//----------------------------------------------------------------------------- // Copyright (C) 2011,2012 Merlok // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // High frequency MIFARE commands //----------------------------------------------------------------------------- #include "cmdhfmf.h" #include "mifare/mifare4.h" #include "mifare/mad.h" #define MFBLOCK_SIZE 16 #define MIFARE_4K_MAXBLOCK 256 #define MIFARE_2K_MAXBLOCK 128 #define MIFARE_1K_MAXBLOCK 64 #define MIFARE_MINI_MAXBLOCK 20 #define MIFARE_MINI_MAXSECTOR 5 #define MIFARE_1K_MAXSECTOR 16 #define MIFARE_2K_MAXSECTOR 32 #define MIFARE_4K_MAXSECTOR 40 static int CmdHelp(const char *Cmd); int usage_hf14_ice(void){ PrintAndLogEx(NORMAL, "Usage: hf mf ice [l] [f] "); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " l nonces to be collected"); PrintAndLogEx(NORMAL, " f save nonces to instead of hf-mf--nonces.bin"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf ice"); PrintAndLogEx(NORMAL, " hf mf ice f nonces.bin"); return 0; } int usage_hf14_dump(void){ PrintAndLogEx(NORMAL, "Usage: hf mf dump [card memory] k f "); PrintAndLogEx(NORMAL, " [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLogEx(NORMAL, " k : key filename, if no given, UID will be used as filename"); PrintAndLogEx(NORMAL, " f : data filename, if no given, UID will be used as filename"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf dump"); PrintAndLogEx(NORMAL, " hf mf dump 4"); return 0; } int usage_hf14_mifare(void){ PrintAndLogEx(NORMAL, "Usage: hf mf darkside [h] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " (Optional) target other block"); PrintAndLogEx(NORMAL, " (optional) target key type"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf darkside"); PrintAndLogEx(NORMAL, " hf mf darkside 16"); PrintAndLogEx(NORMAL, " hf mf darkside 16 B"); return 0; } int usage_hf14_mf1ksim(void){ PrintAndLogEx(NORMAL, "Usage: hf mf sim [h] u n [i] [x] [e] [v]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " u (Optional) UID 4,7 or 10bytes. If not specified, the UID 4b from emulator memory will be used"); PrintAndLogEx(NORMAL, " n (Optional) Automatically exit simulation after blocks have been read by reader. 0 = infinite"); PrintAndLogEx(NORMAL, " i (Optional) Interactive, means that console will not be returned until simulation finishes or is aborted"); PrintAndLogEx(NORMAL, " x (Optional) Crack, performs the 'reader attack', nr/ar attack against a reader"); PrintAndLogEx(NORMAL, " e (Optional) Fill simulator keys from found keys"); PrintAndLogEx(NORMAL, " v (Optional) Verbose"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf sim u 0a0a0a0a"); PrintAndLogEx(NORMAL, " hf mf sim u 11223344556677"); PrintAndLogEx(NORMAL, " hf mf sim u 112233445566778899AA"); PrintAndLogEx(NORMAL, " hf mf sim u 11223344 i x"); return 0; } int usage_hf14_dbg(void){ PrintAndLogEx(NORMAL, "Usage: hf mf dbg [h] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " (Optional) see list for valid levels"); PrintAndLogEx(NORMAL, " 0 - no debug messages"); PrintAndLogEx(NORMAL, " 1 - error messages"); PrintAndLogEx(NORMAL, " 2 - plus information messages"); PrintAndLogEx(NORMAL, " 3 - plus debug messages"); PrintAndLogEx(NORMAL, " 4 - print even debug messages in timing critical functions"); PrintAndLogEx(NORMAL, " Note: this option therefore may cause malfunction itself"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf dbg 3"); return 0; } int usage_hf14_sniff(void){ PrintAndLogEx(NORMAL, "It continuously gets data from the field and saves it to: log, emulator, emulator file."); PrintAndLogEx(NORMAL, "Usage: hf mf sniff [h] [l] [d] [f]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " l save encrypted sequence to logfile `uid.log`"); PrintAndLogEx(NORMAL, " d decrypt sequence and put it to log file `uid.log`"); // PrintAndLogEx(NORMAL, " n/a e decrypt sequence, collect read and write commands and save the result of the sequence to emulator memory"); PrintAndLogEx(NORMAL, " f decrypt sequence, collect read and write commands and save the result of the sequence to emulator dump file `uid.eml`"); PrintAndLogEx(NORMAL, "Example:"); PrintAndLogEx(NORMAL, " hf mf sniff l d f"); return 0; } int usage_hf14_nested(void){ PrintAndLogEx(NORMAL, "Usage:"); PrintAndLogEx(NORMAL, " all sectors: hf mf nested [t,d]"); PrintAndLogEx(NORMAL, " one sector: hf mf nested o "); PrintAndLogEx(NORMAL, " [t]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " card memory - 0 - MINI(320 bytes), 1 - 1K, 2 - 2K, 4 - 4K, - 1K"); PrintAndLogEx(NORMAL, " t transfer keys into emulator memory"); PrintAndLogEx(NORMAL, " d write keys to binary file `hf-mf--key.bin`"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf nested 1 0 A FFFFFFFFFFFF "); PrintAndLogEx(NORMAL, " hf mf nested 1 0 A FFFFFFFFFFFF t "); PrintAndLogEx(NORMAL, " hf mf nested 1 0 A FFFFFFFFFFFF d "); PrintAndLogEx(NORMAL, " hf mf nested o 0 A FFFFFFFFFFFF 4 A"); return 0; } int usage_hf14_hardnested(void){ PrintAndLogEx(NORMAL, "Usage:"); PrintAndLogEx(NORMAL, " hf mf hardnested "); PrintAndLogEx(NORMAL, " [known target key (12 hex symbols)] [w] [s]"); PrintAndLogEx(NORMAL, " or hf mf hardnested r [known target key]"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " w acquire nonces and UID, and write them to binary file with default name hf-mf--nonces.bin"); PrintAndLogEx(NORMAL, " s slower acquisition (required by some non standard cards)"); PrintAndLogEx(NORMAL, " r read hf-mf--nonces.bin if tag present, otherwise read nonces.bin, then start attack"); PrintAndLogEx(NORMAL, " u read/write hf-mf--nonces.bin instead of default name"); PrintAndLogEx(NORMAL, " f read/write instead of default name"); PrintAndLogEx(NORMAL, " t tests?"); PrintAndLogEx(NORMAL, " i set type of SIMD instructions. Without this flag programs autodetect it."); PrintAndLogEx(NORMAL, " i 5 = AVX512"); PrintAndLogEx(NORMAL, " i 2 = AVX2"); PrintAndLogEx(NORMAL, " i a = AVX"); PrintAndLogEx(NORMAL, " i s = SSE2"); PrintAndLogEx(NORMAL, " i m = MMX"); PrintAndLogEx(NORMAL, " i n = none (use CPU regular instruction set)"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf hardnested 0 A FFFFFFFFFFFF 4 A"); PrintAndLogEx(NORMAL, " hf mf hardnested 0 A FFFFFFFFFFFF 4 A w"); PrintAndLogEx(NORMAL, " hf mf hardnested 0 A FFFFFFFFFFFF 4 A f nonces.bin w s"); PrintAndLogEx(NORMAL, " hf mf hardnested r"); PrintAndLogEx(NORMAL, " hf mf hardnested r a0a1a2a3a4a5"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Add the known target key to check if it is present in the remaining key space:"); PrintAndLogEx(NORMAL, " hf mf hardnested 0 A A0A1A2A3A4A5 4 A FFFFFFFFFFFF"); return 0; } int usage_hf14_chk(void){ PrintAndLogEx(NORMAL, "Usage: hf mf chk [h] |<*card memory> [t|d] [] []"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " * all sectors based on card memory, other values then below defaults to 1k"); PrintAndLogEx(NORMAL, " 0 - MINI(320 bytes)"); PrintAndLogEx(NORMAL, " 1 - 1K"); PrintAndLogEx(NORMAL, " 2 - 2K"); PrintAndLogEx(NORMAL, " 4 - 4K"); PrintAndLogEx(NORMAL, " d write keys to binary file"); PrintAndLogEx(NORMAL, " t write keys to emulator memory\n"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf chk 0 A 1234567890ab keys.dic -- target block 0, Key A"); PrintAndLogEx(NORMAL, " hf mf chk *1 ? t -- target all blocks, all keys, 1K, write to emul"); PrintAndLogEx(NORMAL, " hf mf chk *1 ? d -- target all blocks, all keys, 1K, write to file"); return 0; } int usage_hf14_chk_fast(void){ PrintAndLogEx(NORMAL, "This is a improved checkkeys method speedwise. It checks Mifare Classic tags sector keys against a dictionary file with keys"); PrintAndLogEx(NORMAL, "Usage: hf mf fchk [h] [t|d|f] [] []"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " all sectors based on card memory, other values than below defaults to 1k"); PrintAndLogEx(NORMAL, " 0 - MINI(320 bytes)"); PrintAndLogEx(NORMAL, " 1 - 1K "); PrintAndLogEx(NORMAL, " 2 - 2K"); PrintAndLogEx(NORMAL, " 4 - 4K"); PrintAndLogEx(NORMAL, " d write keys to binary file"); PrintAndLogEx(NORMAL, " t write keys to emulator memory"); PrintAndLogEx(NORMAL, " m use dictionary from flashmemory\n"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf fchk 1 1234567890ab keys.dic -- target 1K using key 1234567890ab, using dictionary file"); PrintAndLogEx(NORMAL, " hf mf fchk 1 t -- target 1K, write to emulator memory"); PrintAndLogEx(NORMAL, " hf mf fchk 1 d -- target 1K, write to file"); #ifdef WITH_FLASH PrintAndLogEx(NORMAL, " hf mf fchk 1 m -- target 1K, use dictionary from flashmemory"); #endif return 0; } int usage_hf14_keybrute(void){ PrintAndLogEx(NORMAL, "J_Run's 2nd phase of multiple sector nested authentication key recovery"); PrintAndLogEx(NORMAL, "You have a known 4 last bytes of a key recovered with mf_nonce_brute tool."); PrintAndLogEx(NORMAL, "First 2 bytes of key will be bruteforced"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, " ---[ This attack is obsolete, try hardnested instead ]---"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: hf mf keybrute [h] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " target block number"); PrintAndLogEx(NORMAL, " target key type"); PrintAndLogEx(NORMAL, " candidate key from mf_nonce_brute tool"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf keybrute 1 A 000011223344"); return 0; } int usage_hf14_restore(void){ PrintAndLogEx(NORMAL, "Usage: hf mf restore [card memory] u k f "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLogEx(NORMAL, " u : uid, try to restore from hf-mf--key.bin and hf-mf--data.bin"); PrintAndLogEx(NORMAL, " k : key filename, specific the full filename of key file"); PrintAndLogEx(NORMAL, " f : data filename, specific the full filename of data file"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf restore -- read the UID from tag first, then restore from hf-mf--key.bin and and hf-mf--data.bin"); PrintAndLogEx(NORMAL, " hf mf restore 1 u 12345678 -- restore from hf-mf-12345678-key.bin and hf-mf-12345678-data.bin"); PrintAndLogEx(NORMAL, " hf mf restore 1 u 12345678 k dumpkey.bin -- restore from dumpkey.bin and hf-mf-12345678-data.bin"); PrintAndLogEx(NORMAL, " hf mf restore 4 -- read the UID from tag with 4K memory first, then restore from hf-mf--key.bin and and hf-mf--data.bin"); return 0; } int usage_hf14_decryptbytes(void){ PrintAndLogEx(NORMAL, "Decrypt Crypto-1 encrypted bytes given some known state of crypto. See tracelog to gather needed values\n"); PrintAndLogEx(NORMAL, "Usage: hf mf decrypt [h] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " reader nonce"); PrintAndLogEx(NORMAL, " encrypted reader response"); PrintAndLogEx(NORMAL, " encrypted tag response"); PrintAndLogEx(NORMAL, " encrypted data, taken directly after at_enc and forward"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf decrypt b830049b 9248314a 9280e203 41e586f9\n"); PrintAndLogEx(NORMAL, " this sample decrypts 41e586f9 -> 3003999a Annotated: 30 03 [99 9a] auth block 3 [crc]"); return 0; } int usage_hf14_eget(void){ PrintAndLogEx(NORMAL, "Usage: hf mf eget "); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf eget 0 "); return 0; } int usage_hf14_eclr(void){ PrintAndLogEx(NORMAL, "It set card emulator memory to empty data blocks and key A/B FFFFFFFFFFFF \n"); PrintAndLogEx(NORMAL, "Usage: hf mf eclr"); return 0; } int usage_hf14_eset(void){ PrintAndLogEx(NORMAL, "Usage: hf mf eset "); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf eset 1 000102030405060708090a0b0c0d0e0f "); return 0; } int usage_hf14_eload(void){ PrintAndLogEx(NORMAL, "It loads emul dump from the file `filename.eml`"); PrintAndLogEx(NORMAL, "Usage: hf mf eload [card memory] [numblocks]"); PrintAndLogEx(NORMAL, " [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K, u = UL"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf eload filename"); PrintAndLogEx(NORMAL, " hf mf eload 4 filename"); return 0; } int usage_hf14_esave(void){ PrintAndLogEx(NORMAL, "It saves emul dump into the file `filename.eml` or `cardID.eml`"); PrintAndLogEx(NORMAL, " Usage: hf mf esave [card memory] [file name w/o `.eml`]"); PrintAndLogEx(NORMAL, " [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf esave "); PrintAndLogEx(NORMAL, " hf mf esave 4"); PrintAndLogEx(NORMAL, " hf mf esave 4 filename"); return 0; } int usage_hf14_ecfill(void){ PrintAndLogEx(NORMAL, "Read card and transfer its data to emulator memory."); PrintAndLogEx(NORMAL, "Keys must be laid in the emulator memory. \n"); PrintAndLogEx(NORMAL, "Usage: hf mf ecfill [card memory]"); PrintAndLogEx(NORMAL, " [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf ecfill A"); PrintAndLogEx(NORMAL, " hf mf ecfill A 4"); return 0; } int usage_hf14_ekeyprn(void){ PrintAndLogEx(NORMAL, "It prints the keys loaded in the emulator memory"); PrintAndLogEx(NORMAL, "Usage: hf mf ekeyprn [card memory]"); PrintAndLogEx(NORMAL, " [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf ekeyprn 1"); return 0; } int usage_hf14_csetuid(void){ PrintAndLogEx(NORMAL, "Set UID, ATQA, and SAK for magic Chinese card. Only works with magic cards"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: hf mf csetuid [h] [ATQA 4 hex symbols] [SAK 2 hex symbols] [w]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " w wipe card before writing"); PrintAndLogEx(NORMAL, " UID 8 hex symbols"); PrintAndLogEx(NORMAL, " ATQA 4 hex symbols"); PrintAndLogEx(NORMAL, " SAK 2 hex symbols"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf csetuid 01020304"); PrintAndLogEx(NORMAL, " hf mf csetuid 01020304 0004 08 w"); return 0; } int usage_hf14_csetblk(void){ PrintAndLogEx(NORMAL, "Set block data for magic Chinese card. Only works