/* * Elliptic curves over GF(p): generic functions * * Copyright The Mbed TLS Contributors * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * References: * * SEC1 http://www.secg.org/index.php?action=secg,docs_secg * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf * RFC 4492 for the related TLS structures and constants * RFC 7748 for the Curve448 and Curve25519 curve definitions * * [Curve25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf * * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis * for elliptic curve cryptosystems. In : Cryptographic Hardware and * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302. * * * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to * render ECC resistant against Side Channel Attacks. IACR Cryptology * ePrint Archive, 2004, vol. 2004, p. 342. * */ #include "common.h" /** * \brief Function level alternative implementation. * * The MBEDTLS_ECP_INTERNAL_ALT macro enables alternative implementations to * replace certain functions in this module. The alternative implementations are * typically hardware accelerators and need to activate the hardware before the * computation starts and deactivate it after it finishes. The * mbedtls_internal_ecp_init() and mbedtls_internal_ecp_free() functions serve * this purpose. * * To preserve the correct functionality the following conditions must hold: * * - The alternative implementation must be activated by * mbedtls_internal_ecp_init() before any of the replaceable functions is * called. * - mbedtls_internal_ecp_free() must \b only be called when the alternative * implementation is activated. * - mbedtls_internal_ecp_init() must \b not be called when the alternative * implementation is activated. * - Public functions must not return while the alternative implementation is * activated. * - Replaceable functions are guarded by \c MBEDTLS_ECP_XXX_ALT macros and * before calling them an \code if( mbedtls_internal_ecp_grp_capable( grp ) ) * \endcode ensures that the alternative implementation supports the current * group. */ #if defined(MBEDTLS_ECP_INTERNAL_ALT) #endif #if defined(MBEDTLS_ECP_C) #include "mbedtls/ecp.h" #include "mbedtls/threading.h" #include "mbedtls/platform_util.h" #include "mbedtls/error.h" #include #if !defined(MBEDTLS_ECP_ALT) /* Parameter validation macros based on platform_util.h */ #define ECP_VALIDATE_RET( cond ) \ MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_ECP_BAD_INPUT_DATA ) #define ECP_VALIDATE( cond ) \ MBEDTLS_INTERNAL_VALIDATE( cond ) #if defined(MBEDTLS_PLATFORM_C) #include "mbedtls/platform.h" #else #include #include #define mbedtls_printf printf #define mbedtls_calloc calloc #define mbedtls_free free #endif #include "mbedtls/ecp_internal.h" #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG) #if defined(MBEDTLS_HMAC_DRBG_C) #include "mbedtls/hmac_drbg.h" #elif defined(MBEDTLS_CTR_DRBG_C) #include "mbedtls/ctr_drbg.h" #else #error "Invalid configuration detected. Include check_config.h to ensure that the configuration is valid." #endif #endif /* MBEDTLS_ECP_NO_INTERNAL_RNG */ #if ( defined(__ARMCC_VERSION) || defined(_MSC_VER) ) && \ !defined(inline) && !defined(__cplusplus) #define inline __inline #endif #if defined(MBEDTLS_SELF_TEST) /* * Counts of point addition and doubling, and field multiplications. * Used to test resistance of point multiplication to simple timing attacks. */ static unsigned long add_count, dbl_count, mul_count; #endif #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG) /* * Currently ecp_mul() takes a RNG function as an argument, used for * side-channel protection, but it can be NULL. The initial reasoning was * that people will pass non-NULL RNG when they care about side-channels, but * unfortunately we have some APIs that call ecp_mul() with a NULL RNG, with * no opportunity for the user to do anything about it. * * The obvious strategies for addressing that include: * - change those APIs so that they take RNG arguments; * - require a global RNG to be available to all crypto modules. * * Unfortunately those would break compatibility. So what we do instead is * have our own internal DRBG instance, seeded from the secret scalar. * * The following is a light-weight abstraction layer for doing that with * HMAC_DRBG (first choice) or CTR_DRBG. */ #if defined(MBEDTLS_HMAC_DRBG_C) /* DRBG context type */ typedef mbedtls_hmac_drbg_context ecp_drbg_context; /* DRBG context init */ static inline void ecp_drbg_init(ecp_drbg_context *ctx) { mbedtls_hmac_drbg_init(ctx); } /* DRBG context free */ static inline void ecp_drbg_free(ecp_drbg_context *ctx) { mbedtls_hmac_drbg_free(ctx); } /* DRBG function */ static inline int ecp_drbg_random(void *p_rng, unsigned char *output, size_t output_len) { return (mbedtls_hmac_drbg_random(p_rng, output, output_len)); } /* DRBG context seeding */ static int ecp_drbg_seed(ecp_drbg_context *ctx, const mbedtls_mpi *secret, size_t secret_len) { int ret; unsigned char secret_bytes[MBEDTLS_ECP_MAX_BYTES]; /* The list starts with strong hashes */ const mbedtls_md_type_t md_type = mbedtls_md_list()[0]; const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type(md_type); if (secret_len > MBEDTLS_ECP_MAX_BYTES) { ret = MBEDTLS_ERR_ECP_RANDOM_FAILED; goto cleanup; } MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(secret, secret_bytes, secret_len)); ret = mbedtls_hmac_drbg_seed_buf(ctx, md_info, secret_bytes, secret_len); cleanup: mbedtls_platform_zeroize(secret_bytes, secret_len); return (ret); } #elif defined(MBEDTLS_CTR_DRBG_C) /* DRBG context type */ typedef mbedtls_ctr_drbg_context ecp_drbg_context; /* DRBG context init */ static inline void ecp_drbg_init(ecp_drbg_context *ctx) { mbedtls_ctr_drbg_init(ctx); } /* DRBG context free */ static inline void ecp_drbg_free(ecp_drbg_context *ctx) { mbedtls_ctr_drbg_free(ctx); } /* DRBG function */ static inline int ecp_drbg_random(void *p_rng, unsigned char *output, size_t output_len) { return (mbedtls_ctr_drbg_random(p_rng, output, output_len)); } /* * Since CTR_DRBG doesn't have a seed_buf() function the way HMAC_DRBG does, * we need to pass an entropy function when seeding. So we use a dummy * function for that, and pass the actual entropy as customisation string. * (During seeding of CTR_DRBG the entropy input and customisation string are * concatenated before being used to update the secret state.) */ static int ecp_ctr_drbg_null_entropy(void *ctx, unsigned char *out, size_t len) { (void) ctx; memset(out, 0, len); return (0); } /* DRBG context seeding */ static int ecp_drbg_seed(ecp_drbg_context *ctx, const mbedtls_mpi *secret, size_t secret_len) { int ret; unsigned char secret_bytes[MBEDTLS_ECP_MAX_BYTES]; if (secret_len > MBEDTLS_ECP_MAX_BYTES) { ret = MBEDTLS_ERR_ECP_RANDOM_FAILED; goto cleanup; } MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(secret, secret_bytes, secret_len)); ret = mbedtls_ctr_drbg_seed(ctx, ecp_ctr_drbg_null_entropy, NULL, secret_bytes, secret_len); cleanup: mbedtls_platform_zeroize(secret_bytes, secret_len); return (ret); } #else #error "Invalid configuration detected. Include check_config.h to ensure that the configuration is valid." #endif /* DRBG modules */ #endif /* MBEDTLS_ECP_NO_INTERNAL_RNG */ #if defined(MBEDTLS_ECP_RESTARTABLE) /* * Maximum number of "basic operations" to be done in a row. * * Default value 0 means that ECC operations will not yield. * Note that regardless of the value of ecp_max_ops, always at * least one step is performed before yielding. * * Setting ecp_max_ops=1 can be suitable for testing purposes * as it will interrupt computation at all possible points. */ static unsigned ecp_max_ops = 0; /* * Set ecp_max_ops */ void mbedtls_ecp_set_max_ops(unsigned max_ops) { ecp_max_ops = max_ops; } /* * Check if restart is enabled */ int mbedtls_ecp_restart_is_enabled(void) { return (ecp_max_ops != 0); } /* * Restart sub-context for ecp_mul_comb() */ struct mbedtls_ecp_restart_mul { mbedtls_ecp_point R; /* current intermediate result */ size_t i; /* current index in various loops, 0 outside */ mbedtls_ecp_point *T; /* table for precomputed points */ unsigned char T_size; /* number of points in table T */ enum { /* what were we doing last time we returned? */ ecp_rsm_init = 0, /* nothing so far, dummy initial state */ ecp_rsm_pre_dbl, /* precompute 2^n multiples */ ecp_rsm_pre_norm_dbl, /* normalize precomputed 2^n multiples */ ecp_rsm_pre_add, /* precompute remaining points by adding */ ecp_rsm_pre_norm_add, /* normalize all precomputed points */ ecp_rsm_comb_core, /* ecp_mul_comb_core() */ ecp_rsm_final_norm, /* do the final normalization */ } state; #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG) ecp_drbg_context drbg_ctx; unsigned char drbg_seeded; #endif }; /* * Init restart_mul sub-context */ static void ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx *ctx) { mbedtls_ecp_point_init(&ctx->R); ctx->i = 0; ctx->T = NULL; ctx->T_size = 0; ctx->state = ecp_rsm_init; #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG) ecp_drbg_init(&ctx->drbg_ctx); ctx->drbg_seeded = 0; #endif } /* * Free the components of a restart_mul sub-context */ static void ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx *ctx) { unsigned char i; if (ctx == NULL) return; mbedtls_ecp_point_free(&ctx->R); if (ctx->T != NULL) { for (i = 0; i < ctx->T_size; i++) mbedtls_ecp_point_free(ctx->T + i); mbedtls_free(ctx->T); } #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG) ecp_drbg_free(&ctx->drbg_ctx); #endif ecp_restart_rsm_init(ctx); } /* * Restart context for ecp_muladd() */ struct mbedtls_ecp_restart_muladd { mbedtls_ecp_point mP; /* mP value */ mbedtls_ecp_point R; /* R intermediate result */ enum { /* what should we do next? */ ecp_rsma_mul1 = 0, /* first multiplication */ ecp_rsma_mul2, /* second multiplication */ ecp_rsma_add, /* addition */ ecp_rsma_norm, /* normalization */ } state; }; /* * Init restart_muladd sub-context */ static void ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx *ctx) { mbedtls_ecp_point_init(&ctx->mP); mbedtls_ecp_point_init(&ctx->R); ctx->state = ecp_rsma_mul1; } /* * Free the components of a restart_muladd sub-context */ static void ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx *ctx) { if (ctx == NULL) return; mbedtls_ecp_point_free(&ctx->mP); mbedtls_ecp_point_free(&ctx->R); ecp_restart_ma_init(ctx); } /* * Initialize a restart context */ void mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx *ctx) { ECP_VALIDATE(ctx != NULL); ctx->ops_done = 0; ctx->depth = 0; ctx->rsm = NULL; ctx->ma = NULL; } /* * Free the components of a restart context */ void mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx *ctx) { if (ctx == NULL) return; ecp_restart_rsm_free(ctx->rsm); mbedtls_free(ctx->rsm); ecp_restart_ma_free(ctx->ma); mbedtls_free(ctx->ma); mbedtls_ecp_restart_init(ctx); } /* * Check if we can do the next step */ int mbedtls_ecp_check_budget(const mbedtls_ecp_group *grp, mbedtls_ecp_restart_ctx *rs_ctx, unsigned ops) { ECP_VALIDATE_RET(grp != NULL); if (rs_ctx != NULL && ecp_max_ops != 0) { /* scale depending on curve size: the chosen reference is 256-bit, * and multiplication is quadratic. Round to the closest integer. */ if (grp->pbits >= 512) ops *= 4; else if (grp->pbits >= 384) ops *= 2; /* Avoid infinite loops: always allow first step. * Because of that, however, it's not generally true * that ops_done <= ecp_max_ops, so the check * ops_done > ecp_max_ops below is mandatory. */ if ((rs_ctx->ops_done != 0) && (rs_ctx->ops_done > ecp_max_ops || ops > ecp_max_ops - rs_ctx->ops_done)) { return (MBEDTLS_ERR_ECP_IN_PROGRESS); } /* update running count */ rs_ctx->ops_done += ops; } return (0); } /* Call this when entering a function that needs its own sub-context */ #define ECP_RS_ENTER( SUB ) do { \ /* reset ops count for this call if top-level */ \ if( rs_ctx != NULL && rs_ctx->depth++ == 0 ) \ rs_ctx->ops_done = 0; \ \ /* set up our own sub-context if needed */ \ if( mbedtls_ecp_restart_is_enabled() && \ rs_ctx != NULL && rs_ctx->SUB == NULL ) \ { \ rs_ctx->SUB = mbedtls_calloc( 1, sizeof( *rs_ctx->SUB ) ); \ if( rs_ctx->SUB == NULL ) \ return( MBEDTLS_ERR_ECP_ALLOC_FAILED ); \ \ ecp_restart_## SUB ##_init( rs_ctx->SUB ); \ } \ } while( 0 ) /* Call this when leaving a function that needs its own sub-context */ #define ECP_RS_LEAVE( SUB ) do { \ /* clear our sub-context when not in progress (done or error) */ \ if( rs_ctx != NULL && rs_ctx->SUB != NULL && \ ret != MBEDTLS_ERR_ECP_IN_PROGRESS ) \ { \ ecp_restart_## SUB ##_free( rs_ctx->SUB ); \ mbedtls_free( rs_ctx->SUB ); \ rs_ctx->SUB = NULL; \ } \ \ if( rs_ctx != NULL ) \ rs_ctx->depth--; \ } while( 0 ) #else /* MBEDTLS_ECP_RESTARTABLE */ #define ECP_RS_ENTER( sub ) (void) rs_ctx; #define ECP_RS_LEAVE( sub ) (void) rs_ctx; #endif /* MBEDTLS_ECP_RESTARTABLE */ /* * List of supported curves: * - internal ID * - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2, RFC 8446 sec. 4.2.7) * - size in bits * - readable name * * Curves are listed in order: largest curves first, and for a given size, * fastest curves first. This provides the default order for the SSL module. * * Reminder: update profiles in x509_crt.c when adding a new curves! */ static const mbedtls_ecp_curve_info ecp_supported_curves[] = { #if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) { MBEDTLS_ECP_DP_SECP521R1, 25, 521, "secp521r1" }, #endif #if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED) { MBEDTLS_ECP_DP_BP512R1, 28, 512, "brainpoolP512r1" }, #endif #if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) { MBEDTLS_ECP_DP_SECP384R1, 24, 384, "secp384r1" }, #endif #if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED) { MBEDTLS_ECP_DP_BP384R1, 27, 384, "brainpoolP384r1" }, #endif #if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) { MBEDTLS_ECP_DP_SECP256R1, 23, 256, "secp256r1" }, #endif #if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED) { MBEDTLS_ECP_DP_SECP256K1, 22, 256, "secp256k1" }, #endif #if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED) { MBEDTLS_ECP_DP_BP256R1, 26, 256, "brainpoolP256r1" }, #endif #if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) { MBEDTLS_ECP_DP_SECP224R1, 21, 224, "secp224r1" }, #endif #if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) { MBEDTLS_ECP_DP_SECP224K1, 20, 224, "secp224k1" }, #endif #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) { MBEDTLS_ECP_DP_SECP192R1, 19, 192, "secp192r1" }, #endif #if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) { MBEDTLS_ECP_DP_SECP192K1, 18, 192, "secp192k1" }, #endif #if defined(MBEDTLS_ECP_DP_SECP128R1_ENABLED) { MBEDTLS_ECP_DP_SECP128R1, 0xFE00, 128, "secp128r1" }, #endif #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) { MBEDTLS_ECP_DP_CURVE25519, 29, 256, "x25519" }, #endif #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED) { MBEDTLS_ECP_DP_CURVE448, 30, 448, "x448" }, #endif { MBEDTLS_ECP_DP_NONE, 0, 0, NULL }, }; #define ECP_NB_CURVES sizeof( ecp_supported_curves ) / \ sizeof( ecp_supported_curves[0] ) static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES]; /* * List of supported curves and associated info */ const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list(void) { return (ecp_supported_curves); } /* * List of supported curves, group ID only */ const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list(void) { static int init_done = 0; if (! init_done) { size_t i = 0; const mbedtls_ecp_curve_info *curve_info; for (curve_info = mbedtls_ecp_curve_list(); curve_info->grp_id != MBEDTLS_ECP_DP_NONE; curve_info++) { ecp_supported_grp_id[i++] = curve_info->grp_id; } ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE; init_done = 1; } return (ecp_supported_grp_id); } /* * Get the curve info for the internal identifier */ const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id) { const mbedtls_ecp_curve_info *curve_info; for (curve_info = mbedtls_ecp_curve_list(); curve_info->grp_id != MBEDTLS_ECP_DP_NONE; curve_info++) { if (curve_info->grp_id == grp_id) return (curve_info); } return (NULL); } /* * Get the curve info from the TLS identifier */ const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id) { const mbedtls_ecp_curve_info *curve_info; for (curve_info = mbedtls_ecp_curve_list(); curve_info->grp_id != MBEDTLS_ECP_DP_NONE; curve_info++) { if (curve_info->tls_id == tls_id) return (curve_info); } return (NULL); } /* * Get the curve info from the name */ const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name(const char *name) { const mbedtls_ecp_curve_info *curve_info; if (name == NULL) return (NULL); for (curve_info = mbedtls_ecp_curve_list(); curve_info->grp_id != MBEDTLS_ECP_DP_NONE; curve_info++) { if (strcmp(curve_info->name, name) == 0) return (curve_info); } return (NULL); } /* * Get the type of a curve */ mbedtls_ecp_curve_type mbedtls_ecp_get_type(const mbedtls_ecp_group *grp) { if (grp->G.X.p == NULL) return (MBEDTLS_ECP_TYPE_NONE); if (grp->G.Y.p == NULL) return (MBEDTLS_ECP_TYPE_MONTGOMERY); else return (MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS); } /* * Initialize (the components of) a point */ void mbedtls_ecp_point_init(mbedtls_ecp_point *pt) { ECP_VALIDATE(pt != NULL); mbedtls_mpi_init(&pt->X); mbedtls_mpi_init(&pt->Y); mbedtls_mpi_init(&pt->Z); } /* * Initialize (the components of) a group */ void mbedtls_ecp_group_init(mbedtls_ecp_group *grp) { ECP_VALIDATE(grp != NULL); grp->id = MBEDTLS_ECP_DP_NONE; mbedtls_mpi_init(&grp->P); mbedtls_mpi_init(&grp->A); mbedtls_mpi_init(&grp->B); mbedtls_ecp_point_init(&grp->G); mbedtls_mpi_init(&grp->N); grp->pbits = 0; grp->nbits = 0; grp->h = 0; grp->modp = NULL; grp->t_pre = NULL; grp->t_post = NULL; grp->t_data = NULL; grp->T = NULL; grp->T_size = 0; } /* * Initialize (the components of) a key pair */ void mbedtls_ecp_keypair_init(mbedtls_ecp_keypair *key) { ECP_VALIDATE(key != NULL); mbedtls_ecp_group_init(&key->grp); mbedtls_mpi_init(&key->d); mbedtls_ecp_point_init(&key->Q); } /* * Unallocate (the components of) a point */ void mbedtls_ecp_point_free(mbedtls_ecp_point *pt) { if (pt == NULL) return; mbedtls_mpi_free(&(pt->X)); mbedtls_mpi_free(&(pt->Y)); mbedtls_mpi_free(&(pt->Z)); } /* * Unallocate (the components of) a group */ void mbedtls_ecp_group_free(mbedtls_ecp_group *grp) { size_t i; if (grp == NULL) return; if (grp->h != 1) { mbedtls_mpi_free(&grp->P); mbedtls_mpi_free(&grp->A); mbedtls_mpi_free(&grp->B); mbedtls_ecp_point_free(&grp->G); mbedtls_mpi_free(&grp->N); } if (grp->T != NULL) { for (i = 0; i < grp->T_size; i++) mbedtls_ecp_point_free(&grp->T[i]); mbedtls_free(grp->T); } mbedtls_platform_zeroize(grp, sizeof(mbedtls_ecp_group)); } /* * Unallocate (the components of) a key pair */ void mbedtls_ecp_keypair_free(mbedtls_ecp_keypair *key) { if (key == NULL) return; mbedtls_ecp_group_free(&key->grp); mbedtls_mpi_free(&key->d); mbedtls_ecp_point_free(&key->Q); } /* * Copy the contents of a point */ int mbedtls_ecp_copy(mbedtls_ecp_point *P, const mbedtls_ecp_point *Q) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; ECP_VALIDATE_RET(P != NULL); ECP_VALIDATE_RET(Q != NULL); MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->X, &Q->X)); MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Y, &Q->Y)); MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Z, &Q->Z)); cleanup: return (ret); } /* * Copy the contents of a group object */ int mbedtls_ecp_group_copy(mbedtls_ecp_group *dst, const mbedtls_ecp_group *src) { ECP_VALIDATE_RET(dst != NULL); ECP_VALIDATE_RET(src != NULL); return (mbedtls_ecp_group_load(dst, src->id)); } /* * Set point to zero */ int mbedtls_ecp_set_zero(mbedtls_ecp_point *pt) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; ECP_VALIDATE_RET(pt != NULL); MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->X, 1)); MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Y, 1)); MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 0)); cleanup: return (ret); } /* * Tell if a point is zero */ int mbedtls_ecp_is_zero(mbedtls_ecp_point *pt) { ECP_VALIDATE_RET(pt != NULL); return (mbedtls_mpi_cmp_int(&pt->Z, 0) == 0); } /* * Compare two points lazily */ int mbedtls_ecp_point_cmp(const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q) { ECP_VALIDATE_RET(P != NULL); ECP_VALIDATE_RET(Q != NULL); if (mbedtls_mpi_cmp_mpi(&P->X, &Q->X) == 0 && mbedtls_mpi_cmp_mpi(&P->Y, &Q->Y) == 0 && mbedtls_mpi_cmp_mpi(&P->Z, &Q->Z) == 0) { return (0); } return (MBEDTLS_ERR_ECP_BAD_INPUT_DATA); } /* * Import a non-zero point from ASCII strings */ int mbedtls_ecp_point_read_string(mbedtls_ecp_point *P, int radix, const char *x, const char *y) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; ECP_VALIDATE_RET(P != NULL); ECP_VALIDATE_RET(x != NULL); ECP_VALIDATE_RET(y != NULL); MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->X, radix, x)); MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->Y, radix, y)); MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&P->Z, 1)); cleanup: return (ret); } /* * Export a point into unsigned binary data (SEC1 2.3.3 and RFC7748) */ int mbedtls_ecp_point_write_binary(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *P, int format, size_t *olen, unsigned char *buf, size_t buflen) { int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; size_t plen; ECP_VALIDATE_RET(grp != NULL); ECP_VALIDATE_RET(P != NULL); ECP_VALIDATE_RET(olen != NULL); ECP_VALIDATE_RET(buf != NULL); ECP_VALIDATE_RET(format == MBEDTLS_ECP_PF_UNCOMPRESSED || format == MBEDTLS_ECP_PF_COMPRESSED); plen = mbedtls_mpi_size(&grp->P); #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) (void) format; /* Montgomery curves always use the same point format */ if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) { *olen = plen; if (buflen < *olen) return (MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL); MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&P->X, buf, plen)); } #endif #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) { /* * Common case: P == 0 */ if (mbedtls_mpi_cmp_int(&P->Z, 0) == 0) { if (buflen < 1) return (MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL); buf[0] = 0x00; *olen = 1; return (0); } if (format == MBEDTLS_ECP_PF_UNCOMPRESSED) { *olen = 2 * plen + 1; if (buflen < *olen) return (MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL); buf[0] = 0x04; MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen)); MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->Y, buf + 1 + plen, plen)); } else if (format == MBEDTLS_ECP_PF_COMPRESSED) { *olen = plen + 1; if (buflen < *olen) return (MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL); buf[0] = 0x02 + mbedtls_mpi_get_bit(&P->Y, 0); MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen)); } } #endif cleanup: return (ret); } /* * Import a point from unsigned binary data (SEC1 2.3.4 and RFC7748) */ int mbedtls_ecp_point_read_binary(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt, const unsigned char *buf, size_t ilen) { int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; size_t plen; ECP_VALIDATE_RET(grp != NULL); ECP_VALIDATE_RET(pt != NULL); ECP_VALIDATE_RET(buf != NULL); if (ilen < 1) return (MBEDTLS_ERR_ECP_BAD_INPUT_DATA); plen = mbedtls_mpi_size(&grp->P); #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) { if (plen != ilen) return (MBEDTLS_ERR_ECP_BAD_INPUT_DATA); MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&pt->X, buf, plen)); mbedtls_mpi_free(&pt->Y); if (grp->id == MBEDTLS_ECP_DP_CURVE25519) /* Set most significant bit to 0 as prescribed in RFC7748 ยง5 */ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&pt->X, plen * 8 - 1, 0)); MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1)); } #endif #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) { if (buf[0] == 0x00) { if (ilen == 1) return (mbedtls_ecp_set_zero(pt)); else return (MBEDTLS_ERR_ECP_BAD_INPUT_DATA); } if (buf[0] != 0x04) return (MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE); if (ilen != 2 * plen + 1) return (MBEDTLS_ERR_ECP_BAD_INPUT_DATA); MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&pt->X, buf + 1, plen)); MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&pt->Y, buf + 1 + plen, plen)); MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1)); } #endif cleanup: return (ret); } /* * Import a point from a TLS ECPoint record (RFC 4492) * struct { * opaque point <1..2^8-1>; * } ECPoint; */ int mbedtls_ecp_tls_read_point(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt, const unsigned char **buf, size_t buf_len) { unsigned char data_len; const unsigned char *buf_start; ECP_VALIDATE_RET(grp != NULL); ECP_VALIDATE_RET(pt != NULL); ECP_VALIDATE_RET(buf != NULL); ECP_VALIDATE_RET(*buf != NULL); /* * We must have at least two bytes (1 for length, at least one for data) */ if (buf_len < 2) return (MBEDTLS_ERR_ECP_BAD_INPUT_DATA); data_len = *(*buf)++; if (data_len < 1 || data_len > buf_len - 1) return (MBEDTLS_ERR_ECP_BAD_INPUT_DATA); /* * Save buffer start for read_binary and update buf */ buf_start = *buf; *buf += data_len; return (mbedtls_ecp_point_read_binary(grp, pt, buf_start, data_len)); } /* * Export a point as a TLS ECPoint record (RFC 4492) * struct { * opaque point <1..2^8-1>; * } ECPoint; */ int mbedtls_ecp_tls_write_point(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt, int format, size_t *olen, unsigned char *buf, size_t blen) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; ECP_VALIDATE_RET(grp != NULL); ECP_VALIDATE_RET(pt != NULL); ECP_VALIDATE_RET(olen != NULL); ECP_VALIDATE_RET(buf != NULL); ECP_VALIDATE_RET(format == MBEDTLS_ECP_PF_UNCOMPRESSED || format == MBEDTLS_ECP_PF_COMPRESSED); /* * buffer length must be at least one, for our length byte */ if (blen < 1) return (MBEDTLS_ERR_ECP_BAD_INPUT_DATA); if ((ret = mbedtls_ecp_point_write_binary(grp, pt, format, olen, buf + 1, blen - 1)) != 0) return (ret); /* * write length to the first byte and update total length */ buf[0] = (unsigned char) * olen; ++*olen; return (0); } /* * Set a group from an ECParameters record (RFC 4492) */ int mbedtls_ecp_tls_read_group(mbedtls_ecp_group *grp, const unsigned char **buf, size_t len) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; mbedtls_ecp_group_id grp_id; ECP_VALIDATE_RET(grp != NULL); ECP_VALIDATE_RET(buf != NULL); ECP_VALIDATE_RET(*buf != NULL); if ((ret = mbedtls_ecp_tls_read_group_id(&grp_id, buf, len)) != 0) return (ret); return (mbedtls_ecp_group_load(grp, grp_id)); } /* * Read a group id from an ECParameters record (RFC 4492) and convert it to * mbedtls_ecp_group_id. */ int mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id *grp, const unsigned char **buf, size_t len) { uint16_t tls_id; const mbedtls_ecp_curve_info *curve_info; ECP_VALIDATE_RET(grp != NULL); ECP_VALIDATE_RET(buf != NULL); ECP_VALIDATE_RET(*buf != NULL); /* * We expect at least three bytes (see below) */ if (len < 3) return (MBEDTLS_ERR_ECP_BAD_INPUT_DATA); /* * First byte is curve_type; only named_curve is handled */ if (*(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE) return (MBEDTLS_ERR_ECP_BAD_INPUT_DATA); /* * Next two bytes are the namedcurve value */ tls_id = *(*buf)++; tls_id <<= 8; tls_id |= *(*buf)++; if ((curve_info = mbedtls_ecp_curve_info_from_tls_id(tls_id)) == NULL) return (MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE); *grp = curve_info->grp_id; return (0); } /* * Write the ECParameters record corresponding to a group (RFC 4492) */ int mbedtls_ecp_tls_write_group(const mbedtls_ecp_group *grp, size_t *olen, unsigned char *buf, size_t blen) { const mbedtls_ecp_curve_info *curve_info; ECP_VALIDATE_RET(grp != NULL); ECP_VALIDATE_RET(buf != NULL); ECP_VALIDATE_RET(olen != NULL); if ((curve_info = mbedtls_ecp_curve_info_from_grp_id(grp->id)) == NULL) return (MBEDTLS_ERR_ECP_BAD_INPUT_DATA); /* * We are going to write 3 bytes (see below) */ *olen = 3; if (blen < *olen) return (MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL); /* * First byte is curve_type, always named_curve */ *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE; /* * Next two bytes are the namedcurve value */ buf[0] = curve_info->tls_id >> 8; buf[1] = curve_info->tls_id & 0xFF; return (0); } /* * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi. * See the documentation of struct mbedtls_ecp_group. * * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf. */ static int ecp_modp(mbedtls_mpi *N, const mbedtls_ecp_group *grp) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; if (grp->modp == NULL) return (mbedtls_mpi_mod_mpi(N, N, &grp->P)); /* N->s < 0 is a much faster test, which fails only if N is 0 */ if ((N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) || mbedtls_mpi_bitlen(N) > 2 * grp->pbits) { return (MBEDTLS_ERR_ECP_BAD_INPUT_DATA); } MBEDTLS_MPI_CHK(grp->modp(N)); /* N->s < 0 is a much faster test, which fails only if N is 0 */ while (N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &grp->P)); while (mbedtls_mpi_cmp_mpi(N, &grp->P) >= 0) /* we known P, N and the result are positive */ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(N, N, &grp->P)); cleanup: return (ret); } /* * Fast mod-p functions expect their argument to be in the 0..p^2 range. * * In order to guarantee that, we need to ensure that operands of * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will * bring the result back to this range. * * The following macros are shortcuts for doing that. */ /* * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi */ #if defined(MBEDTLS_SELF_TEST) #define INC_MUL_COUNT mul_count++; #else #define INC_MUL_COUNT #endif #define MOD_MUL( N ) \ do \ { \ MBEDTLS_MPI_CHK( ecp_modp( &(N), grp ) ); \ INC_MUL_COUNT \ } while( 0 ) static int mbedtls_mpi_mul_mod(const mbedtls_ecp_group *grp, mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(X, A, B)); MOD_MUL(*X); cleanup: return (ret); } /* * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi * N->s < 0 is a very fast test, which fails only if N is 0 */ #define MOD_SUB( N ) \ while( (N).s < 0 && mbedtls_mpi_cmp_int( &(N), 0 ) != 0 ) \ MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( &(N), &(N), &grp->P ) ) #if ( defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) && \ !( defined(MBEDTLS_ECP_NO_FALLBACK) && \ defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) && \ defined(MBEDTLS_ECP_ADD_MIXED_ALT) ) ) || \ ( defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) && \ !( defined(MBEDTLS_ECP_NO_FALLBACK) && \ defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) ) ) static int mbedtls_mpi_sub_mod(const mbedtls_ecp_group *grp, mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(X, A, B)); MOD_SUB(*X); cleanup: return (ret); } #endif /* All functions referencing mbedtls_mpi_sub_mod() are alt-implemented without fallback */ /* * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int. * We known P, N and the result are positive, so sub_abs is correct, and * a bit faster. */ #define MOD_ADD( N ) \ while( mbedtls_mpi_cmp_mpi( &(N), &grp->P ) >= 0 ) \ MBEDTLS_MPI_CHK( mbedtls_mpi_sub_abs( &(N), &(N), &grp->P ) ) static int mbedtls_mpi_add_mod(const mbedtls_ecp_group *grp, mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(X, A, B)); MOD_ADD(*X); cleanup: return (ret); } #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) && \ !( defined(MBEDTLS_ECP_NO_FALLBACK) && \ defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) && \ defined(MBEDTLS_ECP_ADD_MIXED_ALT) ) static int mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group *grp, mbedtls_mpi *X, size_t count) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, count)); MOD_ADD(*X); cleanup: return (ret); } #endif /* All functions referencing mbedtls_mpi_shift_l_mod() are alt-implemented without fallback */ #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) /* * For curves in short Weierstrass form, we do all the internal operations in * Jacobian coordinates. * * For multiplication, we'll use a comb method with coutermeasueres against * SPA, hence timing attacks. */ /* * Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1) * Cost: 1N := 1I + 3M + 1S */ static int ecp_normalize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt) { if (mbedtls_mpi_cmp_int(&pt->Z, 0) == 0) return (0); #if defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) if (mbedtls_internal_ecp_grp_capable(grp)) return (mbedtls_internal_ecp_normalize_jac(grp, pt)); #endif /* MBEDTLS_ECP_NORMALIZE_JAC_ALT */ #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) return (MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE); #else int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; mbedtls_mpi Zi, ZZi; mbedtls_mpi_init(&Zi); mbedtls_mpi_init(&ZZi); /* * X = X / Z^2 mod p */ MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&Zi, &pt->Z, &grp->P)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &ZZi, &Zi, &Zi)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &pt->X, &pt->X, &ZZi)); /* * Y = Y / Z^3 mod p */ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &pt->Y, &pt->Y, &ZZi)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &pt->Y, &pt->Y, &Zi)); /* * Z = 1 */ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1)); cleanup: mbedtls_mpi_free(&Zi); mbedtls_mpi_free(&ZZi); return (ret); #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_ALT) */ } /* * Normalize jacobian coordinates of an array of (pointers to) points, * using Montgomery's trick to perform only one inversion mod P. * (See for example Cohen's "A Course in Computational Algebraic Number * Theory", Algorithm 10.3.4.) * * Warning: fails (returning an error) if one of the points is zero! * This should never happen, see choice of w in ecp_mul_comb(). * * Cost: 1N(t) := 1I + (6t - 3)M + 1S */ static int ecp_normalize_jac_many(const mbedtls_ecp_group *grp, mbedtls_ecp_point *T[], size_t T_size) { if (T_size < 2) return (ecp_normalize_jac(grp, *T)); #if defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) if (mbedtls_internal_ecp_grp_capable(grp)) return (mbedtls_internal_ecp_normalize_jac_many(grp, T, T_size)); #endif #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) return (MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE); #else int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; size_t i; mbedtls_mpi *c, u, Zi, ZZi; if ((c = mbedtls_calloc(T_size, sizeof(mbedtls_mpi))) == NULL) return (MBEDTLS_ERR_ECP_ALLOC_FAILED); for (i = 0; i < T_size; i++) mbedtls_mpi_init(&c[i]); mbedtls_mpi_init(&u); mbedtls_mpi_init(&Zi); mbedtls_mpi_init(&ZZi); /* * c[i] = Z_0 * ... * Z_i */ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&c[0], &T[0]->Z)); for (i = 1; i < T_size; i++) { MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &c[i], &c[i - 1], &T[i]->Z)); } /* * u = 1 / (Z_0 * ... * Z_n) mod P */ MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&u, &c[T_size - 1], &grp->P)); for (i = T_size - 1; ; i--) { /* * Zi = 1 / Z_i mod p * u = 1 / (Z_0 * ... * Z_i) mod P */ if (i == 0) { MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Zi, &u)); } else { MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &Zi, &u, &c[i - 1])); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &u, &u, &T[i]->Z)); } /* * proceed as in normalize() */ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &ZZi, &Zi, &Zi)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T[i]->X, &T[i]->X, &ZZi)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T[i]->Y, &T[i]->Y, &ZZi)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T[i]->Y, &T[i]->Y, &Zi)); /* * Post-precessing: reclaim some memory by shrinking coordinates * - not storing Z (always 1) * - shrinking other coordinates, but still keeping the same number of * limbs as P, as otherwise it will too likely be regrown too fast. */ MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->X, grp->P.n)); MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->Y, grp->P.n)); mbedtls_mpi_free(&T[i]->Z); if (i == 0) break; } cleanup: mbedtls_mpi_free(&u); mbedtls_mpi_free(&Zi); mbedtls_mpi_free(&ZZi); for (i = 0; i < T_size; i++) mbedtls_mpi_free(&c[i]); mbedtls_free(c); return (ret); #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_JAC_MANY_ALT) */ } /* * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak. * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid */ static int ecp_safe_invert_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *Q, unsigned char inv) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; unsigned char nonzero; mbedtls_mpi mQY; mbedtls_mpi_init(&mQY); /* Use the fact that -Q.Y mod P = P - Q.Y unless Q.Y == 0 */ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&mQY, &grp->P, &Q->Y)); nonzero = mbedtls_mpi_cmp_int(&Q->Y, 0) != 0; MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&Q->Y, &mQY, inv & nonzero)); cleanup: mbedtls_mpi_free(&mQY); return (ret); } /* * Point doubling R = 2 P, Jacobian coordinates * * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 . * * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring. * * Standard optimizations are applied when curve parameter A is one of { 0, -3 }. * * Cost: 1D := 3M + 4S (A == 0) * 4M + 4S (A == -3) * 3M + 6S + 1a otherwise */ static int ecp_double_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R, const mbedtls_ecp_point *P) { #if defined(MBEDTLS_SELF_TEST) dbl_count++; #endif #if defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) if (mbedtls_internal_ecp_grp_capable(grp)) return (mbedtls_internal_ecp_double_jac(grp, R, P)); #endif /* MBEDTLS_ECP_DOUBLE_JAC_ALT */ #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) return (MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE); #else int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; mbedtls_mpi M, S, T, U; mbedtls_mpi_init(&M); mbedtls_mpi_init(&S); mbedtls_mpi_init(&T); mbedtls_mpi_init(&U); /* Special case for A = -3 */ if (grp->A.p == NULL) { /* M = 3(X + Z^2)(X - Z^2) */ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S, &P->Z, &P->Z)); MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, &T, &P->X, &S)); MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &U, &P->X, &S)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S, &T, &U)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&M, &S, 3)); MOD_ADD(M); } else { /* M = 3.X^2 */ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S, &P->X, &P->X)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&M, &S, 3)); MOD_ADD(M); /* Optimize away for "koblitz" curves with A = 0 */ if (mbedtls_mpi_cmp_int(&grp->A, 0) != 0) { /* M += A.Z^4 */ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S, &P->Z, &P->Z)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T, &S, &S)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S, &T, &grp->A)); MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, &M, &M, &S)); } } /* S = 4.X.Y^2 */ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T, &P->Y, &P->Y)); MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, &T, 1)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S, &P->X, &T)); MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, &S, 1)); /* U = 8.Y^4 */ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &U, &T, &T)); MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, &U, 1)); /* T = M^2 - 2.S */ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T, &M, &M)); MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &T, &T, &S)); MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &T, &T, &S)); /* S = M(S - T) - U */ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &S, &S, &T)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S, &S, &M)); MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &S, &S, &U)); /* U = 2.Y.Z */ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &U, &P->Y, &P->Z)); MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, &U, 1)); MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R->X, &T)); MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R->Y, &S)); MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R->Z, &U)); cleanup: mbedtls_mpi_free(&M); mbedtls_mpi_free(&S); mbedtls_mpi_free(&T); mbedtls_mpi_free(&U); return (ret); #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_JAC_ALT) */ } /* * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22) * * The coordinates of Q must be normalized (= affine), * but those of P don't need to. R is not normalized. * * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q. * None of these cases can happen as intermediate step in ecp_mul_comb(): * - at each step, P, Q and R are multiples of the base point, the factor * being less than its order, so none of them is zero; * - Q is an odd multiple of the base point, P an even multiple, * due to the choice of precomputed points in the modified comb method. * So branches for these cases do not leak secret information. * * We accept Q->Z being unset (saving memory in tables) as meaning 1. * * Cost: 1A := 8M + 3S */ static int ecp_add_mixed(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R, const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q) { #if defined(MBEDTLS_SELF_TEST) add_count++; #endif #if defined(MBEDTLS_ECP_ADD_MIXED_ALT) if (mbedtls_internal_ecp_grp_capable(grp)) return (mbedtls_internal_ecp_add_mixed(grp, R, P, Q)); #endif /* MBEDTLS_ECP_ADD_MIXED_ALT */ #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_ADD_MIXED_ALT) return (MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE); #else int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; mbedtls_mpi T1, T2, T3, T4, X, Y, Z; /* * Trivial cases: P == 0 or Q == 0 (case 1) */ if (mbedtls_mpi_cmp_int(&P->Z, 0) == 0) return (mbedtls_ecp_copy(R, Q)); if (Q->Z.p != NULL && mbedtls_mpi_cmp_int(&Q->Z, 0) == 0) return (mbedtls_ecp_copy(R, P)); /* * Make sure Q coordinates are normalized */ if (Q->Z.p != NULL && mbedtls_mpi_cmp_int(&Q->Z, 1) != 0) return (MBEDTLS_ERR_ECP_BAD_INPUT_DATA); mbedtls_mpi_init(&T1); mbedtls_mpi_init(&T2); mbedtls_mpi_init(&T3); mbedtls_mpi_init(&T4); mbedtls_mpi_init(&X); mbedtls_mpi_init(&Y); mbedtls_mpi_init(&Z); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T1, &P->Z, &P->Z)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T2, &T1, &P->Z)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T1, &T1, &Q->X)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T2, &T2, &Q->Y)); MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &T1, &T1, &P->X)); MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &T2, &T2, &P->Y)); /* Special cases (2) and (3) */ if (mbedtls_mpi_cmp_int(&T1, 0) == 0) { if (mbedtls_mpi_cmp_int(&T2, 0) == 0) { ret = ecp_double_jac(grp, R, P); goto cleanup; } else { ret = mbedtls_ecp_set_zero(R); goto cleanup; } } MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &Z, &P->Z, &T1)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T3, &T1, &T1)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T4, &T3, &T1)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T3, &T3, &P->X)); MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &T3)); MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, &T1, 1)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &X, &T2, &T2)); MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &X, &X, &T1)); MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &X, &X, &T4)); MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &T3, &T3, &X)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T3, &T3, &T2)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &T4, &T4, &P->Y)); MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &Y, &T3, &T4)); MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R->X, &X)); MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R->Y, &Y)); MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R->Z, &Z)); cleanup: mbedtls_mpi_free(&T1); mbedtls_mpi_free(&T2); mbedtls_mpi_free(&T3); mbedtls_mpi_free(&T4); mbedtls_mpi_free(&X); mbedtls_mpi_free(&Y); mbedtls_mpi_free(&Z); return (ret); #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_ADD_MIXED_ALT) */ } /* * Randomize jacobian coordinates: * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l * This is sort of the reverse operation of ecp_normalize_jac(). * * This countermeasure was first suggested in [2]. */ static int ecp_randomize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) { #if defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) if (mbedtls_internal_ecp_grp_capable(grp)) return (mbedtls_internal_ecp_randomize_jac(grp, pt, f_rng, p_rng)); #endif /* MBEDTLS_ECP_RANDOMIZE_JAC_ALT */ #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) return (MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE); #else int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; mbedtls_mpi l, ll; int count = 0; size_t p_size = (grp->pbits + 7) / 8; mbedtls_mpi_init(&l); mbedtls_mpi_init(&ll); /* Generate l such that 1 < l < p */ do { MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&l, p_size, f_rng, p_rng)); while (mbedtls_mpi_cmp_mpi(&l, &grp->P) >= 0) MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&l, 1)); if (count++ > 10) { ret = MBEDTLS_ERR_ECP_RANDOM_FAILED; goto cleanup; } } while (mbedtls_mpi_cmp_int(&l, 1) <= 0); /* Z = l * Z */ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &pt->Z, &pt->Z, &l)); /* X = l^2 * X */ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &ll, &l, &l)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &pt->X, &pt->X, &ll)); /* Y = l^3 * Y */ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &ll, &ll, &l)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &pt->Y, &pt->Y, &ll)); cleanup: mbedtls_mpi_free(&l); mbedtls_mpi_free(&ll); return (ret); #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_JAC_ALT) */ } /* * Check and define parameters used by the comb method (see below for details) */ #if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7 #error "MBEDTLS_ECP_WINDOW_SIZE out of bounds" #endif /* d = ceil( n / w ) */ #define COMB_MAX_D ( MBEDTLS_ECP_MAX_BITS + 1 ) / 2 /* number of precomputed points */ #define COMB_MAX_PRE ( 1 << ( MBEDTLS_ECP_WINDOW_SIZE - 1 ) ) /* * Compute the representation of m that will be used with our comb method. * * The basic comb method is described in GECC 3.44 for example. We use a * modified version that provides resistance to SPA by avoiding zero * digits in the representation as in [3]. We modify the method further by * requiring that all K_i be odd, which has the small cost that our * representation uses one more K_i, due to carries, but saves on the size of * the precomputed table. * * Summary of the comb method and its modifications: * * - The goal is to compute m*P for some w*d-bit integer m. * * - The basic comb method splits m into the w-bit integers * x[0] .. x[d-1] where x[i] consists of the bits in m whose * index has residue i modulo d, and computes m * P as * S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where * S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P. * * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by * .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] .., * thereby successively converting it into a form where all summands * are nonzero, at the cost of negative summands. This is the basic idea of [3]. * * - More generally, even if x[i+1] != 0, we can first transform the sum as * .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] .., * and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]]. * Performing and iterating this procedure for those x[i] that are even * (keeping track of carry), we can transform the original sum into one of the form * S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]] * with all x'[i] odd. It is therefore only necessary to know S at odd indices, * which is why we are only computing half of it in the first place in * ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb. * * - For the sake of compactness, only the seven low-order bits of x[i] * are used to represent its absolute value (K_i in the paper), and the msb * of x[i] encodes the sign (s_i in the paper): it is set if and only if * if s_i == -1; * * Calling conventions: * - x is an array of size d + 1 * - w is the size, ie number of teeth, of the comb, and must be between * 2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE) * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d * (the result will be incorrect if these assumptions are not satisfied) */ static void ecp_comb_recode_core(unsigned char x[], size_t d, unsigned char w, const mbedtls_mpi *m) { size_t i, j; unsigned char c, cc, adjust; memset(x, 0, d + 1); /* First get the classical comb values (except for x_d = 0) */ for (i = 0; i < d; i++) for (j = 0; j < w; j++) x[i] |= mbedtls_mpi_get_bit(m, i + d * j) << j; /* Now make sure x_1 .. x_d are odd */ c = 0; for (i = 1; i <= d; i++) { /* Add carry and update it */ cc = x[i] & c; x[i] = x[i] ^ c; c = cc; /* Adjust if needed, avoiding branches */ adjust = 1 - (x[i] & 0x01); c |= x[i] & (x[i - 1] * adjust); x[i] = x[i] ^ (x[i - 1] * adjust); x[i - 1] |= adjust << 7; } } /* * Precompute points for the adapted comb method * * Assumption: T must be able to hold 2^{w - 1} elements. * * Operation: If i = i_{w-1} ... i_1 is the binary representation of i, * sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P. * * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1) * * Note: Even comb values (those where P would be omitted from the * sum defining T[i] above) are not needed in our adaption * the comb method. See ecp_comb_recode_core(). * * This function currently works in four steps: * (1) [dbl] Computation of intermediate T[i] for 2-power values of i * (2) [norm_dbl] Normalization of coordinates of these T[i] * (3) [add] Computation of all T[i] * (4) [norm_add] Normalization of all T[i] * * Step 1 can be interrupted but not the others; together with the final * coordinate normalization they are the largest steps done at once, depending * on the window size. Here are operation counts for P-256: * * step (2) (3) (4) * w = 5 142 165 208 * w = 4 136 77 160 * w = 3 130 33 136 * w = 2 124 11 124 * * So if ECC operations are blocking for too long even with a low max_ops * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order * to minimize maximum blocking time. */ static int ecp_precompute_comb(const mbedtls_ecp_group *grp, mbedtls_ecp_point T[], const mbedtls_ecp_point *P, unsigned char w, size_t d, mbedtls_ecp_restart_ctx *rs_ctx) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; unsigned char i; size_t j = 0; const unsigned char T_size = 1U << (w - 1); mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1]; #if defined(MBEDTLS_ECP_RESTARTABLE) if (rs_ctx != NULL && rs_ctx->rsm != NULL) { if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) goto dbl; if (rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl) goto norm_dbl; if (rs_ctx->rsm->state == ecp_rsm_pre_add) goto add; if (rs_ctx->rsm->state == ecp_rsm_pre_norm_add) goto norm_add; } #else (void) rs_ctx; #endif #if defined(MBEDTLS_ECP_RESTARTABLE) if (rs_ctx != NULL && rs_ctx->rsm != NULL) { rs_ctx->rsm->state = ecp_rsm_pre_dbl; /* initial state for the loop */ rs_ctx->rsm->i = 0; } dbl: #endif /* * Set T[0] = P and * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value) */ MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&T[0], P)); #if defined(MBEDTLS_ECP_RESTARTABLE) if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) j = rs_ctx->rsm->i; else #endif j = 0; for (; j < d * (w - 1); j++) { MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL); i = 1U << (j / d); cur = T + i; if (j % d == 0) MBEDTLS_MPI_CHK(mbedtls_ecp_copy(cur, T + (i >> 1))); MBEDTLS_MPI_CHK(ecp_double_jac(grp, cur, cur)); } #if defined(MBEDTLS_ECP_RESTARTABLE) if (rs_ctx != NULL && rs_ctx->rsm != NULL) rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl; norm_dbl: #endif /* * Normalize current elements in T. As T has holes, * use an auxiliary array of pointers to elements in T. */ j = 0; for (i = 1; i < T_size; i <<= 1) TT[j++] = T + i; MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2); MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j)); #if defined(MBEDTLS_ECP_RESTARTABLE) if (rs_ctx != NULL && rs_ctx->rsm != NULL) rs_ctx->rsm->state = ecp_rsm_pre_add; add: #endif /* * Compute the remaining ones using the minimal number of additions * Be careful to update T[2^l] only after using it! */ MBEDTLS_ECP_BUDGET((T_size - 1) * MBEDTLS_ECP_OPS_ADD); for (i = 1; i < T_size; i <<= 1) { j = i; while (j--) MBEDTLS_MPI_CHK(ecp_add_mixed(grp, &T[i + j], &T[j], &T[i])); } #if defined(MBEDTLS_ECP_RESTARTABLE) if (rs_ctx != NULL && rs_ctx->rsm != NULL) rs_ctx->rsm->state = ecp_rsm_pre_norm_add; norm_add: #endif /* * Normalize final elements in T. Even though there are no holes now, we * still need the auxiliary array for homogeneity with the previous * call. Also, skip T[0] which is already normalised, being a copy of P. */ for (j = 0; j + 1 < T_size; j++) TT[j] = T + j + 1; MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2); MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j)); cleanup: #if defined(MBEDTLS_ECP_RESTARTABLE) if (rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS) { if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) rs_ctx->rsm->i = j; } #endif return (ret); } /* * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ] * * See ecp_comb_recode_core() for background */ static int ecp_select_comb(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R, const mbedtls_ecp_point T[], unsigned char T_size, unsigned char i) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; unsigned char ii, j; /* Ignore the "sign" bit and scale down */ ii = (i & 0x7Fu) >> 1; /* Read the whole table to thwart cache-based timing attacks */ for (j = 0; j < T_size; j++) { MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&R->X, &T[j].X, j == ii)); MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&R->Y, &T[j].Y, j == ii)); } /* Safely invert result if i is "negative" */ MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, R, i >> 7)); cleanup: return (ret); } /* * Core multiplication algorithm for the (modified) comb method. * This part is actually common with the basic comb method (GECC 3.44) * * Cost: d A + d D + 1 R */ static int ecp_mul_comb_core(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R, const mbedtls_ecp_point T[], unsigned char T_size, const unsigned char x[], size_t d, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, mbedtls_ecp_restart_ctx *rs_ctx) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; mbedtls_ecp_point Txi; size_t i; mbedtls_ecp_point_init(&Txi); #if !defined(MBEDTLS_ECP_RESTARTABLE) (void) rs_ctx; #endif #if defined(MBEDTLS_ECP_RESTARTABLE) if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->state != ecp_rsm_comb_core) { rs_ctx->rsm->i = 0; rs_ctx->rsm->state = ecp_rsm_comb_core; } /* new 'if' instead of nested for the sake of the 'else' branch */ if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) { /* restore current index (R already pointing to rs_ctx->rsm->R) */ i = rs_ctx->rsm->i; } else #endif { /* Start with a non-zero point and randomize its coordinates */ i = d; MBEDTLS_MPI_CHK(ecp_select_comb(grp, R, T, T_size, x[i])); MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&R->Z, 1)); #if defined(MBEDTLS_ECP_NO_INTERNAL_RNG) if (f_rng != 0) #endif MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, R, f_rng, p_rng)); } while (i != 0) { MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD); --i; MBEDTLS_MPI_CHK(ecp_double_jac(grp, R, R)); MBEDTLS_MPI_CHK(ecp_select_comb(grp, &Txi, T, T_size, x[i])); MBEDTLS_MPI_CHK(ecp_add_mixed(grp, R, R, &Txi)); } cleanup: mbedtls_ecp_point_free(&Txi); #if defined(MBEDTLS_ECP_RESTARTABLE) if (rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS) { rs_ctx->rsm->i = i; /* no need to save R, already pointing to rs_ctx->rsm->R */ } #endif return (ret); } /* * Recode the scalar to get constant-time comb multiplication * * As the actual scalar recoding needs an odd scalar as a starting point, * this wrapper ensures that by replacing m by N - m if necessary, and * informs the caller that the result of multiplication will be negated. * * This works because we only support large prime order for Short Weierstrass * curves, so N is always odd hence either m or N - m is. * * See ecp_comb_recode_core() for background. */ static int ecp_comb_recode_scalar(const mbedtls_ecp_group *grp, const mbedtls_mpi *m, unsigned char k[COMB_MAX_D + 1], size_t d, unsigned char w, unsigned char *parity_trick) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; mbedtls_mpi M, mm; mbedtls_mpi_init(&M); mbedtls_mpi_init(&mm); /* N is always odd (see above), just make extra sure */ if (mbedtls_mpi_get_bit(&grp->N, 0) != 1) return (MBEDTLS_ERR_ECP_BAD_INPUT_DATA); /* do we need the parity trick? */ *parity_trick = (mbedtls_mpi_get_bit(m, 0) == 0); /* execute parity fix in constant time */ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&M, m)); MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&mm, &grp->N, m)); MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&M, &mm, *parity_trick)); /* actual scalar recoding */ ecp_comb_recode_core(k, d, w, &M); cleanup: mbedtls_mpi_free(&mm); mbedtls_mpi_free(&M); return (ret); } /* * Perform comb multiplication (for short Weierstrass curves) * once the auxiliary table has been pre-computed. * * Scalar recoding may use a parity trick that makes us compute -m * P, * if that is the case we'll need to recover m * P at the end. */ static int ecp_mul_comb_after_precomp(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R, const mbedtls_mpi *m, const mbedtls_ecp_point *T, unsigned char T_size, unsigned char w, size_t d, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, mbedtls_ecp_restart_ctx *rs_ctx) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; unsigned char parity_trick; unsigned char k[COMB_MAX_D + 1]; mbedtls_ecp_point *RR = R; #if defined(MBEDTLS_ECP_RESTARTABLE) if (rs_ctx != NULL && rs_ctx->rsm != NULL) { RR = &rs_ctx->rsm->R; if (rs_ctx->rsm->state == ecp_rsm_final_norm) goto final_norm; } #endif MBEDTLS_MPI_CHK(ecp_comb_recode_scalar(grp, m, k, d, w, &parity_trick)); MBEDTLS_MPI_CHK(ecp_mul_comb_core(grp, RR, T, T_size, k, d, f_rng, p_rng, rs_ctx)); MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, RR, parity_trick)); #if defined(MBEDTLS_ECP_RESTARTABLE) if (rs_ctx != NULL && rs_ctx->rsm != NULL) rs_ctx->rsm->state = ecp_rsm_final_norm; final_norm: MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV); #endif /* * Knowledge of the jacobian coordinates may leak the last few bits of the * scalar [1], and since our MPI implementation isn't constant-flow, * inversion (used for coordinate normalization) may leak the full value * of its input via side-channels [2]. * * [1] https://eprint.iacr.org/2003/191 * [2] https://eprint.iacr.org/2020/055 * * Avoid the leak by randomizing coordinates before we normalize them. */ #if defined(MBEDTLS_ECP_NO_INTERNAL_RNG) if (f_rng != 0) #endif MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, RR, f_rng, p_rng)); MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, RR)); #if defined(MBEDTLS_ECP_RESTARTABLE) if (rs_ctx != NULL && rs_ctx->rsm != NULL) MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, RR)); #endif cleanup: return (ret); } /* * Pick window size based on curve size and whether we optimize for base point */ static unsigned char ecp_pick_window_size(const mbedtls_ecp_group *grp, unsigned char p_eq_g) { unsigned char w; /* * Minimize the number of multiplications, that is minimize * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w ) * (see costs of the various parts, with 1S = 1M) */ w = grp->nbits >= 384 ? 