if (!ms) return; SpinDelay(ms); if (led & LED_RED) LED_C_OFF(); if (led & LED_ORANGE) LED_A_OFF(); if (led & LED_GREEN) LED_B_OFF(); if (led & LED_RED2) LED_D_OFF(); } // Determine if a button is double clicked, single clicked, // not clicked, or held down (for ms || 1sec) // In general, don't use this function unless you expect a // double click, otherwise it will waste 500ms -- use BUTTON_HELD instead int BUTTON_CLICKED(int ms) { // Up to 500ms in between clicks to mean a double click int ticks = (48000 * (ms ? ms : 1000)) >> 10; // If we're not even pressed, forget about it! if (!BUTTON_PRESS()) return BUTTON_NO_CLICK; // Borrow a PWM unit for my real-time clock AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0); // 48 MHz / 1024 gives 46.875 kHz AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10); AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0; AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff; uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; int letoff = 0; for(;;) { uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; // We haven't let off the button yet if (!letoff) { // We just let it off! if (!BUTTON_PRESS()) { letoff = 1; // reset our timer for 500ms start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; ticks = (48000 * (500)) >> 10; } // Still haven't let it off else // Have we held down a full second? if (now == (uint16_t)(start + ticks)) return BUTTON_HOLD; } // We already let off, did we click again? else // Sweet, double click! if (BUTTON_PRESS()) return BUTTON_DOUBLE_CLICK; // Have we ran out of time to double click? else if (now == (uint16_t)(start + ticks)) // At least we did a single click return BUTTON_SINGLE_CLICK; WDT_HIT(); } // We should never get here return BUTTON_ERROR; } // Determine if a button is held down int BUTTON_HELD(int ms) { // If button is held for one second int ticks = (48000 * (ms ? ms : 1000)) >> 10; // If we're not even pressed, forget about it! if (!BUTTON_PRESS()) return BUTTON_NO_CLICK; // Borrow a PWM unit for my real-time clock AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0); // 48 MHz / 1024 gives 46.875 kHz AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10); AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0; AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff; uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; for(;;) { uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; // As soon as our button let go, we didn't hold long enough if (!BUTTON_PRESS()) return BUTTON_SINGLE_CLICK; // Have we waited the full second? else if (now == (uint16_t)(start + ticks)) return BUTTON_HOLD; WDT_HIT(); } // We should never get here return BUTTON_ERROR; } // attempt at high resolution microsecond timer // beware: timer counts in 21.3uS increments (1024/48Mhz) void SpinDelayUs(int us) { int ticks = (48*us) >> 10; // Borrow a PWM unit for my real-time clock AT91C_BASE_PWMC->PWMC_ENA = PWM_CHANNEL(0); // 48 MHz / 1024 gives 46.875 kHz AT91C_BASE_PWMC_CH0->PWMC_CMR = PWM_CH_MODE_PRESCALER(10); AT91C_BASE_PWMC_CH0->PWMC_CDTYR = 0; AT91C_BASE_PWMC_CH0->PWMC_CPRDR = 0xffff; uint16_t start = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; for(;;) { uint16_t now = AT91C_BASE_PWMC_CH0->PWMC_CCNTR; if (now == (uint16_t)(start + ticks)) return; WDT_HIT(); } } void SpinDelay(int ms) { // convert to uS and call microsecond delay function SpinDelayUs(ms*1000); } /* Similar to FpgaGatherVersion this formats stored version information * into a string representation. It takes a pointer to the struct version_information, * verifies the magic properties, then stores a formatted string, prefixed by * prefix in dst. */ void FormatVersionInformation(char *dst, int len, const char *prefix, void *version_information) { struct version_information *v = (struct version_information*)version_information; dst[0] = 0; strncat(dst, prefix, len); if(v->magic != VERSION_INFORMATION_MAGIC) { strncat(dst, "Missing/Invalid version information", len - strlen(dst) - 1); return; } if(v->versionversion != 1) { strncat(dst, "Version information not understood", len - strlen(dst) - 1); return; } if(!v->present) { strncat(dst, "Version information not available", len - strlen(dst) - 1); return; } strncat(dst, v->gitversion, len - strlen(dst) - 1); if(v->clean == 0) { strncat(dst, "-unclean", len - strlen(dst) - 1); } else if(v->clean == 2) { strncat(dst, "-suspect", len - strlen(dst) - 1); } strncat(dst, " ", len - strlen(dst) - 1); strncat(dst, v->buildtime, len - strlen(dst) - 1); } // ------------------------------------------------------------------------- // timer lib // ------------------------------------------------------------------------- // test procedure: // // ti = GetTickCount(); // SpinDelay(1000); // ti = GetTickCount() - ti; // Dbprintf("timer(1s): %d t=%d", ti, GetTickCount()); void StartTickCount() { // must be 0x40, but on my cpu - included divider is optimal // 0x20 - 1 ms / bit // 0x40 - 2 ms / bit AT91C_BASE_RTTC->RTTC_RTMR = AT91C_RTTC_RTTRST + 0x001D; // was 0x003B } /* * Get the current count. */ uint32_t RAMFUNC GetTickCount(){ return AT91C_BASE_RTTC->RTTC_RTVR;// was * 