//----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // High frequency commands //----------------------------------------------------------------------------- #include #include #include "proxmark3.h" #include "graph.h" #include "ui.h" #include "cmdparser.h" #include "cmdhf.h" #include "cmdhf14a.h" #include "cmdhf14b.h" #include "cmdhf15.h" #include "cmdhfepa.h" #include "cmdhflegic.h" #include "cmdhficlass.h" #include "cmdhfmf.h" #include "cmdhfmfu.h" static int CmdHelp(const char *Cmd); int CmdHFTune(const char *Cmd) { UsbCommand c={CMD_MEASURE_ANTENNA_TUNING_HF}; SendCommand(&c); return 0; } // for the time being. Need better Bigbuf handling. #define TRACE_SIZE 3000 //The following data is taken from http://www.proxmark.org/forum/viewtopic.php?pid=13501#p13501 /* ISO14443A (usually NFC tags) 26 (7bits) = REQA 30 = Read (usage: 30+1byte block number+2bytes ISO14443A-CRC - answer: 16bytes) A2 = Write (usage: A2+1byte block number+4bytes data+2bytes ISO14443A-CRC - answer: 0A [ACK] or 00 [NAK]) 52 (7bits) = WUPA (usage: 52(7bits) - answer: 2bytes ATQA) 93 20 = Anticollision (usage: 9320 - answer: 4bytes UID+1byte UID-bytes-xor) 93 70 = Select (usage: 9370+5bytes 9320 answer - answer: 1byte SAK) 95 20 = Anticollision of cascade level2 95 70 = Select of cascade level2 50 00 = Halt (usage: 5000+2bytes ISO14443A-CRC - no answer from card) Mifare 60 = Authenticate with KeyA 61 = Authenticate with KeyB 40 (7bits) = Used to put Chinese Changeable UID cards in special mode (must be followed by 43 (8bits) - answer: 0A) C0 = Decrement C1 = Increment C2 = Restore B0 = Transfer Ultralight C A0 = Compatibility Write (to accomodate MIFARE commands) 1A = Step1 Authenticate AF = Step2 Authenticate ISO14443B 05 = REQB 1D = ATTRIB 50 = HALT SRIX4K (tag does not respond to 05) 06 00 = INITIATE 0E xx = SELECT ID (xx = Chip-ID) 0B = Get UID 08 yy = Read Block (yy = block number) 09 yy dd dd dd dd = Write Block (yy = block number; dd dd dd dd = data to be written) 0C = Reset to Inventory 0F = Completion 0A 11 22 33 44 55 66 = Authenticate (11 22 33 44 55 66 = data to authenticate) ISO15693 MANDATORY COMMANDS (all ISO15693 tags must support those) 01 = Inventory (usage: 260100+2bytes ISO15693-CRC - answer: 12bytes) 02 = Stay Quiet OPTIONAL COMMANDS (not all tags support them) 20 = Read Block (usage: 0220+1byte block number+2bytes ISO15693-CRC - answer: 4bytes) 21 = Write Block (usage: 0221+1byte block number+4bytes data+2bytes ISO15693-CRC - answer: 4bytes) 22 = Lock Block 23 = Read Multiple Blocks (usage: 0223+1byte 1st block to read+1byte last block to read+2bytes ISO15693-CRC) 25 = Select 26 = Reset to Ready 27 = Write AFI 28 = Lock AFI 29 = Write DSFID 2A = Lock DSFID 2B = Get_System_Info (usage: 022B+2bytes ISO15693-CRC - answer: 14 or more bytes) 2C = Read Multiple Block Security Status (usage: 022C+1byte 1st block security to read+1byte last block security to read+2bytes ISO15693-CRC) EM Microelectronic CUSTOM COMMANDS A5 = Active EAS (followed by 1byte IC Manufacturer code+1byte EAS type) A7 = Write EAS ID (followed by 1byte IC Manufacturer code+2bytes EAS value) B8 = Get Protection Status for a specific block (followed by 1byte IC Manufacturer code+1byte block number+1byte of how many blocks after the previous is needed the info) E4 = Login (followed by 1byte IC Manufacturer code+4bytes password) NXP/Philips CUSTOM COMMANDS A0 = Inventory Read A1 = Fast Inventory Read A2 = Set EAS A3 = Reset EAS A4 = Lock EAS A5 = EAS Alarm A6 = Password Protect EAS A7 = Write EAS ID A8 = Read EPC B0 = Inventory Page Read B1 = Fast Inventory Page Read B2 = Get Random Number B3 = Set Password B4 = Write Password B5 = Lock Password B6 = Bit Password Protection B7 = Lock Page Protection Condition B8 = Get Multiple Block Protection Status B9 = Destroy SLI BA = Enable Privacy BB = 64bit Password Protection 40 = Long Range CMD (Standard ISO/TR7003:1990) */ #define ICLASS_CMD_ACTALL 0x0A #define ICLASS_CMD_READ_OR_IDENTIFY 0x0C #define ICLASS_CMD_SELECT 0x81 #define ICLASS_CMD_PAGESEL 0x84 #define ICLASS_CMD_READCHECK_KD 0x88 #define ICLASS_CMD_READCHECK_KC 0x18 #define ICLASS_CMD_CHECK 0x05 #define ICLASS_CMD_DETECT 0x0F #define ICLASS_CMD_HALT 0x00 #define ICLASS_CMD_UPDATE 0x87 #define ICLASS_CMD_ACT 0x8E #define ICLASS_CMD_READ4 0x06 #define ISO14443A_CMD_REQA 0x26 #define ISO14443A_CMD_READBLOCK 0x30 #define ISO14443A_CMD_WUPA 0x52 #define ISO14443A_CMD_ANTICOLL_OR_SELECT 0x93 #define ISO14443A_CMD_ANTICOLL_OR_SELECT_2 0x95 #define ISO14443A_CMD_WRITEBLOCK 0xA0 // or 0xA2 ? #define ISO14443A_CMD_HALT 0x50 #define ISO14443A_CMD_RATS 0xE0 #define MIFARE_AUTH_KEYA 0x60 #define MIFARE_AUTH_KEYB 0x61 #define MIFARE_MAGICMODE 0x40 #define MIFARE_CMD_INC 0xC0 #define MIFARE_CMD_DEC 0xC1 #define MIFARE_CMD_RESTORE 0xC2 #define MIFARE_CMD_TRANSFER 0xB0 #define MIFARE_ULC_WRITE 0xA0 #define MIFARE_ULC_AUTH_1 0x1A #define MIFARE_ULC_AUTH_2 0xAF #define ISO14443B_REQB 0x05 #define ISO14443B_ATTRIB 0x1D #define ISO14443B_HALT 0x50 //First byte is 26 #define ISO15693_INVENTORY 0x01 #define ISO15693_STAYQUIET 0x02 //First byte is 02 #define ISO15693_READBLOCK 0x20 #define ISO15693_WRITEBLOCK 0x21 #define ISO15693_LOCKBLOCK 0x22 #define ISO15693_READ_MULTI_BLOCK 0x23 #define ISO15693_SELECT 0x25 #define ISO15693_RESET_TO_READY 0x26 #define ISO15693_WRITE_AFI 0x27 #define ISO15693_LOCK_AFI 0x28 #define ISO15693_WRITE_DSFID 0x29 #define ISO15693_LOCK_DSFID 0x2A #define ISO15693_GET_SYSTEM_INFO 0x2B #define ISO15693_READ_MULTI_SECSTATUS 0x2C #define ISO_14443A 0 #define ICLASS 1 #define ISO_14443B 2 void annotateIso14443a(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize) { switch(cmd[0]) { case ISO14443A_CMD_WUPA: snprintf(exp,size,"WUPA"); break; case ISO14443A_CMD_ANTICOLL_OR_SELECT:{ // 93 20 = Anticollision (usage: 9320 - answer: 4bytes UID+1byte UID-bytes-xor) // 93 70 = Select (usage: 9370+5bytes 9320 answer - answer: 1byte SAK) if(cmd[2] == 0x70) { snprintf(exp,size,"SELECT_UID"); break; }else { snprintf(exp,size,"ANTICOLL"); break; } } case ISO14443A_CMD_ANTICOLL_OR_SELECT_2:{ //95 20 = Anticollision of cascade level2 //95 70 = Select of cascade level2 if(cmd[2] == 0x70) { snprintf(exp,size,"SELECT_UID-2"); break; }else { snprintf(exp,size,"ANTICOLL-2"); break; } } case ISO14443A_CMD_REQA: snprintf(exp,size,"REQA"); break; case ISO14443A_CMD_READBLOCK: snprintf(exp,size,"READBLOCK(%d)",cmd[1]); break; case ISO14443A_CMD_WRITEBLOCK: snprintf(exp,size,"WRITEBLOCK(%d)",cmd[1]); break; case ISO14443A_CMD_HALT: snprintf(exp,size,"HALT"); break; case ISO14443A_CMD_RATS: snprintf(exp,size,"RATS"); break; case MIFARE_CMD_INC: snprintf(exp,size,"INC(%d)",cmd[1]); break; case MIFARE_CMD_DEC: snprintf(exp,size,"DEC(%d)",cmd[1]); break; case MIFARE_CMD_RESTORE: snprintf(exp,size,"RESTORE(%d)",cmd[1]); break; case MIFARE_CMD_TRANSFER: snprintf(exp,size,"TRANSFER(%d)",cmd[1]); break; case MIFARE_AUTH_KEYA: snprintf(exp,size,"AUTH-A"); break; case MIFARE_AUTH_KEYB: snprintf(exp,size,"AUTH-B"); break; case MIFARE_MAGICMODE: snprintf(exp,size,"MAGIC"); break; default: snprintf(exp,size,"?"); break; } return; } void annotateIclass(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize) { switch(cmd[0]) { case ICLASS_CMD_ACTALL: snprintf(exp,size,"ACTALL"); break; case ICLASS_CMD_READ_OR_IDENTIFY:{ if(cmdsize > 1){ snprintf(exp,size,"READ(%d)",cmd[1]); }else{ snprintf(exp,size,"IDENTIFY"); } break; } case ICLASS_CMD_SELECT: snprintf(exp,size,"SELECT"); break; case ICLASS_CMD_PAGESEL: snprintf(exp,size,"PAGESEL(%d)", cmd[1]); break; case ICLASS_CMD_READCHECK_KC:snprintf(exp,size,"READCHECK[Kc](%d)", cmd[1]); break; case ICLASS_CMD_READCHECK_KD:snprintf(exp,size,"READCHECK[Kd](%d)", cmd[1]); break; case ICLASS_CMD_CHECK: snprintf(exp,size,"CHECK"); break; case ICLASS_CMD_DETECT: snprintf(exp,size,"DETECT"); break; case ICLASS_CMD_HALT: snprintf(exp,size,"HALT"); break; case ICLASS_CMD_UPDATE: snprintf(exp,size,"UPDATE(%d)",cmd[1]); break; case ICLASS_CMD_ACT: snprintf(exp,size,"ACT"); break; case ICLASS_CMD_READ4: snprintf(exp,size,"READ4(%d)",cmd[1]); break; default: snprintf(exp,size,"?"); break; } return; } void annotateIso15693(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize) { if(cmd[0] == 0x26) { switch(cmd[1]){ case ISO15693_INVENTORY :snprintf(exp, size, "INVENTORY");break; case ISO15693_STAYQUIET :snprintf(exp, size, "STAY_QUIET");break; default: snprintf(exp,size,"?"); break; } }else if(cmd[0] == 0x02) { switch(cmd[1]) { case ISO15693_READBLOCK :snprintf(exp, size, "READBLOCK");break; case ISO15693_WRITEBLOCK :snprintf(exp, size, "WRITEBLOCK");break; case ISO15693_LOCKBLOCK :snprintf(exp, size, "LOCKBLOCK");break; case ISO15693_READ_MULTI_BLOCK :snprintf(exp, size, "READ_MULTI_BLOCK");break; case ISO15693_SELECT :snprintf(exp, size, "SELECT");break; case ISO15693_RESET_TO_READY :snprintf(exp, size, "RESET_TO_READY");break; case ISO15693_WRITE_AFI :snprintf(exp, size, "WRITE_AFI");break; case ISO15693_LOCK_AFI :snprintf(exp, size, "LOCK_AFI");break; case ISO15693_WRITE_DSFID :snprintf(exp, size, "WRITE_DSFID");break; case ISO15693_LOCK_DSFID :snprintf(exp, size, "LOCK_DSFID");break; case ISO15693_GET_SYSTEM_INFO :snprintf(exp, size, "GET_SYSTEM_INFO");break; case ISO15693_READ_MULTI_SECSTATUS :snprintf(exp, size, "READ_MULTI_SECSTATUS");break; default: snprintf(exp,size,"?"); break; } } } void annotateIso14443b(char *exp, size_t size, uint8_t* cmd, uint8_t cmdsize) { switch(cmd[0]){ case ISO14443B_REQB : snprintf(exp,size,"REQB");break; case ISO14443B_ATTRIB : snprintf(exp,size,"ATTRIB");break; case ISO14443B_HALT : snprintf(exp,size,"HALT");break; default: snprintf(exp,size ,"?");break; } } /** * @brief iso14443B_CRC_Ok Checks CRC in command or response * @param isResponse * @param data * @param len * @return 0 : CRC-command, CRC not ok * 1 : CRC-command, CRC ok * 2 : Not crc-command */ uint8_t iso14443B_CRC_check(bool isResponse, uint8_t* data, uint8_t len) { uint8_t b1,b2; if(len <= 2) return 2; ComputeCrc14443(CRC_14443_B, data, len-2, &b1, &b2); if(b1 != data[len-2] || b2 != data[len-1]) { return 0; } return 1; } /** * @brief iclass_CRC_Ok Checks CRC in command or response * @param isResponse * @param data * @param len * @return 0 : CRC-command, CRC not ok * 1 : CRC-command, CRC ok * 2 : Not crc-command */ uint8_t iclass_CRC_check(bool isResponse, uint8_t* data, uint8_t len) { if(len < 4) return 