5 : 4; /* * If P == G, pre-compute a bit more, since this may be re-used later. * Just adding one avoids upping the cost of the first mul too much, * and the memory cost too. */ if (p_eq_g) w++; /* * Make sure w is within bounds. * (The last test is useful only for very small curves in the test suite.) */ #if( MBEDTLS_ECP_WINDOW_SIZE < 6 ) if (w > MBEDTLS_ECP_WINDOW_SIZE) w = MBEDTLS_ECP_WINDOW_SIZE; #endif if (w >= grp->nbits) w = 2; return (w); } /* * Multiplication using the comb method - for curves in short Weierstrass form * * This function is mainly responsible for administrative work: * - managing the restart context if enabled * - managing the table of precomputed points (passed between the below two * functions): allocation, computation, ownership tranfer, freeing. * * It delegates the actual arithmetic work to: * ecp_precompute_comb() and ecp_mul_comb_with_precomp() * * See comments on ecp_comb_recode_core() regarding the computation strategy. */ static int ecp_mul_comb(mbedtls_ecp_group *grp, mbedtls_ecp_point *R, const mbedtls_mpi *m, const mbedtls_ecp_point *P, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, mbedtls_ecp_restart_ctx *rs_ctx) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; unsigned char w, p_eq_g, i; size_t d; unsigned char T_size = 0, T_ok = 0; mbedtls_ecp_point *T = NULL; #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG) ecp_drbg_context drbg_ctx; ecp_drbg_init(&drbg_ctx); #endif ECP_RS_ENTER(rsm); #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG) if (f_rng == NULL) { /* Adjust pointers */ f_rng = &ecp_drbg_random; #if defined(MBEDTLS_ECP_RESTARTABLE) if (rs_ctx != NULL && rs_ctx->rsm != NULL) p_rng = &rs_ctx->rsm->drbg_ctx; else #endif p_rng = &drbg_ctx; /* Initialize internal DRBG if necessary */ #if defined(MBEDTLS_ECP_RESTARTABLE) if (rs_ctx == NULL || rs_ctx->rsm == NULL || rs_ctx->rsm->drbg_seeded == 0) #endif { const size_t m_len = (grp->nbits + 7) / 8; MBEDTLS_MPI_CHK(ecp_drbg_seed(p_rng, m, m_len)); } #if defined(MBEDTLS_ECP_RESTARTABLE) if (rs_ctx != NULL && rs_ctx->rsm != NULL) rs_ctx->rsm->drbg_seeded = 1; #endif } #endif /* !MBEDTLS_ECP_NO_INTERNAL_RNG */ /* Is P the base point ? */ #if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1 p_eq_g = (mbedtls_mpi_cmp_mpi(&P->Y, &grp->G.Y) == 0 && mbedtls_mpi_cmp_mpi(&P->X, &grp->G.X) == 0); #else p_eq_g = 0; #endif /* Pick window size and deduce related sizes */ w = ecp_pick_window_size(grp, p_eq_g); T_size = 1U << (w - 1); d = (grp->nbits + w - 1) / w; /* Pre-computed table: do we have it already for the base point? */ if (p_eq_g && grp->T != NULL) { /* second pointer to the same table, will be deleted on exit */ T = grp->T; T_ok = 1; } else #if defined(MBEDTLS_ECP_RESTARTABLE) /* Pre-computed table: do we have one in progress? complete? */ if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL) { /* transfer ownership of T from rsm to local function */ T = rs_ctx->rsm->T; rs_ctx->rsm->T = NULL; rs_ctx->rsm->T_size = 0; /* This effectively jumps to the call to mul_comb_after_precomp() */ T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core; } else #endif /* Allocate table if we didn't have any */ { T = mbedtls_calloc(T_size, sizeof(mbedtls_ecp_point)); if (T == NULL) { ret = MBEDTLS_ERR_ECP_ALLOC_FAILED; goto cleanup; } for (i = 0; i < T_size; i++) mbedtls_ecp_point_init(&T[i]); T_ok = 0; } /* Compute table (or finish computing it) if not done already */ if (!T_ok) { MBEDTLS_MPI_CHK(ecp_precompute_comb(grp, T, P, w, d, rs_ctx)); if (p_eq_g) { /* almost transfer ownership of T to the group, but keep a copy of * the pointer to use for calling the next function more easily */ grp->T = T; grp->T_size = T_size; } } /* Actual comb multiplication using precomputed points */ MBEDTLS_MPI_CHK(ecp_mul_comb_after_precomp(grp, R, m, T, T_size, w, d, f_rng, p_rng, rs_ctx)); cleanup: #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG) ecp_drbg_free(&drbg_ctx); #endif /* does T belong to the group? */ if (T == grp->T) T = NULL; /* does T belong to the restart context? */ #if defined(MBEDTLS_ECP_RESTARTABLE) if (rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL) { /* transfer ownership of T from local function to rsm */ rs_ctx->rsm->T_size = T_size; rs_ctx->rsm->T = T; T = NULL; } #endif /* did T belong to us? then let's destroy it! */ if (T != NULL) { for (i = 0; i < T_size; i++) mbedtls_ecp_point_free(&T[i]); mbedtls_free(T); } /* don't free R while in progress in case R == P */ #if defined(MBEDTLS_ECP_RESTARTABLE) if (ret != MBEDTLS_ERR_ECP_IN_PROGRESS) #endif /* prevent caller from using invalid value */ if (ret != 0) mbedtls_ecp_point_free(R); ECP_RS_LEAVE(rsm); return (ret); } #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) /* * For Montgomery curves, we do all the internal arithmetic in projective * coordinates. Import/export of points uses only the x coordinates, which is * internaly represented as X / Z. * * For scalar multiplication, we'll use a Montgomery ladder. */ /* * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1 * Cost: 1M + 1I */ static int ecp_normalize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P) { #if defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) if (mbedtls_internal_ecp_grp_capable(grp)) return (mbedtls_internal_ecp_normalize_mxz(grp, P)); #endif /* MBEDTLS_ECP_NORMALIZE_MXZ_ALT */ #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) return (MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE); #else int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&P->Z, &P->Z, &grp->P)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &P->X, &P->X, &P->Z)); MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&P->Z, 1)); cleanup: return (ret); #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_NORMALIZE_MXZ_ALT) */ } /* * Randomize projective x/z coordinates: * (X, Z) -> (l X, l Z) for random l * This is sort of the reverse operation of ecp_normalize_mxz(). * * This countermeasure was first suggested in [2]. * Cost: 2M */ static int ecp_randomize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) { #if defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) if (mbedtls_internal_ecp_grp_capable(grp)) return (mbedtls_internal_ecp_randomize_mxz(grp, P, f_rng, p_rng); #endif /* MBEDTLS_ECP_RANDOMIZE_MXZ_ALT */ #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) return (MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE); #else int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; mbedtls_mpi l; int count = 0; size_t p_size = (grp->pbits + 7) / 8; mbedtls_mpi_init(&l); /* Generate l such that 1 < l < p */ do { MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&l, p_size, f_rng, p_rng)); while (mbedtls_mpi_cmp_mpi(&l, &grp->P) >= 0) MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&l, 1)); if (count++ > 10) { ret = MBEDTLS_ERR_ECP_RANDOM_FAILED; goto cleanup; } } while (mbedtls_mpi_cmp_int(&l, 1) <= 0); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &P->X, &P->X, &l)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &P->Z, &P->Z, &l)); cleanup: mbedtls_mpi_free(&l); return (ret); #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_RANDOMIZE_MXZ_ALT) */ } /* * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q), * for Montgomery curves in x/z coordinates. * * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3 * with * d = X1 * P = (X2, Z2) * Q = (X3, Z3) * R = (X4, Z4) * S = (X5, Z5) * and eliminating temporary variables tO, ..., t4. * * Cost: 5M + 4S */ static int ecp_double_add_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R, mbedtls_ecp_point *S, const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q, const mbedtls_mpi *d) { #if defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) if (mbedtls_internal_ecp_grp_capable(grp)) return (mbedtls_internal_ecp_double_add_mxz(grp, R, S, P, Q, d)); #endif /* MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT */ #if defined(MBEDTLS_ECP_NO_FALLBACK) && defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) return (MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE); #else int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; mbedtls_mpi A, AA, B, BB, E, C, D, DA, CB; mbedtls_mpi_init(&A); mbedtls_mpi_init(&AA); mbedtls_mpi_init(&B); mbedtls_mpi_init(&BB); mbedtls_mpi_init(&E); mbedtls_mpi_init(&C); mbedtls_mpi_init(&D); mbedtls_mpi_init(&DA); mbedtls_mpi_init(&CB); MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, &A, &P->X, &P->Z)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &AA, &A, &A)); MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &B, &P->X, &P->Z)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &BB, &B, &B)); MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &E, &AA, &BB)); MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, &C, &Q->X, &Q->Z)); MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &D, &Q->X, &Q->Z)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &DA, &D, &A)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &CB, &C, &B)); MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, &S->X, &DA, &CB)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S->X, &S->X, &S->X)); MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, &S->Z, &DA, &CB)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S->Z, &S->Z, &S->Z)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &S->Z, d, &S->Z)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &R->X, &AA, &BB)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &R->Z, &grp->A, &E)); MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, &R->Z, &BB, &R->Z)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &R->Z, &E, &R->Z)); cleanup: mbedtls_mpi_free(&A); mbedtls_mpi_free(&AA); mbedtls_mpi_free(&B); mbedtls_mpi_free(&BB); mbedtls_mpi_free(&E); mbedtls_mpi_free(&C); mbedtls_mpi_free(&D); mbedtls_mpi_free(&DA); mbedtls_mpi_free(&CB); return (ret); #endif /* !defined(MBEDTLS_ECP_NO_FALLBACK) || !defined(MBEDTLS_ECP_DOUBLE_ADD_MXZ_ALT) */ } /* * Multiplication with Montgomery ladder in x/z coordinates, * for curves in Montgomery form */ static int ecp_mul_mxz(mbedtls_ecp_group *grp, mbedtls_ecp_point *R, const mbedtls_mpi *m, const mbedtls_ecp_point *P, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; size_t i; unsigned char b; mbedtls_ecp_point RP; mbedtls_mpi PX; #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG) ecp_drbg_context drbg_ctx; ecp_drbg_init(&drbg_ctx); #endif mbedtls_ecp_point_init(&RP); mbedtls_mpi_init(&PX); #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG) if (f_rng == NULL) { const size_t m_len = (grp->nbits + 7) / 8; MBEDTLS_MPI_CHK(ecp_drbg_seed(&drbg_ctx, m, m_len)); f_rng = &ecp_drbg_random; p_rng = &drbg_ctx; } #endif /* !MBEDTLS_ECP_NO_INTERNAL_RNG */ /* Save PX and read from P before writing to R, in case P == R */ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&PX, &P->X)); MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&RP, P)); /* Set R to zero in modified x/z coordinates */ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&R->X, 1)); MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&R->Z, 0)); mbedtls_mpi_free(&R->Y); /* RP.X might be sligtly larger than P, so reduce it */ MOD_ADD(RP.X); /* Randomize coordinates of the starting point */ #if defined(MBEDTLS_ECP_NO_INTERNAL_RNG) if (f_rng != NULL) #endif MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, &RP, f_rng, p_rng)); /* Loop invariant: R = result so far, RP = R + P */ i = mbedtls_mpi_bitlen(m); /* one past the (zero-based) most significant bit */ while (i-- > 0) { b = mbedtls_mpi_get_bit(m, i); /* * if (b) R = 2R + P else R = 2R, * which is: * if (b) double_add( RP, R, RP, R ) * else double_add( R, RP, R, RP ) * but using safe conditional swaps to avoid leaks */ MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap(&R->X, &RP.X, b)); MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap(&R->Z, &RP.Z, b)); MBEDTLS_MPI_CHK(ecp_double_add_mxz(grp, R, &RP, R, &RP, &PX)); MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap(&R->X, &RP.X, b)); MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap(&R->Z, &RP.Z, b)); } /* * Knowledge of the projective coordinates may leak the last few bits of the * scalar [1], and since our MPI implementation isn't constant-flow, * inversion (used for coordinate normalization) may leak the full value * of its input via side-channels [2]. * * [1] https://eprint.iacr.org/2003/191 * [2] https://eprint.iacr.org/2020/055 * * Avoid the leak by randomizing coordinates before we normalize them. */ #if defined(MBEDTLS_ECP_NO_INTERNAL_RNG) if (f_rng != NULL) #endif MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, R, f_rng, p_rng)); MBEDTLS_MPI_CHK(ecp_normalize_mxz(grp, R)); cleanup: #if !defined(MBEDTLS_ECP_NO_INTERNAL_RNG) ecp_drbg_free(&drbg_ctx); #endif mbedtls_ecp_point_free(&RP); mbedtls_mpi_free(&PX); return (ret); } #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */ /* * Restartable multiplication R = m * P */ int mbedtls_ecp_mul_restartable(mbedtls_ecp_group *grp, mbedtls_ecp_point *R, const mbedtls_mpi *m, const mbedtls_ecp_point *P, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng, mbedtls_ecp_restart_ctx *rs_ctx) { int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA; #if defined(MBEDTLS_ECP_INTERNAL_ALT) char is_grp_capable = 0; #endif ECP_VALIDATE_RET(grp != NULL); ECP_VALIDATE_RET(R != NULL); ECP_VALIDATE_RET(m != NULL); ECP_VALIDATE_RET(P != NULL); #if defined(MBEDTLS_ECP_RESTARTABLE) /* reset ops count for this call if top-level */ if (rs_ctx != NULL && rs_ctx->depth++ == 0) rs_ctx->ops_done = 0; #else (void) rs_ctx; #endif #if defined(MBEDTLS_ECP_INTERNAL_ALT) if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp)); #endif /* MBEDTLS_ECP_INTERNAL_ALT */ #if defined(MBEDTLS_ECP_RESTARTABLE) /* skip argument check when restarting */ if (rs_ctx == NULL || rs_ctx->rsm == NULL) #endif { /* check_privkey is free */ MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_CHK); /* Common sanity checks */ MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(grp, m)); MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P)); } ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA; #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) MBEDTLS_MPI_CHK(ecp_mul_mxz(grp, R, m, P, f_rng, p_rng)); #endif #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) MBEDTLS_MPI_CHK(ecp_mul_comb(grp, R, m, P, f_rng, p_rng, rs_ctx)); #endif cleanup: #if defined(MBEDTLS_ECP_INTERNAL_ALT) if (is_grp_capable) mbedtls_internal_ecp_free(grp); #endif /* MBEDTLS_ECP_INTERNAL_ALT */ #if defined(MBEDTLS_ECP_RESTARTABLE) if (rs_ctx != NULL) rs_ctx->depth--; #endif return (ret); } /* * Multiplication R = m * P */ int mbedtls_ecp_mul(mbedtls_ecp_group *grp, mbedtls_ecp_point *R, const mbedtls_mpi *m, const mbedtls_ecp_point *P, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) { ECP_VALIDATE_RET(grp != NULL); ECP_VALIDATE_RET(R != NULL); ECP_VALIDATE_RET(m != NULL); ECP_VALIDATE_RET(P != NULL); return (mbedtls_ecp_mul_restartable(grp, R, m, P, f_rng, p_rng, NULL)); } #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) /* * Check that an affine point is valid as a public key, * short weierstrass curves (SEC1 3.2.3.1) */ static int ecp_check_pubkey_sw(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; mbedtls_mpi YY, RHS; /* pt coordinates must be normalized for our checks */ if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0 || mbedtls_mpi_cmp_int(&pt->Y, 0) < 0 || mbedtls_mpi_cmp_mpi(&pt->X, &grp->P) >= 0 || mbedtls_mpi_cmp_mpi(&pt->Y, &grp->P) >= 0) return (MBEDTLS_ERR_ECP_INVALID_KEY); mbedtls_mpi_init(&YY); mbedtls_mpi_init(&RHS); /* * YY = Y^2 * RHS = X (X^2 + A) + B = X^3 + A X + B */ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &YY, &pt->Y, &pt->Y)); MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &RHS, &pt->X, &pt->X)); /* Special case for A = -3 */ if (grp->A.p == NULL) { MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&RHS, &RHS, 3)); MOD_SUB(RHS); } else { MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, &RHS, &RHS, &grp->A)); } MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, &RHS, &RHS, &pt->X)); MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, &RHS, &RHS, &grp->B)); if (mbedtls_mpi_cmp_mpi(&YY, &RHS) != 0) ret = MBEDTLS_ERR_ECP_INVALID_KEY; cleanup: mbedtls_mpi_free(&YY); mbedtls_mpi_free(&RHS); return (ret); } #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) /* * R = m * P with shortcuts for m == 1 and m == -1 * NOT constant-time - ONLY for short Weierstrass! */ static int mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group *grp, mbedtls_ecp_point *R, const mbedtls_mpi *m, const mbedtls_ecp_point *P, mbedtls_ecp_restart_ctx *rs_ctx) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; if (mbedtls_mpi_cmp_int(m, 1) == 0) { MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P)); } else if (mbedtls_mpi_cmp_int(m, -1) == 0) { MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P)); if (mbedtls_mpi_cmp_int(&R->Y, 0) != 0) MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&R->Y, &grp->P, &R->Y)); } else { MBEDTLS_MPI_CHK(mbedtls_ecp_mul_restartable(grp, R, m, P, NULL, NULL, rs_ctx)); } cleanup: return (ret); } /* * Restartable linear combination * NOT constant-time */ int mbedtls_ecp_muladd_restartable( mbedtls_ecp_group *grp, mbedtls_ecp_point *R, const mbedtls_mpi *m, const mbedtls_ecp_point *P, const mbedtls_mpi *n, const mbedtls_ecp_point *Q, mbedtls_ecp_restart_ctx *rs_ctx) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; mbedtls_ecp_point mP; mbedtls_ecp_point *pmP = &mP; mbedtls_ecp_point *pR = R; #if defined(MBEDTLS_ECP_INTERNAL_ALT) char is_grp_capable = 0; #endif ECP_VALIDATE_RET(grp != NULL); ECP_VALIDATE_RET(R != NULL); ECP_VALIDATE_RET(m != NULL); ECP_VALIDATE_RET(P != NULL); ECP_VALIDATE_RET(n != NULL); ECP_VALIDATE_RET(Q != NULL); if (mbedtls_ecp_get_type(grp) != MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) return (MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE); mbedtls_ecp_point_init(&mP); ECP_RS_ENTER(ma); #if defined(MBEDTLS_ECP_RESTARTABLE) if (rs_ctx != NULL && rs_ctx->ma != NULL) { /* redirect intermediate results to restart context */ pmP = &rs_ctx->ma->mP; pR = &rs_ctx->ma->R; /* jump to next operation */ if (rs_ctx->ma->state == ecp_rsma_mul2) goto mul2; if (rs_ctx->ma->state == ecp_rsma_add) goto add; if (rs_ctx->ma->state == ecp_rsma_norm) goto norm; } #endif /* MBEDTLS_ECP_RESTARTABLE */ MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pmP, m, P, rs_ctx)); #if defined(MBEDTLS_ECP_RESTARTABLE) if (rs_ctx != NULL && rs_ctx->ma != NULL) rs_ctx->ma->state = ecp_rsma_mul2; mul2: #endif MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pR, n, Q, rs_ctx)); #if defined(MBEDTLS_ECP_INTERNAL_ALT) if ((is_grp_capable = mbedtls_internal_ecp_grp_capable(grp))) MBEDTLS_MPI_CHK(mbedtls_internal_ecp_init(grp)); #endif /* MBEDTLS_ECP_INTERNAL_ALT */ #if defined(MBEDTLS_ECP_RESTARTABLE) if (rs_ctx != NULL && rs_ctx->ma != NULL) rs_ctx->ma->state = ecp_rsma_add; add: #endif MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_ADD); MBEDTLS_MPI_CHK(ecp_add_mixed(grp, pR, pmP, pR)); #if defined(MBEDTLS_ECP_RESTARTABLE) if (rs_ctx != NULL && rs_ctx->ma != NULL) rs_ctx->ma->state = ecp_rsma_norm; norm: #endif MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV); MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, pR)); #if defined(MBEDTLS_ECP_RESTARTABLE) if (rs_ctx != NULL && rs_ctx->ma != NULL) MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, pR)); #endif cleanup: #if defined(MBEDTLS_ECP_INTERNAL_ALT) if (is_grp_capable) mbedtls_internal_ecp_free(grp); #endif /* MBEDTLS_ECP_INTERNAL_ALT */ mbedtls_ecp_point_free(&mP); ECP_RS_LEAVE(ma); return (ret); } /* * Linear combination * NOT constant-time */ int mbedtls_ecp_muladd(mbedtls_ecp_group *grp, mbedtls_ecp_point *R, const mbedtls_mpi *m, const mbedtls_ecp_point *P, const mbedtls_mpi *n, const mbedtls_ecp_point *Q) { ECP_VALIDATE_RET(grp != NULL); ECP_VALIDATE_RET(R != NULL); ECP_VALIDATE_RET(m != NULL); ECP_VALIDATE_RET(P != NULL); ECP_VALIDATE_RET(n != NULL); ECP_VALIDATE_RET(Q != NULL); return (mbedtls_ecp_muladd_restartable(grp, R, m, P, n, Q, NULL)); } #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) /* * Check validity of a public key for Montgomery curves with x-only schemes */ static int ecp_check_pubkey_mx(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt) { /* [Curve25519 p. 5] Just check X is the correct number of bytes */ /* Allow any public value, if it's too big then we'll just reduce it mod p * (RFC 7748 sec. 5 para. 3). */ if (mbedtls_mpi_size(&pt->X) > (grp->nbits + 7) / 8) return (MBEDTLS_ERR_ECP_INVALID_KEY); return (0); } #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */ /* * Check that a point is valid as a public key */ int mbedtls_ecp_check_pubkey(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt) { ECP_VALIDATE_RET(grp != NULL); ECP_VALIDATE_RET(pt != NULL); /* Must use affine coordinates */ if (mbedtls_mpi_cmp_int(&pt->Z, 1) != 0) return (MBEDTLS_ERR_ECP_INVALID_KEY); #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) return (ecp_check_pubkey_mx(grp, pt)); #endif #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) return (ecp_check_pubkey_sw(grp, pt)); #endif return (MBEDTLS_ERR_ECP_BAD_INPUT_DATA); } /* * Check that an mbedtls_mpi is valid as a private key */ int mbedtls_ecp_check_privkey(const mbedtls_ecp_group *grp, const mbedtls_mpi *d) { ECP_VALIDATE_RET(grp != NULL); ECP_VALIDATE_RET(d != NULL); #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) { /* see RFC 7748 sec. 5 para. 5 */ if (mbedtls_mpi_get_bit(d, 0) != 0 || mbedtls_mpi_get_bit(d, 1) != 0 || mbedtls_mpi_bitlen(d) - 1 != grp->nbits) /* mbedtls_mpi_bitlen is one-based! */ return (MBEDTLS_ERR_ECP_INVALID_KEY); /* see [Curve25519] page 5 */ if (grp->nbits == 254 && mbedtls_mpi_get_bit(d, 2) != 0) return (MBEDTLS_ERR_ECP_INVALID_KEY); return (0); } #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */ #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) { /* see SEC1 3.2 */ if (mbedtls_mpi_cmp_int(d, 1) < 0 || mbedtls_mpi_cmp_mpi(d, &grp->N) >= 0) return (MBEDTLS_ERR_ECP_INVALID_KEY); else return (0); } #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ return (MBEDTLS_ERR_ECP_BAD_INPUT_DATA); } /* * Generate a private key */ int mbedtls_ecp_gen_privkey(const mbedtls_ecp_group *grp, mbedtls_mpi *d, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) { int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA; size_t n_size; ECP_VALIDATE_RET(grp != NULL); ECP_VALIDATE_RET(d != NULL); ECP_VALIDATE_RET(f_rng != NULL); n_size = (grp->nbits + 7) / 8; #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) { /* [M225] page 5 */ size_t b; do { MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(d, n_size, f_rng, p_rng)); } while (mbedtls_mpi_bitlen(d) == 0); /* Make sure the most significant bit is nbits */ b = mbedtls_mpi_bitlen(d) - 1; /* mbedtls_mpi_bitlen is one-based */ if (b > grp->nbits) MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(d, b - grp->nbits)); else MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, grp->nbits, 1)); /* Make sure the last two bits are unset for Curve448, three bits for Curve25519 */ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 0, 0)); MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 1, 0)); if (grp->nbits == 254) { MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 2, 0)); } } #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */ #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) { /* SEC1 3.2.1: Generate d such that 1 <= n < N */ int count = 0; unsigned cmp = 0; /* * Match the procedure given in RFC 6979 (deterministic ECDSA): * - use the same byte ordering; * - keep the leftmost nbits bits of the generated octet string; * - try until result is in the desired range. * This also avoids any biais, which is especially important for ECDSA. */ do { MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(d, n_size, f_rng, p_rng)); MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(d, 8 * n_size - grp->nbits)); /* * Each try has at worst a probability 1/2 of failing (the msb has * a probability 1/2 of being 0, and then the result will be < N), * so after 30 tries failure probability is a most 2**(-30). * * For most curves, 1 try is enough with overwhelming probability, * since N starts with a lot of 1s in binary, but some curves * such as secp224k1 are actually very close to the worst case. */ if (++count > 30) { ret = MBEDTLS_ERR_ECP_RANDOM_FAILED; goto cleanup; } ret = mbedtls_mpi_lt_mpi_ct(d, &grp->N, &cmp); if (ret != 0) { goto cleanup; } } while (mbedtls_mpi_cmp_int(d, 1) < 0 || cmp != 1); } #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ cleanup: return (ret); } /* * Generate a keypair with configurable base point */ int mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group *grp, const mbedtls_ecp_point *G, mbedtls_mpi *d, mbedtls_ecp_point *Q, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; ECP_VALIDATE_RET(grp != NULL); ECP_VALIDATE_RET(d != NULL); ECP_VALIDATE_RET(G != NULL); ECP_VALIDATE_RET(Q != NULL); ECP_VALIDATE_RET(f_rng != NULL); MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, d, f_rng, p_rng)); MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, Q, d, G, f_rng, p_rng)); cleanup: return (ret); } /* * Generate key pair, wrapper for conventional base point */ int mbedtls_ecp_gen_keypair(mbedtls_ecp_group *grp, mbedtls_mpi *d, mbedtls_ecp_point *Q, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) { ECP_VALIDATE_RET(grp != NULL); ECP_VALIDATE_RET(d != NULL); ECP_VALIDATE_RET(Q != NULL); ECP_VALIDATE_RET(f_rng != NULL); return (mbedtls_ecp_gen_keypair_base(grp, &grp->G, d, Q, f_rng, p_rng)); } /* * Generate a keypair, prettier wrapper */ int mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key, int (*f_rng)(void *, unsigned char *, size_t), void *p_rng) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; ECP_VALIDATE_RET(key != NULL); ECP_VALIDATE_RET(f_rng != NULL); if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) return (ret); return (mbedtls_ecp_gen_keypair(&key->grp, &key->d, &key->Q, f_rng, p_rng)); } #define ECP_CURVE25519_KEY_SIZE 32 /* * Read a private key. */ int mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key, const unsigned char *buf, size_t buflen) { int ret = 0; ECP_VALIDATE_RET(key != NULL); ECP_VALIDATE_RET(buf != NULL); if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) return (ret); ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) { /* * If it is Curve25519 curve then mask the key as mandated by RFC7748 */ if (grp_id == MBEDTLS_ECP_DP_CURVE25519) { if (buflen != ECP_CURVE25519_KEY_SIZE) return MBEDTLS_ERR_ECP_INVALID_KEY; MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen)); /* Set the three least significant bits to 0 */ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0)); MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0)); MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 2, 0)); /* Set the most significant bit to 0 */ MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit(&key->d, ECP_CURVE25519_KEY_SIZE * 8 - 1, 0) ); /* Set the second most significant bit to 1 */ MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit(&key->d, ECP_CURVE25519_KEY_SIZE * 8 - 2, 1) ); } else ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; } #endif #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) { MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&key->d, buf, buflen)); MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(&key->grp, &key->d)); } #endif cleanup: if (ret != 0) mbedtls_mpi_free(&key->d); return (ret); } /* * Write a private key. */ int mbedtls_ecp_write_key(mbedtls_ecp_keypair *key, unsigned char *buf, size_t buflen) { int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; ECP_VALIDATE_RET(key != NULL); ECP_VALIDATE_RET(buf != NULL); #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) { if (key->grp.id == MBEDTLS_ECP_DP_CURVE25519) { if (buflen < ECP_CURVE25519_KEY_SIZE) return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL; MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&key->d, buf, buflen)); } else ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE; } #endif #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) { MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&key->d, buf, buflen)); } #endif cleanup: return (ret); } /* * Check a public-private key pair */ int mbedtls_ecp_check_pub_priv(const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; mbedtls_ecp_point Q; mbedtls_ecp_group grp; ECP_VALIDATE_RET(pub != NULL); ECP_VALIDATE_RET(prv != NULL); if (pub->grp.id == MBEDTLS_ECP_DP_NONE || pub->grp.id != prv->grp.id || mbedtls_mpi_cmp_mpi(&pub->Q.X, &prv->Q.X) || mbedtls_mpi_cmp_mpi(&pub->Q.Y, &prv->Q.Y) || mbedtls_mpi_cmp_mpi(&pub->Q.Z, &prv->Q.Z)) { return (MBEDTLS_ERR_ECP_BAD_INPUT_DATA); } mbedtls_ecp_point_init(&Q); mbedtls_ecp_group_init(&grp); /* mbedtls_ecp_mul() needs a non-const group... */ mbedtls_ecp_group_copy(&grp, &prv->grp); /* Also checks d is valid */ MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &Q, &prv->d, &prv->grp.G, NULL, NULL)); if (mbedtls_mpi_cmp_mpi(&Q.X, &prv->Q.X) || mbedtls_mpi_cmp_mpi(&Q.Y, &prv->Q.Y) || mbedtls_mpi_cmp_mpi(&Q.Z, &prv->Q.Z)) { ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA; goto cleanup; } cleanup: mbedtls_ecp_point_free(&Q); mbedtls_ecp_group_free(&grp); return (ret); } #if defined(MBEDTLS_SELF_TEST) /* Adjust the exponent to be a valid private point for the specified curve. * This is sometimes necessary because we use a single set of exponents * for all curves but the validity of values depends on the curve. */ static int self_test_adjust_exponent(const mbedtls_ecp_group *grp, mbedtls_mpi *m) { int ret = 0; switch (grp->id) { /* If Curve25519 is available, then that's what we use for the * Montgomery test, so we don't need the adjustment code. */ #if ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) #if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED) case MBEDTLS_ECP_DP_CURVE448: /* Move highest bit from 254 to N-1. Setting bit N-1 is * necessary to enforce the highest-bit-set constraint. */ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, 254, 0)); MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, grp->nbits, 1)); /* Copy second-highest bit from 253 to N-2. This is not * necessary but improves the test variety a bit. */ MBEDTLS_MPI_CHK( mbedtls_mpi_set_bit(m, grp->nbits - 1, mbedtls_mpi_get_bit(m, 253))); break; #endif #endif /* ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) */ default: /* Non-Montgomery curves and Curve25519 need no adjustment. */ (void) grp; (void) m; goto cleanup; } cleanup: return (ret); } /* Calculate R = m.P for each m in exponents. Check that the number of * basic operations doesn't depend on the value of m. */ static int self_test_point(int verbose, mbedtls_ecp_group *grp, mbedtls_ecp_point *R, mbedtls_mpi *m, const mbedtls_ecp_point *P, const char *const *exponents, size_t n_exponents) { int ret = 0; size_t i = 0; unsigned long add_c_prev, dbl_c_prev, mul_c_prev; add_count = 0; dbl_count = 0; mul_count = 0; MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[0])); MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m)); MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, NULL, NULL)); for (i = 1; i < n_exponents; i++) { add_c_prev = add_count; dbl_c_prev = dbl_count; mul_c_prev = mul_count; add_count = 0; dbl_count = 0; mul_count = 0; MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[i])); MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m)); MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, NULL, NULL)); if (add_count != add_c_prev || dbl_count != dbl_c_prev || mul_count != mul_c_prev) { ret = 1; break; } } cleanup: if (verbose != 0) { if (ret != 0) mbedtls_printf("failed (%u)\n", (unsigned int) i); else mbedtls_printf("passed\n"); } return (ret); } /* * Checkup routine */ int mbedtls_ecp_self_test(int verbose) { int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; mbedtls_ecp_group grp; mbedtls_ecp_point R, P; mbedtls_mpi m; #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) /* Exponents especially adapted for secp192k1, which has the lowest * order n of all supported curves (secp192r1 is in a slightly larger * field but the order of its base point is slightly smaller). */ const char *sw_exponents[] = { "000000000000000000000000000000000000000000000001", /* one */ "FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8C", /* n - 1 */ "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */ "400000000000000000000000000000000000000000000000", /* one and zeros */ "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */ "555555555555555555555555555555555555555555555555", /* 101010... */ }; #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) const char *m_exponents[] = { /* Valid private values for Curve25519. In a build with Curve448 * but not Curve25519, they will be adjusted in * self_test_adjust_exponent(). */ "4000000000000000000000000000000000000000000000000000000000000000", "5C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C30", "5715ECCE24583F7A7023C24164390586842E816D7280A49EF6DF4EAE6B280BF8", "41A2B017516F6D254E1F002BCCBADD54BE30F8CEC737A0E912B4963B6BA74460", "5555555555555555555555555555555555555555555555555555555555555550", "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8", }; #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */ mbedtls_ecp_group_init(&grp); mbedtls_ecp_point_init(&R); mbedtls_ecp_point_init(&P); mbedtls_mpi_init(&m); #if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED) /* Use secp192r1 if available, or any available curve */ #if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP192R1)); #else MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, mbedtls_ecp_curve_list()->grp_id)); #endif if (verbose != 0) mbedtls_printf(" ECP SW test #1 (constant op_count, base point G): "); /* Do a dummy multiplication first to trigger precomputation */ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&m, 2)); MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &P, &m, &grp.G, NULL, NULL)); ret = self_test_point(verbose, &grp, &R, &m, &grp.G, sw_exponents, sizeof(sw_exponents) / sizeof(sw_exponents[0])); if (ret != 0) goto cleanup; if (verbose != 0) mbedtls_printf(" ECP SW test #2 (constant op_count, other point): "); /* We computed P = 2G last time, use it */ ret = self_test_point(verbose, &grp, &R, &m, &P, sw_exponents, sizeof(sw_exponents) / sizeof(sw_exponents[0])); if (ret != 0) goto cleanup; mbedtls_ecp_group_free(&grp); mbedtls_ecp_point_free(&R); #endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */ #if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED) if (verbose != 0) mbedtls_printf(" ECP Montgomery test (constant op_count): "); #if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE25519)); #elif defined(MBEDTLS_ECP_DP_CURVE448_ENABLED) MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE448)); #else #error "MBEDTLS_ECP_MONTGOMERY_ENABLED is defined, but no curve is supported for self-test" #endif ret = self_test_point(verbose, &grp, &R, &m, &grp.G, m_exponents, sizeof(m_exponents) / sizeof(m_exponents[0])); if (ret != 0) goto cleanup; #endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */ cleanup: if (ret < 0 && verbose != 0) mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret); mbedtls_ecp_group_free(&grp); mbedtls_ecp_point_free(&R); mbedtls_ecp_point_free(&P); mbedtls_mpi_free(&m); if (verbose != 0) mbedtls_printf("\n"); return (ret); } #endif /* MBEDTLS_SELF_TEST */ #endif /* !MBEDTLS_ECP_ALT */ #endif /* MBEDTLS_ECP_C */