//-----------------------------------------------------------------------------
// Jonathan Westhues, split Nov 2006
//
// This code is licensed to you under the terms of the GNU GPL, version 2 or,
// at your option, any later version. See the LICENSE.txt file for the text of
// the license.
//-----------------------------------------------------------------------------
// Routines to support ISO 14443B. This includes both the reader software and
// the `fake tag' modes.
//-----------------------------------------------------------------------------
#include "iso14443b.h"

#include "proxmark3_arm.h"
#include "common.h"  // access to global variable: DBGLEVEL
#include "util.h"
#include "string.h"
#include "crc16.h"
#include "protocols.h"
#include "appmain.h"
#include "BigBuf.h"
#include "cmd.h"
#include "fpgaloader.h"
#include "commonutil.h"
#include "dbprint.h"
#include "ticks.h"

#ifndef FWT_TIMEOUT_14B
// defaults to 2000ms
# define FWT_TIMEOUT_14B 35312
#endif
#ifndef ISO14443B_DMA_BUFFER_SIZE
# define ISO14443B_DMA_BUFFER_SIZE 256
#endif
#ifndef RECEIVE_MASK
# define RECEIVE_MASK  (ISO14443B_DMA_BUFFER_SIZE-1)
#endif

// Guard Time (per 14443-2)
#ifndef TR0
# define TR0 0
#endif

// Synchronization time (per 14443-2)
#ifndef TR1
# define TR1 0
#endif
// Frame Delay Time PICC to PCD  (per 14443-3 Amendment 1)
#ifndef TR2
# define TR2 0
#endif

// 4sample
#define SEND4STUFFBIT(x) ToSendStuffBit(x);ToSendStuffBit(x);ToSendStuffBit(x);ToSendStuffBit(x);
//#define SEND4STUFFBIT(x) ToSendStuffBit(x);
// iceman, this threshold value,  what makes 8 a good amplitude for this IQ values?
#ifndef SUBCARRIER_DETECT_THRESHOLD
# define SUBCARRIER_DETECT_THRESHOLD 8
#endif

static void iso14b_set_timeout(uint32_t timeout);
static void iso14b_set_maxframesize(uint16_t size);

// the block number for the ISO14443-4 PCB  (used with APDUs)
static uint8_t pcb_blocknum = 0;
static uint32_t iso14b_timeout = FWT_TIMEOUT_14B;

//=============================================================================
// An ISO 14443 Type B tag. We listen for commands from the reader, using
// a  kind of thing that's implemented in software. When we get a
// frame (i.e., a group of bytes between SOF and EOF), we check the CRC.
// If it's good, then we can do something appropriate with it, and send
// a response.
//=============================================================================


//-----------------------------------------------------------------------------
// The software  that receives commands from the reader, and its state variables.
//-----------------------------------------------------------------------------
static struct {
    enum {
        STATE_14B_UNSYNCD,
        STATE_14B_GOT_FALLING_EDGE_OF_SOF,
        STATE_14B_AWAITING_START_BIT,
        STATE_14B_RECEIVING_DATA
    }       state;
    uint16_t shiftReg;
    int      bitCnt;
    int      byteCnt;
    int      byteCntMax;
    int      posCnt;
    uint8_t  *output;
} Uart;

static void Uart14bReset() {
    Uart.state = STATE_14B_UNSYNCD;
    Uart.shiftReg = 0;
    Uart.bitCnt = 0;
    Uart.byteCnt = 0;
    Uart.byteCntMax = MAX_FRAME_SIZE;
    Uart.posCnt = 0;
}

static void Uart14bInit(uint8_t *data) {
    Uart.output = data;
    Uart14bReset();
// memset(Uart.output, 0x00, MAX_FRAME_SIZE);
}

//-----------------------------------------------------------------------------
// The software Demod that receives commands from the tag, and its state variables.
//-----------------------------------------------------------------------------
static struct {
    enum {
        DEMOD_UNSYNCD,
        DEMOD_PHASE_REF_TRAINING,
        DEMOD_AWAITING_FALLING_EDGE_OF_SOF,
        DEMOD_GOT_FALLING_EDGE_OF_SOF,
        DEMOD_AWAITING_START_BIT,
        DEMOD_RECEIVING_DATA
    }       state;
    uint16_t bitCount;
    int      posCount;
    int      thisBit;
    /* this had been used to add RSSI (Received Signal Strength Indication) to traces. Currently not implemented.
        int     metric;
        int     metricN;
    */
    uint16_t shiftReg;
    uint8_t  *output;
    uint16_t len;
    int      sumI;
    int      sumQ;
    uint32_t startTime, endTime;
} Demod;

// Clear out the state of the "UART" that receives from the tag.
static void Demod14bReset() {
    Demod.state = DEMOD_UNSYNCD;
    Demod.bitCount = 0;
    Demod.posCount = 0;
    Demod.thisBit = 0;
    Demod.shiftReg = 0;
    Demod.len = 0;
    Demod.sumI = 0;
    Demod.sumQ = 0;
    Demod.startTime = 0;
    Demod.endTime = 0;
}

static void Demod14bInit(uint8_t *data) {
    Demod.output = data;
    Demod14bReset();
    // memset(Demod.output, 0x00, MAX_FRAME_SIZE);
}


/*
* 9.4395 us = 1 ETU  and clock is about 1.5 us
* 13560000Hz
* 1000ms/s
* timeout in ETUs (time to transfer 1 bit, 9.4395 us)
*
* Formula to calculate FWT (in ETUs) by timeout (in ms):
* fwt = 13560000 * 1000 / (8*16) * timeout;
* Sample:  3sec == 3000ms
*  13560000 * 1000 / (8*16) * 3000  ==
*    13560000000 / 384000 = 35312 FWT
* @param timeout is in frame wait time, fwt, measured in ETUs
*/
static void iso14b_set_timeout(uint32_t timeout) {
#define MAX_TIMEOUT 40542464  // 13560000Hz * 1000ms / (2^32-1) * (8*16)
    if (timeout > MAX_TIMEOUT)
        timeout = MAX_TIMEOUT;

    iso14b_timeout = timeout;
    if (DBGLEVEL >= 3) Dbprintf("ISO14443B Timeout set to %ld fwt", iso14b_timeout);
}
static void iso14b_set_maxframesize(uint16_t size) {
    if (size > 256)
        size = MAX_FRAME_SIZE;

    Uart.byteCntMax = size;
    if (DBGLEVEL >= 3) Dbprintf("ISO14443B Max frame size set to %d bytes", Uart.byteCntMax);
}

//-----------------------------------------------------------------------------
// Code up a string of octets at layer 2 (including CRC, we don't generate
// that here) so that they can be transmitted to the reader. Doesn't transmit
// them yet, just leaves them ready to send in ToSend[].
//-----------------------------------------------------------------------------
static void CodeIso14443bAsTag(const uint8_t *cmd, int len) {
    /* ISO 14443 B
    *
    * Reader to card | ASK  - Amplitude Shift Keying Modulation (PCD to PICC for Type B) (NRZ-L encodig)
    * Card to reader | BPSK - Binary Phase Shift Keying Modulation, (PICC to PCD for Type B)
    *
    * fc - carrier frequency 13.56 MHz
    * TR0 - Guard Time per 14443-2
    * TR1 - Synchronization Time per 14443-2
    * TR2 - PICC to PCD Frame Delay Time (per 14443-3 Amendment 1)
    *
    * Elementary Time Unit (ETU) is
    * - 128 Carrier Cycles (9.4395 µS) = 8 Subcarrier Units
    * - 1 ETU = 1 bit
    * - 10 ETU = 1 startbit, 8 databits, 1 stopbit (10bits length)
    * - startbit is a 0
    * - stopbit is a 1
    *
    * Start of frame (SOF) is
    * - [10-11] ETU of ZEROS, unmodulated time
    * - [2-3] ETU of ONES,
    *
    * End of frame (EOF) is
    * - [10-11] ETU of ZEROS, unmodulated time
    *
    *  -TO VERIFY THIS BELOW-
    * The mode FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK which we use to simulate tag
    * works like this:
    * - A 1-bit input to the FPGA becomes 8 pulses at 847.5kHz (1.18µS / pulse) == 9.44us
    * - A 0-bit input to the FPGA becomes an unmodulated time of 1.18µS  or does it become 8 nonpulses for 9.44us
    *
    * FPGA doesn't seem to work with ETU.  It seems to work with pulse / duration instead.
    *
    * Card sends data ub 847.e kHz subcarrier
    * subcar |duration| FC division
    * -------+--------+------------
    * 106kHz | 9.44µS | FC/128
    * 212kHz | 4.72µS | FC/64
    * 424kHz | 2.36µS | FC/32
    * 848kHz | 1.18µS | FC/16
    * -------+--------+------------
    *
    *  Reader data transmission:
    *   - no modulation ONES
    *   - SOF
    *   - Command, data and CRC_B
    *   - EOF
    *   - no modulation ONES
    *
    *  Card data transmission
    *   - TR1
    *   - SOF
    *   - data  (each bytes is:  1startbit, 8bits, 1stopbit)
    *   - CRC_B
    *   - EOF
    *
    * FPGA implementation :
    * At this point only Type A is implemented. This means that we are using a
    * bit rate of 106 kbit/s, or fc/128. Oversample by 4, which ought to make
    * things practical for the ARM (fc/32, 423.8 kbits/s, ~50 kbytes/s)
    *
    */

    ToSendReset();

    // Transmit a burst of ones, as the initial thing that lets the
    // reader get phase sync.
    // This loop is TR1, per specification
    // TR1 minimum must be > 80/fs
    // TR1 maximum 200/fs
    // 80/fs < TR1 < 200/fs
    // 10 ETU < TR1 < 24 ETU

    // Send SOF.
    // 10-11 ETU * 4times samples ZEROS
    for (int i = 0; i < 10; i++) { SEND4STUFFBIT(0); }
    //for(i = 0; i < 10; i++) { ToSendStuffBit(0); }

    // 2-3 ETU * 4times samples ONES
    for (int i = 0; i < 3; i++)  { SEND4STUFFBIT(1); }
    //for(i = 0; i < 3; i++)  { ToSendStuffBit(1); }

    // data
    for (int i = 0; i < len; ++i) {

        // Start bit
        SEND4STUFFBIT(0);
        //ToSendStuffBit(0);

        // Data bits
        uint8_t b = cmd[i];
        for (int j = 0; j < 8; ++j) {
            // if(b & 1) {
            // SEND4STUFFBIT(1);
            // //ToSendStuffBit(1);
            // } else {
            // SEND4STUFFBIT(0);
            // //ToSendStuffBit(0);
            // }
            SEND4STUFFBIT(b & 1);
            b >>= 1;
        }

        // Stop bit
        SEND4STUFFBIT(1);
        //ToSendStuffBit(1);

        // Extra Guard bit
        // For PICC it ranges 0-18us (1etu = 9us)
        SEND4STUFFBIT(1);
        //ToSendStuffBit(1);
    }

    // Send EOF.
    // 10-11 ETU * 4 sample rate = ZEROS
    for (int i = 0; i < 10; i++) { SEND4STUFFBIT(0); }
    //for(i = 0; i < 10; i++) { ToSendStuffBit(0); }

    // why this?
    for (int i = 0; i < 40; i++) { SEND4STUFFBIT(1); }
    //for(i = 0; i < 40; i++) { ToSendStuffBit(1); }

    // Convert from last byte pos to length
    ++ToSendMax;
}


/* Receive & handle a bit coming from the reader.
 *
 * This function is called 4 times per bit (every 2 subcarrier cycles).
 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 2,36us
 *
 * LED handling:
 * LED A -> ON once we have received the SOF and are expecting the rest.
 * LED A -> OFF once we have received EOF or are in error state or unsynced
 *
 * Returns: true if we received a EOF
 *          false if we are still waiting for some more
 */
static RAMFUNC int Handle14443bReaderUartBit(uint8_t bit) {
    switch (Uart.state) {
        case STATE_14B_UNSYNCD:
            if (!bit) {
                // we went low, so this could be the beginning of an SOF
                Uart.state = STATE_14B_GOT_FALLING_EDGE_OF_SOF;
                Uart.posCnt = 0;
                Uart.bitCnt = 0;
            }
            break;

        case STATE_14B_GOT_FALLING_EDGE_OF_SOF:
            Uart.posCnt++;
            if (Uart.posCnt == 2) { // sample every 4 1/fs in the middle of a bit
                if (bit) {
                    if (Uart.bitCnt > 9) {
                        // we've seen enough consecutive
                        // zeros that it's a valid SOF
                        Uart.posCnt = 0;
                        Uart.byteCnt = 0;
                        Uart.state = STATE_14B_AWAITING_START_BIT;
                        LED_A_ON(); // Indicate we got a valid SOF
                    } else {
                        // didn't stay down long enough before going high, error
                        Uart.state = STATE_14B_UNSYNCD;
                    }
                } else {
                    // do nothing, keep waiting
                }
                Uart.bitCnt++;
            }
            if (Uart.posCnt >= 4) Uart.posCnt = 0;
            if (Uart.bitCnt > 12) {
                // Give up if we see too many zeros without a one, too.
                LED_A_OFF();
                Uart.state = STATE_14B_UNSYNCD;
            }
            break;

        case STATE_14B_AWAITING_START_BIT:
            Uart.posCnt++;
            if (bit) {
                if (Uart.posCnt > 50 / 2) { // max 57us between characters = 49 1/fs, max 3 etus after low phase of SOF = 24 1/fs
                    // stayed high for too long between characters, error
                    Uart.state = STATE_14B_UNSYNCD;
                }
            } else {
                // falling edge, this starts the data byte
                Uart.posCnt = 0;
                Uart.bitCnt = 0;
                Uart.shiftReg = 0;
                Uart.state = STATE_14B_RECEIVING_DATA;
            }
            break;

        case STATE_14B_RECEIVING_DATA:
            Uart.posCnt++;
            if (Uart.posCnt == 2) {
                // time to sample a bit
                Uart.shiftReg >>= 1;
                if (bit) {
                    Uart.shiftReg |= 0x200;
                }
                Uart.bitCnt++;
            }
            if (Uart.posCnt >= 4) {
                Uart.posCnt = 0;
            }
            if (Uart.bitCnt == 10) {
                if ((Uart.shiftReg & 0x200) && !(Uart.shiftReg & 0x001)) {
                    // this is a data byte, with correct
                    // start and stop bits
                    Uart.output[Uart.byteCnt] = (Uart.shiftReg >> 1) & 0xff;
                    Uart.byteCnt++;

                    if (Uart.byteCnt >= Uart.byteCntMax) {
                        // Buffer overflowed, give up
                        LED_A_OFF();
                        Uart.state = STATE_14B_UNSYNCD;
                    } else {
                        // so get the next byte now
                        Uart.posCnt = 0;
                        Uart.state = STATE_14B_AWAITING_START_BIT;
                    }
                } else if (Uart.shiftReg == 0x000) {
                    // this is an EOF byte
                    LED_A_OFF(); // Finished receiving
                    Uart.state = STATE_14B_UNSYNCD;
                    if (Uart.byteCnt != 0)
                        return true;

                } else {
                    // this is an error
                    LED_A_OFF();
                    Uart.state = STATE_14B_UNSYNCD;
                }
            }
            break;

        default:
            LED_A_OFF();
            Uart.state = STATE_14B_UNSYNCD;
            break;
    }
    return false;
}

//-----------------------------------------------------------------------------
// Receive a command (from the reader to us, where we are the simulated tag),
// and store it in the given buffer, up to the given maximum length. Keeps
// spinning, waiting for a well-framed command, until either we get one
// (returns true) or someone presses the pushbutton on the board (false).
//
// Assume that we're called with the SSC (to the FPGA) and ADC path set
// correctly.
//-----------------------------------------------------------------------------
static int GetIso14443bCommandFromReader(uint8_t *received, uint16_t *len) {
    // Set FPGA mode to "simulated ISO 14443B tag", no modulation (listen
    // only, since we are receiving, not transmitting).
    // Signal field is off with the appropriate LED
    LED_D_OFF();
    FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_NO_MODULATION);

    StartCountSspClk();

    volatile uint8_t b;

    // clear receiving shift register and holding register
    // What does this loop do? Is it TR1?
    // loop is a wait/delay  ?
    /*
        for(uint8_t c = 0; c < 10;) {

            // keep tx buffer in a defined state anyway.
            if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
                AT91C_BASE_SSC->SSC_THR = 0xFF;
                ++c;
            }
        }
        */
    // Now run a `software UART' on the stream of incoming samples.
    Uart14bInit(received);

    uint8_t mask;
    while (!BUTTON_PRESS()) {
        WDT_HIT();

        // keep tx buffer in a defined state anyway.
        if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
            AT91C_BASE_SSC->SSC_THR = 0x00;
        }

        // Wait for byte be become available in rx holding register
        if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY) {

            b = (uint8_t) AT91C_BASE_SSC->SSC_RHR;

            for (mask = 0x80; mask != 0; mask >>= 1) {
                if (Handle14443bReaderUartBit(b & mask)) {
                    *len = Uart.byteCnt;
                    return true;
                }
            }
        }
    }
    return false;
}

void ClearFpgaShiftingRegisters(void) {

    volatile uint8_t b;

    // clear receiving shift register and holding register
    while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) {};

    b = AT91C_BASE_SSC->SSC_RHR;
    (void) b;

    while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) {};

    b = AT91C_BASE_SSC->SSC_RHR;
    (void) b;

    // wait for the FPGA to signal fdt_indicator == 1 (the FPGA is ready to queue new data in its delay line)
    for (uint8_t j = 0; j < 5; j++) { // allow timeout - better late than never
        while (!(AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)) {};
        if (AT91C_BASE_SSC->SSC_RHR) break;
    }

    // Clear TXRDY:
    //AT91C_BASE_SSC->SSC_THR = 0xFF;
}

void WaitForFpgaDelayQueueIsEmpty(uint16_t delay) {
    // Ensure that the FPGA Delay Queue is empty before we switch to TAGSIM_LISTEN again:
    uint8_t fpga_queued_bits = delay >> 3;  // twich /8 ??   >>3,
    for (uint8_t i = 0; i <= fpga_queued_bits / 8 + 1;) {
        if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
            AT91C_BASE_SSC->SSC_THR = 0xFF;
            i++;
        }
    }
}

static void TransmitFor14443b_AsTag(uint8_t *response, uint16_t len) {

    volatile uint32_t b;

    // Signal field is off with the appropriate LED
    LED_D_OFF();
    //uint16_t fpgasendQueueDelay = 0;

    // Modulate BPSK
    FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_BPSK);
    SpinDelay(40);

    ClearFpgaShiftingRegisters();

    FpgaSetupSsc();

    // Transmit the response.
    for (uint16_t i = 0; i < len;) {

        // Put byte into tx holding register as soon as it is ready
        if (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_TXRDY) {
            AT91C_BASE_SSC->SSC_THR = response[++i];
        }

        // Prevent rx holding register from overflowing
        if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) {
            b = AT91C_BASE_SSC->SSC_RHR;
            (void)b;
        }
    }

    //WaitForFpgaDelayQueueIsEmpty(fpgasendQueueDelay);
    AT91C_BASE_SSC->SSC_THR = 0xFF;
}
//-----------------------------------------------------------------------------
// Main loop of simulated tag: receive commands from reader, decide what
// response to send, and send it.
//-----------------------------------------------------------------------------
void SimulateIso14443bTag(uint32_t pupi) {

    // setup device.
    FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
    // connect Demodulated Signal to ADC:
    SetAdcMuxFor(GPIO_MUXSEL_HIPKD);
    // Set up the synchronous serial port
    FpgaSetupSsc();

    // allocate command receive buffer
    BigBuf_free();
    BigBuf_Clear_ext(false);

    clear_trace(); //sim
    set_tracing(true);

    uint16_t len, cmdsReceived = 0;
    int cardSTATE = SIM_NOFIELD;
    int vHf = 0; // in mV
    // uint32_t time_0 = 0;
    // uint32_t t2r_time = 0;
    // uint32_t r2t_time = 0;
    uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE);

    // the only commands we understand is WUPB, AFI=0, Select All, N=1:
// static const uint8_t cmdWUPB[] = { ISO14443B_REQB, 0x00, 0x08, 0x39, 0x73 }; // WUPB
    // ... and REQB, AFI=0, Normal Request, N=1:
// static const uint8_t cmdREQB[] = { ISO14443B_REQB, 0x00, 0x00, 0x71, 0xFF }; // REQB
    // ... and ATTRIB
// static const uint8_t cmdATTRIB[] = { ISO14443B_ATTRIB, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; // ATTRIB

    // ... if not PUPI/UID is supplied we always respond with ATQB, PUPI = 820de174, Application Data = 0x20381922,
    // supports only 106kBit/s in both directions, max frame size = 32Bytes,
    // supports ISO14443-4, FWI=8 (77ms), NAD supported, CID not supported:
    uint8_t respATQB[] = {  0x50, 0x82, 0x0d, 0xe1, 0x74, 0x20, 0x38, 0x19,
                            0x22, 0x00, 0x21, 0x85, 0x5e, 0xd7
                         };

    // response to HLTB and ATTRIB
    static const uint8_t respOK[] = {0x00, 0x78, 0xF0};

    // ...PUPI/UID supplied from user. Adjust ATQB response accordingly
    if (pupi > 0) {
        num_to_bytes(pupi, 4, respATQB + 1);
        AddCrc14B(respATQB, 12);
    }

    // prepare "ATQB" tag answer (encoded):
    CodeIso14443bAsTag(respATQB, sizeof(respATQB));
    uint8_t *encodedATQB = BigBuf_malloc(ToSendMax);
    uint16_t encodedATQBLen = ToSendMax;
    memcpy(encodedATQB, ToSend, ToSendMax);


    // prepare "OK" tag answer (encoded):
    CodeIso14443bAsTag(respOK, sizeof(respOK));
    uint8_t *encodedOK = BigBuf_malloc(ToSendMax);
    uint16_t encodedOKLen = ToSendMax;
    memcpy(encodedOK, ToSend, ToSendMax);

    // Simulation loop
    while (!BUTTON_PRESS() && !data_available()) {
        WDT_HIT();

        // find reader field
        if (cardSTATE == SIM_NOFIELD) {
            vHf = (MAX_ADC_HF_VOLTAGE * AvgAdc(ADC_CHAN_HF)) >> 10;
            if (vHf > MF_MINFIELDV) {
                cardSTATE = SIM_IDLE;
                LED_A_ON();
            }
        }
        if (cardSTATE == SIM_NOFIELD) continue;

        // Get reader command
        if (!GetIso14443bCommandFromReader(receivedCmd, &len)) {
            Dbprintf("button pressed, received %d commands", cmdsReceived);
            break;
        }

        // ISO14443-B protocol states:
        // REQ or WUP request in ANY state
        // WUP in HALTED state
        if (len == 5) {
            if ((receivedCmd[0] == ISO14443B_REQB && (receivedCmd[2] & 0x8) == 0x8 && cardSTATE == SIM_HALTED) ||
                    receivedCmd[0] == ISO14443B_REQB) {
                LogTrace(receivedCmd, len, 0, 0, NULL, true);
                cardSTATE = SIM_SELECTING;
            }
        }

        /*
        * How should this flow go?
        *  REQB or WUPB
        *   send response  ( waiting for Attrib)
        *  ATTRIB
        *   send response  ( waiting for commands 7816)
        *  HALT
            send halt response ( waiting for wupb )
        */

        switch (cardSTATE) {
            //case SIM_NOFIELD:
            case SIM_HALTED:
            case SIM_IDLE: {
                LogTrace(receivedCmd, len, 0, 0, NULL, true);
                break;
            }
            case SIM_SELECTING: {
                TransmitFor14443b_AsTag(encodedATQB, encodedATQBLen);
                LogTrace(respATQB, sizeof(respATQB), 0, 0, NULL, false);
                cardSTATE = SIM_WORK;
                break;
            }
            case SIM_HALTING: {
                TransmitFor14443b_AsTag(encodedOK, encodedOKLen);
                LogTrace(respOK, sizeof(respOK), 0, 0, NULL, false);
                cardSTATE = SIM_HALTED;
                break;
            }
            case SIM_ACKNOWLEDGE: {
                TransmitFor14443b_AsTag(encodedOK, encodedOKLen);
                LogTrace(respOK, sizeof(respOK), 0, 0, NULL, false);
                cardSTATE = SIM_IDLE;
                break;
            }
            case SIM_WORK: {
                if (len == 7 && receivedCmd[0] == ISO14443B_HALT) {
                    cardSTATE = SIM_HALTED;
                } else if (len == 11 && receivedCmd[0] == ISO14443B_ATTRIB) {
                    cardSTATE = SIM_ACKNOWLEDGE;
                } else {
                    // Todo:
                    // - SLOT MARKER
                    // - ISO7816
                    // - emulate with a memory dump
                    Dbprintf("new cmd from reader: len=%d, cmdsRecvd=%d", len, cmdsReceived);

                    // CRC Check
                    if (len >= 3) { // if crc exists

                        if (!check_crc(CRC_14443_B, receivedCmd, len))
                            DbpString("+++CRC fail");
                        else
                            DbpString("CRC passes");
                    }
                    cardSTATE = SIM_IDLE;
                }
                break;
            }
            default:
                break;
        }

        ++cmdsReceived;
    }
    if (DBGLEVEL >= 2)
        Dbprintf("Emulator stopped. Trace length: %d ", BigBuf_get_traceLen());
    switch_off(); //simulate
}

//=============================================================================
// An ISO 14443 Type B reader. We take layer two commands, code them
// appropriately, and then send them to the tag. We then listen for the
// tag's response, which we leave in the buffer to be demodulated on the
// PC side.
//=============================================================================

/*
 * Handles reception of a bit from the tag
 *
 * This function is called 2 times per bit (every 4 subcarrier cycles).
 * Subcarrier frequency fs is 848kHz, 1/fs = 1,18us, i.e. function is called every 4,72us
 *
 * LED handling:
 * LED C -> ON once we have received the SOF and are expecting the rest.
 * LED C -> OFF once we have received EOF or are unsynced
 *
 * Returns: true if we received a EOF
 *          false if we are still waiting for some more
 *
 */
static RAMFUNC int Handle14443bTagSamplesDemod(int ci, int cq) {
    int v = 0, myI = ABS(ci), myQ = ABS(cq);

// The soft decision on the bit uses an estimate of just the
// quadrant of the reference angle, not the exact angle.
#define MAKE_SOFT_DECISION() { \
        if (Demod.sumI > 0) { \
            v = ci; \
        } else { \
            v = -ci; \
        } \
        if (Demod.sumQ > 0) { \
            v += cq; \
        } else { \
            v -= cq; \
        } \
    }

// Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by abs(ci) + abs(cq)
// Subcarrier amplitude v = sqrt(ci^2 + cq^2), approximated here by max(abs(ci),abs(cq)) + 1/2*min(abs(ci),abs(cq)))
#define CHECK_FOR_SUBCARRIER_old() { \
        if (ci < 0) { \
            if (cq < 0) { /* ci < 0, cq < 0 */ \
                if (cq < ci) { \
                    v = -cq - (ci >> 1); \
                } else { \
                    v = -ci - (cq >> 1); \
                } \
            } else { /* ci < 0, cq >= 0 */ \
                if (cq < -ci) { \
                    v = -ci + (cq >> 1); \
                } else { \
                    v = cq - (ci >> 1); \
                } \
            } \
        } else { \
            if (cq < 0) { /* ci >= 0, cq < 0 */ \
                if (-cq < ci) { \
                    v = ci - (cq >> 1); \
                } else { \
                    v = -cq + (ci >> 1); \
                } \
            } else { /* ci >= 0, cq >= 0 */ \
                if (cq < ci) { \
                    v = ci + (cq >> 1); \
                } else { \
                    v = cq + (ci >> 1); \
                } \
            } \
        } \
    }

//note: couldn't we just use MAX(ABS(ci),ABS(cq)) + (MIN(ABS(ci),ABS(cq))/2) from common.h - marshmellow
#define CHECK_FOR_SUBCARRIER() { v = MAX(myI, myQ) + (MIN(myI, myQ) >> 1); }

    switch (Demod.state) {
        case DEMOD_UNSYNCD:

            CHECK_FOR_SUBCARRIER();

            // subcarrier detected

            if (v > SUBCARRIER_DETECT_THRESHOLD) {
                Demod.state = DEMOD_PHASE_REF_TRAINING;
                Demod.sumI = ci;
                Demod.sumQ = cq;
                Demod.posCount = 1;
            }
            break;

        case DEMOD_PHASE_REF_TRAINING:
            if (Demod.posCount < 8) {

                CHECK_FOR_SUBCARRIER();

                if (v > SUBCARRIER_DETECT_THRESHOLD) {
                    // set the reference phase (will code a logic '1') by averaging over 32 1/fs.
                    // note: synchronization time > 80 1/fs
                    Demod.sumI += ci;
                    Demod.sumQ += cq;
                    Demod.posCount++;
                } else {
                    // subcarrier lost
                    Demod.state = DEMOD_UNSYNCD;
                }
            } else {
                Demod.state = DEMOD_AWAITING_FALLING_EDGE_OF_SOF;
            }
            break;

        case DEMOD_AWAITING_FALLING_EDGE_OF_SOF:

            MAKE_SOFT_DECISION();

            if (v < 0) { // logic '0' detected
                Demod.state = DEMOD_GOT_FALLING_EDGE_OF_SOF;
                Demod.posCount = 0; // start of SOF sequence
            } else {
                // maximum length of TR1 = 200 1/fs
                if (Demod.posCount > 200 / 4) Demod.state = DEMOD_UNSYNCD;
            }
            Demod.posCount++;
            break;

        case DEMOD_GOT_FALLING_EDGE_OF_SOF:
            Demod.posCount++;

            MAKE_SOFT_DECISION();

            if (v > 0) {
                // low phase of SOF too short (< 9 etu). Note: spec is >= 10, but FPGA tends to "smear" edges
                if (Demod.posCount < 9 * 2) {
                    Demod.state = DEMOD_UNSYNCD;
                } else {
                    LED_C_ON(); // Got SOF
                    Demod.state = DEMOD_AWAITING_START_BIT;
                    Demod.posCount = 0;
                    Demod.len = 0;
                }
            } else {
                // low phase of SOF too long (> 12 etu)
                if (Demod.posCount > 14 * 2) {
                    Demod.state = DEMOD_UNSYNCD;
                    LED_C_OFF();
                }
            }
            break;

        case DEMOD_AWAITING_START_BIT:
            Demod.posCount++;

            MAKE_SOFT_DECISION();

            if (v > 0) {
                if (Demod.posCount > 6 * 2) {   // max 19us between characters = 16 1/fs, max 3 etu after low phase of SOF = 24 1/fs
                    Demod.state = DEMOD_UNSYNCD;
                    LED_C_OFF();
                }
            } else {                            // start bit detected
                Demod.bitCount = 0;
                Demod.posCount = 1;             // this was the first half
                Demod.thisBit = v;
                Demod.shiftReg = 0;
                Demod.state = DEMOD_RECEIVING_DATA;
            }
            break;

        case DEMOD_RECEIVING_DATA:

            MAKE_SOFT_DECISION();

            if (Demod.posCount == 0) {
                // first half of bit
                Demod.thisBit = v;
                Demod.posCount = 1;
            } else {
                // second half of bit
                Demod.thisBit += v;
                Demod.shiftReg >>= 1;

                // OR in a logic '1'
                if (Demod.thisBit > 0)
                    Demod.shiftReg |= 0x200;

                Demod.bitCount++;

                // 1 start 8 data 1 stop = 10
                if (Demod.bitCount == 10) {

                    uint16_t s = Demod.shiftReg;

                    // stop bit == '1', start bit == '0'
                    if ((s & 0x200) && (s & 0x001) == 0) {
                        // left shift to drop the startbit
                        uint8_t b = (s >> 1);
                        Demod.output[Demod.len] = b;
                        ++Demod.len;
                        Demod.state = DEMOD_AWAITING_START_BIT;
                    } else {
                        // this one is a bit hard,  either its a correc byte or its unsynced.
                        Demod.state = DEMOD_UNSYNCD;
                        LED_C_OFF();

                        // This is EOF (start, stop and all data bits == '0'
                        if (s == 0) return true;
                    }
                }
                Demod.posCount = 0;
            }
            break;

        default:
            Demod.state = DEMOD_UNSYNCD;
            LED_C_OFF();
            break;
    }
    return false;
}


/*
 *  Demodulate the samples we received from the tag, also log to tracebuffer
 *  quiet: set to 'TRUE' to disable debug output
 */
static void GetTagSamplesFor14443bDemod() {
    bool finished = false;
//    int lastRxCounter = ISO14443B_DMA_BUFFER_SIZE;
    uint32_t time_0 = 0, time_stop = 0;

    BigBuf_free();

    // Set up the demodulator for tag -> reader responses.
    Demod14bInit(BigBuf_malloc(MAX_FRAME_SIZE));

    // The DMA buffer, used to stream samples from the FPGA
    int8_t *dmaBuf = (int8_t *) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE);
    int8_t *upTo = dmaBuf;

    // Setup and start DMA.
    if (!FpgaSetupSscDma((uint8_t *) dmaBuf, ISO14443B_DMA_BUFFER_SIZE)) {
        if (DBGLEVEL > 1) Dbprintf("FpgaSetupSscDma failed. Exiting");
        return;
    }

    // And put the FPGA in the appropriate mode
    FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ);

    // get current clock
    time_0 = GetCountSspClk();

    // rx counter - dma counter? (how much?) & (mod) mask > 2. (since 2bytes at the time is read)
    while (!finished) {

        LED_A_INV();
        WDT_HIT();

        // LSB is a fpga signal bit.
        int ci = upTo[0];
        int cq = upTo[1];
        upTo += 2;
//        lastRxCounter -= 2;

        // restart DMA buffer to receive again.
        if (upTo >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) {
            upTo = dmaBuf;
//            lastRxCounter = ISO14443B_DMA_BUFFER_SIZE;
            AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) upTo;
            AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE;
        }

        // https://github.com/Proxmark/proxmark3/issues/103
        bool gotFrame =  Handle14443bTagSamplesDemod(ci, cq);
        time_stop = GetCountSspClk() - time_0;

        finished = (time_stop > iso14b_timeout || gotFrame);
    }

    FpgaDisableSscDma();

    if (upTo)
        upTo = NULL;

    if (Demod.len > 0)
        LogTrace(Demod.output, Demod.len, time_0, time_stop, NULL, false);
}

//-----------------------------------------------------------------------------
// Transmit the command (to the tag) that was placed in ToSend[].
//-----------------------------------------------------------------------------
static void TransmitFor14443b_AsReader(void) {
    int c;

    FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
    SpinDelay(60);

    // What does this loop do? Is it TR1?
    // 0xFF = 8 bits of 1.    1 bit == 1Etu,..
    // loop 10 * 8 = 80 ETU of delay, with a non modulated signal.  why?
    // 80*9 = 720us.

    for (c = 0; c < 50;) {

        if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
            AT91C_BASE_SSC->SSC_THR = 0xFF;
            c++;
        }
    }