2;//CRC commands (and responses) are all at least 4 bytes uint8_t b1, b2; if(!isResponse)//Commands to tag { /** These commands should have CRC. Total length leftmost 4 READ 4 READ4 12 UPDATE - unsecured, ends with CRC16 14 UPDATE - secured, ends with signature instead 4 PAGESEL **/ if(len == 4 || len == 12)//Covers three of them { //Don't include the command byte ComputeCrc14443(CRC_ICLASS, (data+1), len-3, &b1, &b2); return b1 == data[len -2] && b2 == data[len-1]; } return 2; }else{ /** These tag responses should have CRC. Total length leftmost 10 READ data[8] crc[2] 34 READ4 data[32]crc[2] 10 UPDATE data[8] crc[2] 10 SELECT csn[8] crc[2] 10 IDENTIFY asnb[8] crc[2] 10 PAGESEL block1[8] crc[2] 10 DETECT csn[8] crc[2] These should not 4 CHECK chip_response[4] 8 READCHECK data[8] 1 ACTALL sof[1] 1 ACT sof[1] In conclusion, without looking at the command; any response of length 10 or 34 should have CRC **/ if(len != 10 && len != 34) return true; ComputeCrc14443(CRC_ICLASS, data, len-2, &b1, &b2); return b1 == data[len -2] && b2 == data[len-1]; } } uint16_t printTraceLine(uint16_t tracepos, uint8_t* trace, uint8_t protocol, bool showWaitCycles) { bool isResponse; uint16_t duration, data_len,parity_len; uint32_t timestamp, first_timestamp, EndOfTransmissionTimestamp; char explanation[30] = {0}; first_timestamp = *((uint32_t *)(trace)); timestamp = *((uint32_t *)(trace + tracepos)); // Break and stick with current result if buffer was not completely full if (timestamp == 0x44444444) return TRACE_SIZE; tracepos += 4; duration = *((uint16_t *)(trace + tracepos)); tracepos += 2; data_len = *((uint16_t *)(trace + tracepos)); tracepos += 2; if (data_len & 0x8000) { data_len &= 0x7fff; isResponse = true; } else { isResponse = false; } parity_len = (data_len-1)/8 + 1; if (tracepos + data_len + parity_len >= TRACE_SIZE) { return TRACE_SIZE; } uint8_t *frame = trace + tracepos; tracepos += data_len; uint8_t *parityBytes = trace + tracepos; tracepos += parity_len; //--- Draw the data column char line[16][110]; for (int j = 0; j < data_len; j++) { int oddparity = 0x01; int k; for (k=0 ; k<8 ; k++) { oddparity ^= (((frame[j] & 0xFF) >> k) & 0x01); } uint8_t parityBits = parityBytes[j>>3]; if (isResponse && (oddparity != ((parityBits >> (7-(j&0x0007))) & 0x01))) { sprintf(line[j/16]+((j%16)*4), "%02x! ", frame[j]); } else { sprintf(line[j/16]+((j%16)*4), "%02x ", frame[j]); } } //--- Draw the CRC column uint8_t crcStatus = 2; if (data_len > 2) { uint8_t b1, b2; if(protocol == ICLASS) { crcStatus = iclass_CRC_check(isResponse, frame, data_len); }else if (protocol == ISO_14443B) { crcStatus = iso14443B_CRC_check(isResponse, frame, data_len); } else if (protocol == ISO_14443A){//Iso 14443a ComputeCrc14443(CRC_14443_A, frame, data_len-2, &b1, &b2); if (b1 != frame[data_len-2] || b2 != frame[data_len-1]) { if(!(isResponse & (data_len < 6))) { crcStatus = 0; } } } } //0 CRC-command, CRC not ok //1 CRC-command, CRC ok //2 Not crc-command char *crc = (crcStatus == 0 ? "!crc" : (crcStatus == 1 ? " ok " : " ")); EndOfTransmissionTimestamp = timestamp + duration; if(!isResponse) { if(protocol == ICLASS) annotateIclass(explanation,sizeof(explanation),frame,data_len); else if (protocol == ISO_14443A) annotateIso14443a(explanation,sizeof(explanation),frame,data_len); else if(protocol == ISO_14443B) annotateIso14443b(explanation,sizeof(explanation),frame,data_len); } int num_lines = (data_len - 1)/16 + 1; for (int j = 0; j < num_lines; j++) { if (j == 0) { PrintAndLog(" %9d | %9d | %s | %-64s| %s| %s", (timestamp - first_timestamp), (EndOfTransmissionTimestamp - first_timestamp), (isResponse ? "Tag" : "Rdr"), line[j], (j == num_lines-1) ? crc : " ", (j == num_lines-1) ? explanation : ""); } else { PrintAndLog(" | | | %-64s| %s| %s", line[j], (j == num_lines-1)?crc:" ", (j == num_lines-1) ? explanation : ""); } } bool next_isResponse = *((uint16_t *)(trace + tracepos + 6)) & 0x8000; if (showWaitCycles && !isResponse && next_isResponse) { uint32_t next_timestamp = *((uint32_t *)(trace + tracepos)); if (next_timestamp != 0x44444444) { PrintAndLog(" %9d | %9d | %s | fdt (Frame Delay Time): %d", (EndOfTransmissionTimestamp - first_timestamp), (next_timestamp - first_timestamp), " ", (next_timestamp - EndOfTransmissionTimestamp)); } } return tracepos; } int CmdHFList(const char *Cmd) { bool showWaitCycles = false; char type[40] = {0}; int tlen = param_getstr(Cmd,0,type); char param = param_getchar(Cmd, 1); bool errors = false; uint8_t protocol = 0; //Validate params if(tlen == 0) { errors = true; } if(param == 'h' || (param !=0 && param != 'f')) { errors = true; } if(!errors) { if(strcmp(type, "iclass") == 0) { protocol = ICLASS; }else if(strcmp(type, "14a") == 0) { protocol = ISO_14443A; } else if(strcmp(type, "14b") == 0) { protocol = ISO_14443B; }else if(strcmp(type,"raw")== 0) { protocol = -1;//No crc, no annotations }else{ errors = true; } } if (errors) { PrintAndLog("List protocol data in trace buffer."); PrintAndLog("Usage: hf list [14a|14b|iclass] [f]"); PrintAndLog(" 14a - interpret data as iso14443a communications"); PrintAndLog(" 14b - interpret data as iso14443b communications"); PrintAndLog(" iclass - interpret data as iclass communications"); PrintAndLog(" raw - just show raw data"); PrintAndLog(" f - show frame delay times as well"); PrintAndLog(""); PrintAndLog("example: hf list 14a f"); PrintAndLog("example: hf list iclass"); return 0; } if (param == 'f') { showWaitCycles = true; } uint8_t trace[TRACE_SIZE]; uint16_t tracepos = 0; GetFromBigBuf(trace, TRACE_SIZE, 0); WaitForResponse(CMD_ACK, NULL); PrintAndLog("Recorded Activity"); PrintAndLog(""); PrintAndLog("Start = Start of Start Bit, End = End of last modulation. Src = Source of Transfer"); PrintAndLog("iso14443a - All times are in carrier periods (1/13.56Mhz)"); PrintAndLog("iClass - Timings are not as accurate"); PrintAndLog(""); PrintAndLog(" Start | End | Src | Data (! denotes parity error) | CRC | Annotation |"); PrintAndLog("-----------|-----------|-----|-----------------------------------------------------------------|-----|--------------------|"); while(tracepos < TRACE_SIZE) { tracepos = printTraceLine(tracepos, trace, protocol, showWaitCycles); } return 0; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"14a", CmdHF14A, 1, "{ ISO14443A RFIDs... }"}, {"14b", CmdHF14B, 1, "{ ISO14443B RFIDs... }"}, {"15", CmdHF15, 1, "{ ISO15693 RFIDs... }"}, {"epa", CmdHFEPA, 1, "{ German Identification Card... }"}, {"legic", CmdHFLegic, 0, "{ LEGIC RFIDs... }"}, {"iclass", CmdHFiClass, 1, "{ ICLASS RFIDs... }"}, {"mf", CmdHFMF, 1, "{ MIFARE RFIDs... }"}, {"mfu", CmdHFMFUltra, 1, "{ MIFARE Ultralight RFIDs... }"}, {"tune", CmdHFTune, 0, "Continuously measure HF antenna tuning"}, {"list", CmdHFList, 1, "List protocol data in trace buffer"}, {NULL, NULL, 0, NULL} }; int CmdHF(const char *Cmd) { CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }