//----------------------------------------------------------------------------- // Routines to load the FPGA image, and then to configure the FPGA's major // mode once it is configured. // // Jonathan Westhues, April 2006 //----------------------------------------------------------------------------- #include #include "apps.h" //----------------------------------------------------------------------------- // Set up the Serial Peripheral Interface as master // Used to write the FPGA config word // May also be used to write to other SPI attached devices like an LCD //----------------------------------------------------------------------------- void SetupSpi(int mode) { // PA10 -> SPI_NCS2 chip select (LCD) // PA11 -> SPI_NCS0 chip select (FPGA) // PA12 -> SPI_MISO Master-In Slave-Out // PA13 -> SPI_MOSI Master-Out Slave-In // PA14 -> SPI_SPCK Serial Clock // Disable PIO control of the following pins, allows use by the SPI peripheral PIO_DISABLE = (1 << GPIO_NCS0) | (1 << GPIO_NCS2) | (1 << GPIO_MISO) | (1 << GPIO_MOSI) | (1 << GPIO_SPCK); PIO_PERIPHERAL_A_SEL = (1 << GPIO_NCS0) | (1 << GPIO_MISO) | (1 << GPIO_MOSI) | (1 << GPIO_SPCK); PIO_PERIPHERAL_B_SEL = (1 << GPIO_NCS2); //enable the SPI Peripheral clock PMC_PERIPHERAL_CLK_ENABLE = (1<>(j*8); else w = v >>((3-j)*8); #define SEND_BIT(x) { if(w & (1< bytes content. Except for section 'e' which has 4 bytes * length. */ static const char _bitparse_fixed_header[] = {0x00, 0x09, 0x0f, 0xf0, 0x0f, 0xf0, 0x0f, 0xf0, 0x0f, 0xf0, 0x00, 0x00, 0x01}; static int bitparse_init(void * start_address, void *end_address) { bitparse_initialized = 0; if(memcmp(_bitparse_fixed_header, start_address, sizeof(_bitparse_fixed_header)) != 0) { return 0; /* Not matched */ } else { bitparse_headers_start= ((char*)start_address) + sizeof(_bitparse_fixed_header); bitparse_bitstream_end= (char*)end_address; bitparse_initialized = 1; return 1; } } int bitparse_find_section(char section_name, void **section_start, unsigned int *section_length) { char *pos = bitparse_headers_start; int result = 0; if(!bitparse_initialized) return 0; while(pos < bitparse_bitstream_end) { char current_name = *pos++; unsigned int current_length = 0; if(current_name < 'a' || current_name > 'e') { /* Strange section name, abort */ break; } current_length = 0; switch(current_name) { case 'e': /* Four byte length field */ current_length += (*pos++) << 24; current_length += (*pos++) << 16; default: /* Fall through, two byte length field */ current_length += (*pos++) << 8; current_length += (*pos++) << 0; } if(current_name != 'e' && current_length > 255) { /* Maybe a parse error */ break; } if(current_name == section_name) { /* Found it */ *section_start = pos; *section_length = current_length; result = 1; break; } pos += current_length; /* Skip section */ } return result; } //----------------------------------------------------------------------------- // Find out which FPGA image format is stored in flash, then call DownloadFPGA // with the right parameters to download the image //----------------------------------------------------------------------------- extern char _binary_fpga_bit_start, _binary_fpga_bit_end; void FpgaDownloadAndGo(void) { /* Check for the new flash image format: Should have the .bit file at &_binary_fpga_bit_start */ if(bitparse_init(&_binary_fpga_bit_start, &_binary_fpga_bit_end)) { /* Successfully initialized the .bit parser. Find the 'e' section and * send its contents to the FPGA. */ void *bitstream_start; unsigned int bitstream_length; if(bitparse_find_section('e', &bitstream_start, &bitstream_length)) { DownloadFPGA((DWORD *)bitstream_start, bitstream_length/4, 0); return; /* All done */ } } /* Fallback for the old flash image format: Check for the magic marker 0xFFFFFFFF * 0xAA995566 at address 0x2000. This is raw bitstream with a size of 336,768 bits * = 10,524 DWORDs, stored as DWORDS e.g. little-endian in memory, but each DWORD * is still to be transmitted in MSBit first order. Set the invert flag to indicate * that the DownloadFPGA function should invert every 4 byte sequence when doing * the bytewise download. */ if( *(DWORD*)0x2000 == 0xFFFFFFFF && *(DWORD*)0x2004 == 0xAA995566 ) DownloadFPGA((DWORD *)0x2000, 10524, 1); } void FpgaGatherVersion(char *dst, int len) { char *fpga_info; unsigned int fpga_info_len; dst[0] = 0; if(!bitparse_find_section('e', (void**)&fpga_info, &fpga_info_len)) { strncat(dst, "FPGA image: legacy image without version information", len-1); } else { strncat(dst, "FPGA image built", len-1); /* USB packets only have 48 bytes data payload, so be terse */ #if 0 if(bitparse_find_section('a', (void**)&fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) { strncat(dst, " from ", len-1); strncat(dst, fpga_info, len-1); } if(bitparse_find_section('b', (void**)&fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) { strncat(dst, " for ", len-1); strncat(dst, fpga_info, len-1); } #endif if(bitparse_find_section('c', (void**)&fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) { strncat(dst, " on ", len-1); strncat(dst, fpga_info, len-1); } if(bitparse_find_section('d', (void**)&fpga_info, &fpga_info_len) && fpga_info[fpga_info_len-1] == 0 ) { strncat(dst, " at ", len-1); strncat(dst, fpga_info, len-1); } } } //----------------------------------------------------------------------------- // Send a 16 bit command/data pair to the FPGA. // The bit format is: C3 C2 C1 C0 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 // where C is the 4 bit command and D is the 12 bit data //----------------------------------------------------------------------------- void FpgaSendCommand(WORD cmd, WORD v) { SetupSpi(SPI_FPGA_MODE); while ((SPI_STATUS & SPI_STATUS_TX_EMPTY) == 0); // wait for the transfer to complete SPI_TX_DATA = SPI_CONTROL_LAST_TRANSFER | cmd | v; // send the data } //----------------------------------------------------------------------------- // Write the FPGA setup word (that determines what mode the logic is in, read // vs. clone vs. etc.). This is now a special case of FpgaSendCommand() to // avoid changing this function's occurence everywhere in the source code. //----------------------------------------------------------------------------- void FpgaWriteConfWord(BYTE v) { FpgaSendCommand(FPGA_CMD_SET_CONFREG, v); } //----------------------------------------------------------------------------- // Set up the CMOS switches that mux the ADC: four switches, independently // closable, but should only close one at a time. Not an FPGA thing, but // the samples from the ADC always flow through the FPGA. //----------------------------------------------------------------------------- void SetAdcMuxFor(int whichGpio) { PIO_OUTPUT_ENABLE = (1 << GPIO_MUXSEL_HIPKD) | (1 << GPIO_MUXSEL_LOPKD) | (1 << GPIO_MUXSEL_LORAW) | (1 << GPIO_MUXSEL_HIRAW); PIO_ENABLE = (1 << GPIO_MUXSEL_HIPKD) | (1 << GPIO_MUXSEL_LOPKD) | (1 << GPIO_MUXSEL_LORAW) | (1 << GPIO_MUXSEL_HIRAW); LOW(GPIO_MUXSEL_HIPKD); LOW(GPIO_MUXSEL_HIRAW); LOW(GPIO_MUXSEL_LORAW); LOW(GPIO_MUXSEL_LOPKD); HIGH(whichGpio); }