    // Send frame loop
    for (c = 0; c < ToSendMax;) {

        // Put byte into tx holding register as soon as it is ready
        if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) {
            AT91C_BASE_SSC->SSC_THR = ToSend[c++];
        }
    }
    WDT_HIT();
}

//-----------------------------------------------------------------------------
// Code a layer 2 command (string of octets, including CRC) into ToSend[],
// so that it is ready to transmit to the tag using TransmitFor14443b().
//-----------------------------------------------------------------------------
static void CodeIso14443bAsReader(const uint8_t *cmd, int len) {
    /*
    *  Reader data transmission:
    *   - no modulation ONES
    *   - SOF
    *   - Command, data and CRC_B
    *   - EOF
    *   - no modulation ONES
    *
    *   1 ETU == 1 BIT!
    *   TR0 - 8 ETUS minimum.
    *
    *   QUESTION:  how long is a 1 or 0 in pulses in the xcorr_848 mode?
    *              1 "stuffbit" = 1ETU (9us)
    */

    ToSendReset();

    // Send SOF
    // 10-11 ETUs of ZERO
    for (int i = 0; i < 10; ++i) ToSendStuffBit(0);

    // 2-3 ETUs of ONE
    ToSendStuffBit(1);
    ToSendStuffBit(1);
//  ToSendStuffBit(1);

    // Sending cmd, LSB
    // from here we add BITS
    for (int i = 0; i < len; ++i) {
        // Start bit
        ToSendStuffBit(0);
        // Data bits
        uint8_t b = cmd[i];
        // if (  b & 1 )    ToSendStuffBit(1); else ToSendStuffBit(0);
        // if ( (b>>1) & 1) ToSendStuffBit(1); else ToSendStuffBit(0);
        // if ( (b>>2) & 1) ToSendStuffBit(1); else ToSendStuffBit(0);
        // if ( (b>>3) & 1) ToSendStuffBit(1); else ToSendStuffBit(0);
        // if ( (b>>4) & 1) ToSendStuffBit(1); else ToSendStuffBit(0);
        // if ( (b>>5) & 1) ToSendStuffBit(1); else ToSendStuffBit(0);
        // if ( (b>>6) & 1) ToSendStuffBit(1); else ToSendStuffBit(0);
        // if ( (b>>7) & 1) ToSendStuffBit(1); else ToSendStuffBit(0);

        ToSendStuffBit(b & 1);
        ToSendStuffBit((b >> 1) & 1);
        ToSendStuffBit((b >> 2) & 1);
        ToSendStuffBit((b >> 3) & 1);
        ToSendStuffBit((b >> 4) & 1);
        ToSendStuffBit((b >> 5) & 1);
        ToSendStuffBit((b >> 6) & 1);
        ToSendStuffBit((b >> 7) & 1);

        // Stop bit
        ToSendStuffBit(1);
        // EGT extra guard time
        // For PCD it ranges 0-57us (1etu = 9us)
        ToSendStuffBit(1);
        ToSendStuffBit(1);
        ToSendStuffBit(1);
    }

    // Send EOF
    // 10-11 ETUs of ZERO
    for (int i = 0; i < 10; ++i) ToSendStuffBit(0);

    // Transition time. TR0 - guard time
    // 8ETUS minum?
    // Per specification, Subcarrier must be stopped no later than 2 ETUs after EOF.
    // I'm guessing this is for the FPGA to be able to send all bits before we switch to listening mode
    for (int i = 0; i < 24 ; ++i) ToSendStuffBit(1);

    // TR1 - Synchronization time
    // Convert from last character reference to length
    ToSendMax++;
}

/*
*  Convenience function to encode, transmit and trace iso 14443b comms
*/
static void CodeAndTransmit14443bAsReader(const uint8_t *cmd, int len) {

    uint32_t time_start = GetCountSspClk();

    CodeIso14443bAsReader(cmd, len);

    TransmitFor14443b_AsReader();

    if (trigger) LED_A_ON();

    LogTrace(cmd, len, time_start, GetCountSspClk() - time_start, NULL, true);
}

/* Sends an APDU to the tag
 * TODO: check CRC and preamble
 */
uint8_t iso14443b_apdu(uint8_t const *message, size_t message_length, uint8_t *response) {

    uint8_t message_frame[message_length + 4];
    // PCB
    message_frame[0] = 0x0A | pcb_blocknum;
    pcb_blocknum ^= 1;
    // CID
    message_frame[1] = 0;
    // INF
    memcpy(message_frame + 2, message, message_length);
    // EDC (CRC)
    AddCrc14B(message_frame, message_length + 2);
    // send
    CodeAndTransmit14443bAsReader(message_frame, message_length + 4); //no
    // get response
    GetTagSamplesFor14443bDemod(); //no
    if (Demod.len < 3)
        return 0;

    // VALIDATE CRC
    if (!check_crc(CRC_14443_B, Demod.output, Demod.len)) {
        if (DBGLEVEL > 3) Dbprintf("crc fail ICE");
        return 0;
    }
    // copy response contents
    if (response != NULL)
        memcpy(response, Demod.output, Demod.len);

    return Demod.len;
}

/**
* SRx Initialise.
*/
uint8_t iso14443b_select_srx_card(iso14b_card_select_t *card) {
    // INITIATE command: wake up the tag using the INITIATE
    static const uint8_t init_srx[] = { ISO14443B_INITIATE, 0x00, 0x97, 0x5b };
    // SELECT command (with space for CRC)
    uint8_t select_srx[] = { ISO14443B_SELECT, 0x00, 0x00, 0x00};

    CodeAndTransmit14443bAsReader(init_srx, sizeof(init_srx));
    GetTagSamplesFor14443bDemod(); //no

    if (Demod.len == 0)
        return 2;

    // Randomly generated Chip ID
    if (card) card->chipid = Demod.output[0];

    select_srx[1] = Demod.output[0];

    AddCrc14B(select_srx, 2);

    CodeAndTransmit14443bAsReader(select_srx, sizeof(select_srx));
    GetTagSamplesFor14443bDemod(); //no

    if (Demod.len != 3)
        return 2;

    // Check the CRC of the answer:
    if (!check_crc(CRC_14443_B, Demod.output, Demod.len))
        return 3;

    // Check response from the tag: should be the same UID as the command we just sent:
    if (select_srx[1] != Demod.output[0])
        return 1;

    // First get the tag's UID:
    select_srx[0] = ISO14443B_GET_UID;

    AddCrc14B(select_srx, 1);
    CodeAndTransmit14443bAsReader(select_srx, 3); // Only first three bytes for this one
    GetTagSamplesFor14443bDemod(); //no

    if (Demod.len != 10)
        return 2;

    // The check the CRC of the answer
    if (!check_crc(CRC_14443_B, Demod.output, Demod.len))
        return 3;

    if (card) {
        card->uidlen = 8;
        memcpy(card->uid, Demod.output, 8);
    }

    return 0;
}
/* Perform the ISO 14443 B Card Selection procedure
 * Currently does NOT do any collision handling.
 * It expects 0-1 cards in the device's range.
 * TODO: Support multiple cards (perform anticollision)
 * TODO: Verify CRC checksums
 */
uint8_t iso14443b_select_card(iso14b_card_select_t *card) {
    // WUPB command (including CRC)
    // Note: WUPB wakes up all tags, REQB doesn't wake up tags in HALT state
    static const uint8_t wupb[] = { ISO14443B_REQB, 0x00, 0x08, 0x39, 0x73 };
    // ATTRIB command (with space for CRC)
    uint8_t attrib[] = { ISO14443B_ATTRIB, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x00};

    // first, wake up the tag
    CodeAndTransmit14443bAsReader(wupb, sizeof(wupb));
    GetTagSamplesFor14443bDemod(); //select_card

    // ATQB too short?
    if (Demod.len < 14)
        return 2;

    // VALIDATE CRC
    if (!check_crc(CRC_14443_B, Demod.output, Demod.len))
        return 3;

    if (card) {
        card->uidlen = 4;
        memcpy(card->uid, Demod.output + 1, 4);
        memcpy(card->atqb, Demod.output + 5, 7);
    }

    // copy the PUPI to ATTRIB  ( PUPI == UID )
    memcpy(attrib + 1, Demod.output + 1, 4);

    // copy the protocol info from ATQB (Protocol Info -> Protocol_Type) into ATTRIB (Param 3)
    attrib[7] = Demod.output[10] & 0x0F;
    AddCrc14B(attrib, 9);

    CodeAndTransmit14443bAsReader(attrib, sizeof(attrib));
    GetTagSamplesFor14443bDemod();//select_card

    // Answer to ATTRIB too short?
    if (Demod.len < 3)
        return 2;

    // VALIDATE CRC
    if (!check_crc(CRC_14443_B, Demod.output, Demod.len))
        return 3;

    if (card) {

        // CID
        card->cid = Demod.output[0];

        // MAX FRAME
        uint16_t maxFrame = card->atqb[5] >> 4;
        if (maxFrame < 5)       maxFrame = 8 * maxFrame + 16;
        else if (maxFrame == 5) maxFrame = 64;
        else if (maxFrame == 6) maxFrame = 96;
        else if (maxFrame == 7) maxFrame = 128;
        else if (maxFrame == 8) maxFrame = 256;
        else maxFrame = 257;
        iso14b_set_maxframesize(maxFrame);

        // FWT
        uint8_t fwt = card->atqb[6] >> 4;
        if (fwt < 16) {
            uint32_t fwt_time = (302 << fwt);
            iso14b_set_timeout(fwt_time);
        }
    }
    // reset PCB block number
    pcb_blocknum = 0;
    return 0;
}

// Set up ISO 14443 Type B communication (similar to iso14443a_setup)
// field is setup for "Sending as Reader"
void iso14443b_setup() {
    LEDsoff();
    FpgaDownloadAndGo(FPGA_BITSTREAM_HF);

    // Initialize Demod and Uart structs
    Demod14bInit(BigBuf_malloc(MAX_FRAME_SIZE));
    Uart14bInit(BigBuf_malloc(MAX_FRAME_SIZE));

    // connect Demodulated Signal to ADC:
    SetAdcMuxFor(GPIO_MUXSEL_HIPKD);

    // Set up the synchronous serial port
    FpgaSetupSsc();

    // Signal field is on with the appropriate LED
    FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX | FPGA_HF_READER_TX_SHALLOW_MOD);
    SpinDelay(100);

    // Start the timer
    StartCountSspClk();

    LED_D_ON();
}

//-----------------------------------------------------------------------------
// Read a SRI512 ISO 14443B tag.
//
// SRI512 tags are just simple memory tags, here we're looking at making a dump
// of the contents of the memory. No anticollision algorithm is done, we assume
// we have a single tag in the field.
//
// I tried to be systematic and check every answer of the tag, every CRC, etc...
//-----------------------------------------------------------------------------
static bool ReadSTBlock(uint8_t block) {
    uint8_t cmd[] = {ISO14443B_READ_BLK, block, 0x00, 0x00};
    AddCrc14B(cmd, 2);
    CodeAndTransmit14443bAsReader(cmd, sizeof(cmd));
    GetTagSamplesFor14443bDemod();

    // Check if we got an answer from the tag
    if (Demod.len != 6) {
        DbpString("[!] expected 6 bytes from tag, got less...");
        return false;
    }
    // The check the CRC of the answer
    if (!check_crc(CRC_14443_B, Demod.output, Demod.len)) {
        DbpString("[!] CRC Error block!");
        return false;
    }
    return true;
}
void ReadSTMemoryIso14443b(uint8_t numofblocks) {
    // Make sure that we start from off, since the tags are stateful;
    // confusing things will happen if we don't reset them between reads.
    //switch_off();

    uint8_t i = 0x00;
    uint8_t *buf = BigBuf_malloc(sizeof(iso14b_card_select_t));

    iso14443b_setup();

    iso14b_card_select_t *card = (iso14b_card_select_t *)buf;
    uint8_t res = iso14443b_select_srx_card(card);

    // 0: OK 2: attrib fail, 3:crc fail,
    if (res > 0) goto out;

    Dbprintf("[+] Tag memory dump, block 0 to %d", numofblocks);

    ++numofblocks;

    for (;;) {
        if (i == numofblocks) {
            DbpString("System area block (0xFF):");
            i = 0xff;
        }

        uint8_t retries = 3;
        do {
            res = ReadSTBlock(i);
        } while (!res && --retries);

        if (!res && !retries) {
            goto out;
        }

        // Now print out the memory location:
        Dbprintf("Address=%02x, Contents=%08x, CRC=%04x", i,
                 (Demod.output[3] << 24) + (Demod.output[2] << 16) + (Demod.output[1] << 8) + Demod.output[0],
                 (Demod.output[4] << 8) + Demod.output[5]);

        if (i == 0xff) break;
        ++i;
    }

out:
    switch_off(); // disconnect raw
    SpinDelay(20);
}

static void iso1444b_setup_sniff(void) {

    LEDsoff();
    FpgaDownloadAndGo(FPGA_BITSTREAM_HF);
    BigBuf_free();
    BigBuf_Clear_ext(false);
    clear_trace();
    set_tracing(true);

    // Initialize Demod and Uart structs
    Demod14bInit(BigBuf_malloc(MAX_FRAME_SIZE));
    Uart14bInit(BigBuf_malloc(MAX_FRAME_SIZE));

    if (DBGLEVEL > 1) {
        // Print debug information about the buffer sizes
        Dbprintf("[+] Sniff buffers initialized:");
        Dbprintf("[+]   trace: %i bytes", BigBuf_max_traceLen());
        Dbprintf("[+]   reader -> tag: %i bytes", MAX_FRAME_SIZE);
        Dbprintf("[+]   tag -> reader: %i bytes", MAX_FRAME_SIZE);
        Dbprintf("[+]   DMA: %i bytes", ISO14443B_DMA_BUFFER_SIZE);
    }

    // connect Demodulated Signal to ADC:
    SetAdcMuxFor(GPIO_MUXSEL_HIPKD);

    // Setup for the DMA.
    FpgaSetupSsc();

    // Set FPGA in the appropriate mode
    FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_SNOOP);
    SpinDelay(20);

    // Start the SSP timer
    StartCountSspClk();
}

//=============================================================================
// Finally, the `sniffer' combines elements from both the reader and
// simulated tag, to show both sides of the conversation.
//=============================================================================

//-----------------------------------------------------------------------------
// Record the sequence of commands sent by the reader to the tag, with
// triggering so that we start recording at the point that the tag is moved
// near the reader.
//-----------------------------------------------------------------------------
/*
 * Memory usage for this function, (within BigBuf)
 * Last Received command (reader->tag) - MAX_FRAME_SIZE
 * Last Received command (tag->reader) - MAX_FRAME_SIZE
 * DMA Buffer - ISO14443B_DMA_BUFFER_SIZE
 * Demodulated samples received - all the rest
 */
void RAMFUNC SniffIso14443b(void) {

    uint32_t time_0 = 0, time_start = 0, time_stop;

    // We won't start recording the frames that we acquire until we trigger;
    // a good trigger condition to get started is probably when we see a
    // response from the tag.
    bool TagIsActive = false;
    bool ReaderIsActive = false;

    iso1444b_setup_sniff();

    // The DMA buffer, used to stream samples from the FPGA
    int8_t *dmaBuf = (int8_t *) BigBuf_malloc(ISO14443B_DMA_BUFFER_SIZE);
    int8_t *data = dmaBuf;

    // Setup and start DMA.
    if (!FpgaSetupSscDma((uint8_t *) dmaBuf, ISO14443B_DMA_BUFFER_SIZE)) {
        if (DBGLEVEL > 1) Dbprintf("[!] FpgaSetupSscDma failed. Exiting");
        BigBuf_free();
        return;
    }

    // time ZERO, the point from which it all is calculated.
    time_0 = GetCountSspClk();

    // loop and listen
    while (!BUTTON_PRESS()) {
        WDT_HIT();

        int ci = data[0];
        int cq = data[1];
        data += 2;

        if (data >= dmaBuf + ISO14443B_DMA_BUFFER_SIZE) {
            data = dmaBuf;
            AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf;
            AT91C_BASE_PDC_SSC->PDC_RNCR = ISO14443B_DMA_BUFFER_SIZE;
        }

        // no need to try decoding reader data if the tag is sending
        if (!TagIsActive) {

            LED_A_INV();

            if (Handle14443bReaderUartBit(ci & 0x01)) {
                time_stop = GetCountSspClk() - time_0;
                LogTrace(Uart.output, Uart.byteCnt, time_start, time_stop, NULL, true);
                Uart14bReset();
                Demod14bReset();
            } else {
                time_start = GetCountSspClk() - time_0;
            }

            if (Handle14443bReaderUartBit(cq & 0x01)) {
                time_stop = GetCountSspClk() - time_0;
                LogTrace(Uart.output, Uart.byteCnt, time_start, time_stop, NULL, true);
                Uart14bReset();
                Demod14bReset();
            } else {
                time_start = GetCountSspClk() - time_0;
            }
            ReaderIsActive = (Uart.state > STATE_14B_GOT_FALLING_EDGE_OF_SOF);
        }

        // no need to try decoding tag data if the reader is sending - and we cannot afford the time
        if (!ReaderIsActive) {

            // is this | 0x01 the error?   & 0xfe  in https://github.com/Proxmark/proxmark3/issues/103
            // LSB is a fpga signal bit.
            if (Handle14443bTagSamplesDemod(ci, cq)) {
                time_stop = GetCountSspClk() - time_0;
                LogTrace(Demod.output, Demod.len, time_start, time_stop, NULL, false);
                Uart14bReset();
                Demod14bReset();
            } else {
                time_start = GetCountSspClk() - time_0;
            }
            TagIsActive = (Demod.state > DEMOD_GOT_FALLING_EDGE_OF_SOF);
        }
    }

    if (DBGLEVEL >= 2) {
        DbpString("[+] Sniff statistics:");
        Dbprintf("[+]  uart State: %x  ByteCount: %i  ByteCountMax: %i", Uart.state,  Uart.byteCnt,  Uart.byteCntMax);
        Dbprintf("[+]  trace length: %i", BigBuf_get_traceLen());
    }

    switch_off();
}

void iso14b_set_trigger(bool enable) {
    trigger = enable;
}

/*
 * Send raw command to tag ISO14443B
 * @Input
 * param   flags enum ISO14B_COMMAND.  (mifare.h)
 * len     len of buffer data
 * data    buffer with bytes to send
 *
 * @Output
 * none
 *
 */
void SendRawCommand14443B_Ex(PacketCommandNG *c) {
    iso14b_command_t param = c->oldarg[0];
    size_t len = c->oldarg[1] & 0xffff;
    uint32_t timeout = c->oldarg[2];
    uint8_t *cmd = c->data.asBytes;
    uint8_t status;
    uint32_t sendlen = sizeof(iso14b_card_select_t);
    uint8_t buf[PM3_CMD_DATA_SIZE] = {0x00};

    if (DBGLEVEL > 3) Dbprintf("14b raw: param, %04x", param);

    // turn on trigger (LED_A)
    if ((param & ISO14B_REQUEST_TRIGGER) == ISO14B_REQUEST_TRIGGER)
        iso14b_set_trigger(true);

    if ((param & ISO14B_CONNECT) == ISO14B_CONNECT) {
        iso14443b_setup();
        clear_trace();
    }

    if ((param & ISO14B_SET_TIMEOUT))
        iso14b_set_timeout(timeout);

    set_tracing(true);

    if ((param & ISO14B_SELECT_STD) == ISO14B_SELECT_STD) {
        iso14b_card_select_t *card = (iso14b_card_select_t *)buf;
        status = iso14443b_select_card(card);
        reply_old(CMD_ACK, status, sendlen, 0, buf, sendlen);
        // 0: OK 2: attrib fail, 3:crc fail,
        if (status > 0) goto out;
    }

    if ((param & ISO14B_SELECT_SR) == ISO14B_SELECT_SR) {
        iso14b_card_select_t *card = (iso14b_card_select_t *)buf;
        status = iso14443b_select_srx_card(card);
        reply_old(CMD_ACK, status, sendlen, 0, buf, sendlen);
        // 0: OK 2: demod fail, 3:crc fail,
        if (status > 0) goto out;
    }

    if ((param & ISO14B_APDU) == ISO14B_APDU) {
        status = iso14443b_apdu(cmd, len, buf);
        reply_old(CMD_ACK, status, status, 0, buf, status);
    }

    if ((param & ISO14B_RAW) == ISO14B_RAW) {
        if ((param & ISO14B_APPEND_CRC) == ISO14B_APPEND_CRC) {
            AddCrc14B(cmd, len);
            len += 2;
        }

        CodeAndTransmit14443bAsReader(cmd, len); // raw
        GetTagSamplesFor14443bDemod(); // raw

        sendlen = MIN(Demod.len, PM3_CMD_DATA_SIZE);
        status = (Demod.len > 0) ? 0 : 1;
        reply_old(CMD_ACK, status, sendlen, 0, Demod.output, sendlen);
    }

out:
    // turn off trigger (LED_A)
    if ((param & ISO14B_REQUEST_TRIGGER) == ISO14B_REQUEST_TRIGGER)
        iso14b_set_trigger(false);

    // turn off antenna et al
    // we don't send a HALT command.
    if ((param & ISO14B_DISCONNECT) == ISO14B_DISCONNECT) {
        switch_off(); // disconnect raw
        SpinDelay(20);
    }
}