with magic cards"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: hf mf csetblk [h] [w]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " w wipe card before writing"); PrintAndLogEx(NORMAL, " block number"); PrintAndLogEx(NORMAL, " block data to write (32 hex symbols)"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf csetblk 1 01020304050607080910111213141516"); PrintAndLogEx(NORMAL, " hf mf csetblk 1 01020304050607080910111213141516 w"); return 0; } int usage_hf14_cload(void){ PrintAndLogEx(NORMAL, "It loads magic Chinese card from the file `filename.eml`"); PrintAndLogEx(NORMAL, "or from emulator memory"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: hf mf cload [h] [e] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " e load card with data from emulator memory"); PrintAndLogEx(NORMAL, " j load card with data from json file"); PrintAndLogEx(NORMAL, " b load card with data from binary file"); PrintAndLogEx(NORMAL, " load card with data from eml file"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf cload mydump"); PrintAndLogEx(NORMAL, " hf mf cload e"); return 0; } int usage_hf14_cgetblk(void){ PrintAndLogEx(NORMAL, "Get block data from magic Chinese card. Only works with magic cards\n"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: hf mf cgetblk [h] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " block number"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf cgetblk 1"); return 0; } int usage_hf14_cgetsc(void){ PrintAndLogEx(NORMAL, "Get sector data from magic Chinese card. Only works with magic cards\n"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: hf mf cgetsc [h] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " sector number"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf cgetsc 0"); return 0; } int usage_hf14_csave(void){ PrintAndLogEx(NORMAL, "It saves `magic Chinese` card dump into the file `filename.eml` or `cardID.eml`"); PrintAndLogEx(NORMAL, "or into emulator memory"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: hf mf csave [h] [e] [u] [card memory] i "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " e save data to emulator memory"); PrintAndLogEx(NORMAL, " u save data to file, use carduid as filename"); PrintAndLogEx(NORMAL, " card memory 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLogEx(NORMAL, " o save data to file"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf csave u 1"); PrintAndLogEx(NORMAL, " hf mf csave e 1"); PrintAndLogEx(NORMAL, " hf mf csave 4 o filename"); return 0; } int usage_hf14_nack(void) { PrintAndLogEx(NORMAL, "Test a mifare classic based card for the NACK bug."); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: hf mf nack [h] [v]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " v verbose"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf nack"); return 0; } int GetHFMF14AUID(uint8_t *uid, int *uidlen) { UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_CONNECT, 0, 0}}; clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)) { PrintAndLogEx(WARNING, "iso14443a card select failed"); DropField(); return 0; } iso14a_card_select_t card; memcpy(&card, (iso14a_card_select_t *)resp.d.asBytes, sizeof(iso14a_card_select_t)); memcpy(uid, card.uid, card.uidlen * sizeof(uint8_t)); *uidlen = card.uidlen; return 1; } char * GenerateFilename(const char *prefix, const char *suffix){ uint8_t uid[10] = {0,0,0,0,0,0,0,0,0,0}; int