2; } // ------------------------------------------------------------------------- // microseconds timer // ------------------------------------------------------------------------- void StartCountUS() { AT91C_BASE_PMC->PMC_PCER |= (0x1 << 12) | (0x1 << 13) | (0x1 << 14); // AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC1XC1S_TIOA0; AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE; // fast clock AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK | // MCK(48MHz)/32 -- tick=1.5mks AT91C_TC_WAVE | AT91C_TC_WAVESEL_UP_AUTO | AT91C_TC_ACPA_CLEAR | AT91C_TC_ACPC_SET | AT91C_TC_ASWTRG_SET; AT91C_BASE_TC0->TC_RA = 1; AT91C_BASE_TC0->TC_RC = 0xBFFF + 1; // 0xC000 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // timer disable AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_XC1; // from timer 0 AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN; AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN; AT91C_BASE_TCB->TCB_BCR = 1; } uint32_t RAMFUNC GetCountUS(){ return (AT91C_BASE_TC1->TC_CV * 0x8000) + ((AT91C_BASE_TC0->TC_CV / 15) * 10); } static uint32_t GlobalUsCounter = 0; uint32_t RAMFUNC GetDeltaCountUS(){ uint32_t g_cnt = GetCountUS(); uint32_t g_res = g_cnt - GlobalUsCounter; GlobalUsCounter = g_cnt; return g_res; } // ------------------------------------------------------------------------- // Timer for iso14443 commands. Uses ssp_clk from FPGA // ------------------------------------------------------------------------- void StartCountSspClk() { AT91C_BASE_PMC->PMC_PCER = (1 << AT91C_ID_TC0) | (1 << AT91C_ID_TC1) | (1 << AT91C_ID_TC2); // Enable Clock to all timers AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_TIOA1 // XC0 Clock = TIOA1 | AT91C_TCB_TC1XC1S_NONE // XC1 Clock = none | AT91C_TCB_TC2XC2S_TIOA0; // XC2 Clock = TIOA0 // configure TC1 to create a short pulse on TIOA1 when a rising edge on TIOB1 (= ssp_clk from FPGA) occurs: AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKDIS; // disable TC1 AT91C_BASE_TC1->TC_CMR = AT91C_TC_CLKS_TIMER_DIV1_CLOCK // TC1 Clock = MCK(48MHz)/2 = 24MHz | AT91C_TC_CPCSTOP // Stop clock on RC compare | AT91C_TC_EEVTEDG_RISING // Trigger on rising edge of Event | AT91C_TC_EEVT_TIOB // Event-Source: TIOB1 (= ssp_clk from FPGA = 13,56MHz/16) | AT91C_TC_ENETRG // Enable external trigger event | AT91C_TC_WAVESEL_UP // Upmode without automatic trigger on RC compare | AT91C_TC_WAVE // Waveform Mode | AT91C_TC_AEEVT_SET // Set TIOA1 on external event | AT91C_TC_ACPC_CLEAR; // Clear TIOA1 on RC Compare AT91C_BASE_TC1->TC_RC = 0x04; // RC Compare value = 0x04 // use TC0 to count TIOA1 pulses AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // disable TC0 AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_XC0 // TC0 clock = XC0 clock = TIOA1 | AT91C_TC_WAVE // Waveform Mode | AT91C_TC_WAVESEL_UP // just count | AT91C_TC_ACPA_CLEAR // Clear TIOA0 on RA Compare | AT91C_TC_ACPC_SET; // Set TIOA0 on RC Compare AT91C_BASE_TC0->TC_RA = 1; // RA Compare value = 1; pulse width to TC2 AT91C_BASE_TC0->TC_RC = 0; // RC Compare value = 0; increment TC2 on overflow // use TC2 to count TIOA0 pulses (giving us a 32bit counter (TC0/TC2) clocked by ssp_clk) AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKDIS; // disable TC2 AT91C_BASE_TC2->TC_CMR = AT91C_TC_CLKS_XC2 // TC2 clock = XC2 clock = TIOA0 | AT91C_TC_WAVE // Waveform Mode | AT91C_TC_WAVESEL_UP; // just count AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN; // enable TC0 AT91C_BASE_TC1->TC_CCR = AT91C_TC_CLKEN; // enable TC1 AT91C_BASE_TC2->TC_CCR = AT91C_TC_CLKEN; // enable TC2 // // synchronize the counter with the ssp_frame signal. Note: FPGA must be in any iso14446 mode, otherwise the frame signal would not be present // while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME)); // wait for ssp_frame to go high (start of frame) while(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_FRAME); // wait for ssp_frame to be low while(!(AT91C_BASE_PIOA->PIO_PDSR & GPIO_SSC_CLK)); // wait for ssp_clk to go high // note: up to now two ssp_clk rising edges have passed since the rising edge of ssp_frame // it is now safe to assert a sync signal. This sets all timers to 0 on next active clock edge AT91C_BASE_TCB->TCB_BCR = 1; // assert Sync (set all timers to 0 on next active clock edge) // at the next (3rd) ssp_clk rising edge, TC1 will be reset (and not generate a clock signal to TC0) // at the next (4th) ssp_clk rising edge, TC0 (the low word of our counter) will be reset. From now on, // whenever the last three bits of our counter go 0, we can be sure to be in the middle of a frame transfer. // (just started with the transfer of the 4th Bit). // The high word of the counter (TC2) will not reset until the low word (TC0) overflows. Therefore need to wait quite some time before // we can use the counter. while (AT91C_BASE_TC0->TC_CV < 0xFFF0); } uint32_t RAMFUNC GetCountSspClk(){ uint32_t tmp_count; tmp_count = (AT91C_BASE_TC2->TC_CV << 16) | AT91C_BASE_TC0->TC_CV; if ((tmp_count & 0x0000ffff) == 0) { //small chance that we may have missed an increment in TC2 return (AT91C_BASE_TC2->TC_CV << 16); } else { return tmp_count; } }