/* * AES-CMAC from NIST Special Publication 800-38B — Recommendation for block cipher modes of operation: The CMAC mode for authentication. * * Copyright (C) 2006-2014, Brainspark B.V. * Copyright (C) 2014, Anargyros Plemenos * Tests added Merkok, 2018 * * This file is part of PolarSSL (http://www.polarssl.org) * Lead Maintainer: Paul Bakker * * All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, write to the Free Software Foundation, Inc., * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. * * Reference : https://polarssl.org/discussions/generic/authentication-token * NIST Special Publication 800-38B — Recommendation for block cipher modes of operation: The CMAC mode for authentication. * Tests here: * https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Standards-and-Guidelines/documents/examples/AES_CMAC.pdf */ #include "polarssl/aes_cmac128.h" #include #define MIN(a,b) ((a)<(b)?(a):(b)) #define _MSB(x) (((x)[0] & 0x80)?1:0) #if !defined(POLARSSL_CONFIG_FILE) #include "polarssl_config.h" #else #include POLARSSL_CONFIG_FILE #endif #if defined(POLARSSL_AES_C) #include "aes.h" #endif #if defined(POLARSSL_PLATFORM_C) #include "polarssl/platform.h" #else #define polarssl_printf printf #endif /** * zero a structure */ #define ZERO_STRUCT(x) memset((char *)&(x), 0, sizeof(x)) /** * zero a structure given a pointer to the structure */ #define ZERO_STRUCTP(x) do{ if((x) != NULL) memset((char *)(x), 0, sizeof(*(x)));} while(0) /* For CMAC Calculation */ static unsigned char const_Rb[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x87 }; static unsigned char const_Zero[16] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; static inline void aes_cmac_128_left_shift_1(const uint8_t in[16], uint8_t out[16]) { uint8_t overflow = 0; int8_t i; for (i = 15; i >= 0; i--) { out[i] = in[i] << 1; out[i] |= overflow; overflow = _MSB(&in[i]); } } static inline void aes_cmac_128_xor(const uint8_t in1[16], const uint8_t in2[16], uint8_t out[16]) { uint8_t i; for (i = 0; i < 16; i++) { out[i] = in1[i] ^ in2[i]; } } /* * AES-CMAC-128 context setup */ void aes_cmac128_starts(aes_cmac128_context *ctx, const uint8_t K[16]) { uint8_t L[16]; /* Zero struct of aes_context */ ZERO_STRUCTP(ctx); /* Initialize aes_context */ aes_setkey_enc(&ctx->aes_key, K, 128); /* step 1 - generate subkeys k1 and k2 */ aes_crypt_ecb(&ctx->aes_key, AES_ENCRYPT, const_Zero, L); if (_MSB(L) == 0) { aes_cmac_128_left_shift_1(L, ctx->K1); } else { uint8_t tmp_block[16]; aes_cmac_128_left_shift_1(L, tmp_block); aes_cmac_128_xor(tmp_block, const_Rb, ctx->K1); ZERO_STRUCT(tmp_block); } if (_MSB(ctx->K1) == 0) { aes_cmac_128_left_shift_1(ctx->K1, ctx->K2); } else { uint8_t tmp_block[16]; aes_cmac_128_left_shift_1(ctx->K1, tmp_block); aes_cmac_128_xor(tmp_block, const_Rb, ctx->K2); ZERO_STRUCT(tmp_block); } ZERO_STRUCT(L); } /* * AES-CMAC-128 process message */ void aes_cmac128_update(aes_cmac128_context *ctx, const uint8_t *_msg, size_t _msg_len) { uint8_t tmp_block[16]; uint8_t Y[16]; const uint8_t *msg = _msg; size_t msg_len = _msg_len; /* * copy the remembered last block */ ZERO_STRUCT(tmp_block); if (ctx->last_len) { memcpy(tmp_block, ctx->last, ctx->last_len); } /* * check if we expand the block */ if (ctx->last_len < 16) { size_t len = MIN(16 - ctx->last_len, msg_len); memcpy(&tmp_block[ctx->last_len], msg, len); memcpy(ctx->last, tmp_block, 16); msg += len; msg_len -= len; ctx->last_len += len; } if (msg_len == 0) { /* if it is still the last block, we are done */ ZERO_STRUCT(tmp_block); return; } /* * It is not the last block anymore */ ZERO_STRUCT(ctx->last); ctx->last_len = 0; /* * now checksum everything but the last block */ aes_cmac_128_xor(ctx->X, tmp_block, Y); aes_crypt_ecb(&ctx->aes_key, AES_ENCRYPT, Y, ctx->X); while (msg_len > 16) { memcpy(tmp_block, msg, 16); msg += 16; msg_len -= 16; aes_cmac_128_xor(ctx->X, tmp_block, Y); aes_crypt_ecb(&ctx->aes_key, AES_ENCRYPT, Y, ctx->X); } /* * copy the last block, it will be processed in * aes_cmac128_final(). */ memcpy(ctx->last, msg, msg_len); ctx->last_len = msg_len; ZERO_STRUCT(tmp_block); ZERO_STRUCT(Y); } /* * AES-CMAC-128 compute T */ void aes_cmac128_final(aes_cmac128_context *ctx, uint8_t T[16]) { uint8_t tmp_block[16]; uint8_t Y[16]; if (ctx->last_len < 16) { ctx->last[ctx->last_len] = 0x80; aes_cmac_128_xor(ctx->last, ctx->K2, tmp_block); } else { aes_cmac_128_xor(ctx->last, ctx->K1, tmp_block); } aes_cmac_128_xor(tmp_block, ctx->X, Y); aes_crypt_ecb(&ctx->aes_key, AES_ENCRYPT, Y, T); ZERO_STRUCT(tmp_block); ZERO_STRUCT(Y); ZERO_STRUCTP(ctx); } /* * Checkup routine * * https://csrc.nist.gov/projects/cryptographic-standards-and-guidelines/example-values * https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Standards-and-Guidelines/documents/examples/AES_CMAC.pdf */ int aes_cmac_self_test( int verbose ) { unsigned char key[16] = {0x2B, 0x7E, 0x15, 0x16, 0x28, 0xAE, 0xD2, 0xA6, 0xAB, 0xF7, 0x15, 0x88, 0x09, 0xCF, 0x4F, 0x3C}; unsigned char mac[16] = {0}; aes_cmac128_context ctx; int ret; // check Example1: if( verbose != 0 ) polarssl_printf( " AES-CMAC-128 zero length data: " ); unsigned char ex1data[16] = {0}; aes_cmac128_starts(&ctx, key); aes_cmac128_update(&ctx, ex1data, 0); aes_cmac128_final(&ctx, mac); unsigned char ex1res[16] = {0xBB, 0x1D, 0x69, 0x29, 0xE9, 0x59, 0x37, 0x28, 0x7F, 0xA3, 0x7D, 0x12, 0x9B, 0x75, 0x67, 0x46}; if(!memcmp(mac, ex1res, 16)) { if( verbose != 0 ) polarssl_printf( "passed\n" ); } else { polarssl_printf( "failed\n" ); ret = 1; goto exit; } // check Example2: if( verbose != 0 ) polarssl_printf( " AES-CMAC-128 one block data : " ); unsigned char ex2data[16] = {0x6B, 0xC1, 0xBE, 0xE2, 0x2E, 0x40, 0x9F, 0x96, 0xE9, 0x3D, 0x7E, 0x11, 0x73, 0x93, 0x17, 0x2A}; aes_cmac128_starts(&ctx, key); aes_cmac128_update(&ctx, ex2data, sizeof(ex2data)); aes_cmac128_final(&ctx, mac); unsigned char ex2res[16] = {0x07, 0x0A, 0x16, 0xB4, 0x6B, 0x4D, 0x41, 0x44, 0xF7, 0x9B, 0xDD, 0x9D, 0xD0, 0x4A, 0x28, 0x7C}; if(!memcmp(mac, ex2res, 16)) { if( verbose != 0 ) polarssl_printf( "passed\n" ); } else { polarssl_printf( "failed\n" ); ret = 1; goto exit; } // check Example3: if( verbose != 0 ) polarssl_printf( " AES-CMAC-128 20 bytes of data: " ); unsigned char ex3data[20] = {0x6B, 0xC1, 0xBE, 0xE2, 0x2E, 0x40, 0x9F, 0x96, 0xE9, 0x3D, 0x7E, 0x11, 0x73, 0x93, 0x17, 0x2A, 0xAE, 0x2D, 0x8A, 0x57}; aes_cmac128_starts(&ctx, key); aes_cmac128_update(&ctx, ex3data, sizeof(ex3data)); aes_cmac128_final(&ctx, mac); unsigned char ex3res[16] = {0x7D, 0x85, 0x44, 0x9E, 0xA6, 0xEA, 0x19, 0xC8, 0x23, 0xA7, 0xBF, 0x78, 0x83, 0x7D, 0xFA, 0xDE}; if(!memcmp(mac, ex3res, 16)) { if( verbose != 0 ) polarssl_printf( "passed\n" ); } else { polarssl_printf( "failed\n" ); ret = 1; goto exit; } // check Example4: if( verbose != 0 ) polarssl_printf( " AES-CMAC-128 4 blocks of data: " ); unsigned char ex4data[64] = {0x6B, 0xC1, 0xBE, 0xE2, 0x2E, 0x40, 0x9F, 0x96, 0xE9, 0x3D, 0x7E, 0x11, 0x73, 0x93, 0x17, 0x2A, 0xAE, 0x2D, 0x8A, 0x57, 0x1E, 0x03, 0xAC, 0x9C, 0x9E, 0xB7, 0x6F, 0xAC, 0x45, 0xAF, 0x8E, 0x51, 0x30, 0xC8, 0x1C, 0x46, 0xA3, 0x5C, 0xE4, 0x11, 0xE5, 0xFB, 0xC1, 0x19, 0x1A, 0x0A, 0x52, 0xEF, 0xF6, 0x9F, 0x24, 0x45, 0xDF, 0x4F, 0x9B, 0x17, 0xAD, 0x2B, 0x41, 0x7B, 0xE6, 0x6C, 0x37, 0x10}; aes_cmac128_starts(&ctx, key); aes_cmac128_update(&ctx, ex4data, sizeof(ex4data)); aes_cmac128_final(&ctx, mac); unsigned char ex4res[16] = {0x51, 0xF0, 0xBE, 0xBF, 0x7E, 0x3B, 0x9D, 0x92, 0xFC, 0x49, 0x74, 0x17, 0x79, 0x36, 0x3C, 0xFE}; if(!memcmp(mac, ex4res, 16)) { if( verbose != 0 ) polarssl_printf( "passed\n" ); } else { polarssl_printf( "failed\n" ); ret = 1; goto exit; } if( verbose != 0 ) polarssl_printf( "\n" ); ret = 0; exit: return( ret ); }