uidlen=0; char * fptr = calloc (sizeof (char) * (strlen(prefix) + strlen(suffix)) + sizeof(uid)*2 + 1, sizeof(uint8_t)); GetHFMF14AUID(uid, &uidlen); if (!uidlen) { PrintAndLogEx(WARNING, "No tag found."); free(fptr); return NULL; } strcpy(fptr, prefix); FillFileNameByUID(fptr, uid, suffix, uidlen); return fptr; } int CmdHF14AMfDarkside(const char *Cmd) { uint8_t blockno = 0, key_type = MIFARE_AUTH_KEYA; uint64_t key = 0; char cmdp = tolower(param_getchar(Cmd, 0)); if ( cmdp == 'h' ) return usage_hf14_mifare(); blockno = param_get8(Cmd, 0); cmdp = tolower(param_getchar(Cmd, 1)); if (cmdp == 'b') key_type = MIFARE_AUTH_KEYB; int isOK = mfDarkside(blockno, key_type, &key); PrintAndLogEx(NORMAL, ""); switch (isOK) { case -1 : PrintAndLogEx(WARNING, "button pressed. Aborted."); return 1; case -2 : PrintAndLogEx(FAILED, "card is not vulnerable to Darkside attack (doesn't send NACK on authentication requests)."); return 1; case -3 : PrintAndLogEx(FAILED, "card is not vulnerable to Darkside attack (its random number generator is not predictable)."); return 1; case -4 : PrintAndLogEx(FAILED, "card is not vulnerable to Darkside attack (its random number generator seems to be based on the wellknown"); PrintAndLogEx(FAILED, "generating polynomial with 16 effective bits only, but shows unexpected behaviour."); return 1; case -5 : PrintAndLogEx(WARNING, "aborted via keyboard."); return 1; default : PrintAndLogEx(SUCCESS, "found valid key: %012" PRIx64 "\n", key); break; } PrintAndLogEx(NORMAL, ""); return 0; } int CmdHF14AMfWrBl(const char *Cmd) { uint8_t blockNo = 0; uint8_t keyType = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; uint8_t bldata[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; char cmdp = 0x00; if (strlen(Cmd) < 3) { PrintAndLogEx(NORMAL, "Usage: hf mf wrbl "); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf wrbl 0 A FFFFFFFFFFFF 000102030405060708090A0B0C0D0E0F"); return 0; } blockNo = param_get8(Cmd, 0); cmdp = tolower(param_getchar(Cmd, 1)); if (cmdp == 0x00) { PrintAndLogEx(NORMAL, "Key type must be A or B"); return 1; } if (cmdp != 'a') keyType = 1; if (param_gethex(Cmd, 2, key, 12)) { PrintAndLogEx(NORMAL, "Key must include 12 HEX symbols"); return 1; } if (param_gethex(Cmd, 3, bldata, 32)) { PrintAndLogEx(NORMAL, "Block data must include 32 HEX symbols"); return 1; } PrintAndLogEx(NORMAL, "--block no:%d, key type:%c, key:%s", blockNo, keyType?'B':'A', sprint_hex(key, 6)); PrintAndLogEx(NORMAL, "--data: %s", sprint_hex(bldata, 16)); UsbCommand c = {CMD_MIFARE_WRITEBL, {blockNo, keyType, 0}}; memcpy(c.d.asBytes, key, 6); memcpy(c.d.asBytes + 10, bldata, 16); clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { uint8_t isOK = resp.arg[0] & 0xff; PrintAndLogEx(NORMAL, "isOk:%02x", isOK); } else { PrintAndLogEx(NORMAL, "Command execute timeout"); } return 0; } int CmdHF14AMfRdBl(const char *Cmd) { uint8_t blockNo = 0; uint8_t keyType = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; char cmdp = 0x00; if (strlen(Cmd)<3) { PrintAndLogEx(NORMAL, "Usage: hf mf rdbl "); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf rdbl 0 A FFFFFFFFFFFF "); return 0; } blockNo = param_get8(Cmd, 0); cmdp = tolower(param_getchar(Cmd, 1)); if (cmdp == 0x00) { PrintAndLogEx(NORMAL, "Key type must be A or B"); return 1; } if (cmdp != 'a') keyType = 1; if (param_gethex(Cmd, 2, key, 12)) { PrintAndLogEx(NORMAL, "Key must include 12 HEX symbols"); return 1; } PrintAndLogEx(NORMAL, "--block no:%d, key type:%c, key:%s ", blockNo, keyType?'B':'A', sprint_hex(key, 6)); UsbCommand c = {CMD_MIFARE_READBL, {blockNo, keyType, 0}}; memcpy(c.d.asBytes, key, 6); clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { uint8_t isOK = resp.arg[0] & 0xff; uint8_t *data = resp.d.asBytes; if (isOK) { PrintAndLogEx(NORMAL, "isOk:%02x data:%s", isOK, sprint_hex(data, 16)); } else { PrintAndLogEx(NORMAL, "isOk:%02x", isOK); return 1; } if (mfIsSectorTrailer(blockNo) && (data[6] || data[7] || data[8])) { PrintAndLogEx(NORMAL, "Trailer decoded:"); int bln = mfFirstBlockOfSector(mfSectorNum(blockNo)); int blinc = (mfNumBlocksPerSector(mfSectorNum(blockNo)) > 4) ? 5 : 1; for (int i = 0; i < 4; i++) { PrintAndLogEx(NORMAL, "Access block %d%s: %s", bln, ((blinc > 1) && (i < 3) ? "+" : "") , mfGetAccessConditionsDesc(i, &data[6])); bln += blinc; } PrintAndLogEx(NORMAL, "UserData: %s", sprint_hex_inrow(&data[9], 1)); } } else { PrintAndLogEx(WARNING, "Command execute timeout"); return 2; } return 0; } int CmdHF14AMfRdSc(const char *Cmd) { int i; uint8_t sectorNo = 0; uint8_t keyType = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; uint8_t isOK = 0; uint8_t *data = NULL; char cmdp = 0x00; if (strlen(Cmd) < 3) { PrintAndLogEx(NORMAL, "Usage: hf mf rdsc "); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf rdsc 0 A FFFFFFFFFFFF "); return 0; } sectorNo = param_get8(Cmd, 0); if (sectorNo > MIFARE_4K_MAXSECTOR ) { PrintAndLogEx(NORMAL, "Sector number must be less than 40"); return 1; } cmdp = tolower(param_getchar(Cmd, 1)); if (cmdp != 'a' && cmdp != 'b') { PrintAndLogEx(NORMAL, "Key type must be A or B"); return 1; } if (cmdp != 'a') keyType = 1; if (param_gethex(Cmd, 2, key, 12)) { PrintAndLogEx(NORMAL, "Key must include 12 HEX symbols"); return 1; } PrintAndLogEx(NORMAL, "--sector no:%d key type:%c key:%s ", sectorNo, keyType?'B':'A', sprint_hex(key, 6)); UsbCommand c = {CMD_MIFARE_READSC, {sectorNo, keyType, 0}}; memcpy(c.d.asBytes, key, 6); clearCommandBuffer(); SendCommand(&c); PrintAndLogEx(NORMAL, ""); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { isOK = resp.arg[0] & 0xff; data = resp.d.asBytes; PrintAndLogEx(NORMAL, "isOk:%02x", isOK); if (isOK) { for (i = 0; i < (sectorNo<32?3:15); i++) { PrintAndLogEx(NORMAL, "data : %s", sprint_hex(data + i * 16, 16)); } PrintAndLogEx(NORMAL, "trailer: %s", sprint_hex(data + (sectorNo<32?3:15) * 16, 16)); PrintAndLogEx(NORMAL, "Trailer decoded:"); int bln = mfFirstBlockOfSector(sectorNo); int blinc = (mfNumBlocksPerSector(sectorNo) > 4) ? 5 : 1; for (i = 0; i < 4; i++) { PrintAndLogEx(NORMAL, "Access block %d%s: %s", bln, ((blinc > 1) && (i < 3) ? "+" : "") , mfGetAccessConditionsDesc(i, &(data + (sectorNo<32?3:15) * 16)[6])); bln += blinc; } PrintAndLogEx(NORMAL, "UserData: %s", sprint_hex_inrow(&(data + (sectorNo<32?3:15) * 16)[9], 1)); } } else { PrintAndLogEx(WARNING, "Command execute timeout"); } return 0; } uint16_t NumOfBlocks(char card){ switch(card){ case '0' : return MIFARE_MINI_MAXBLOCK; case '1' : return MIFARE_1K_MAXBLOCK; case '2' : return MIFARE_2K_MAXBLOCK; case '4' : return MIFARE_4K_MAXBLOCK; default : return MIFARE_1K_MAXBLOCK; } } uint8_t NumOfSectors(char card){ switch(card){ case '0' : return MIFARE_MINI_MAXSECTOR; case '1' : return MIFARE_1K_MAXSECTOR; case '2' : return MIFARE_2K_MAXSECTOR; case '4' : return MIFARE_4K_MAXSECTOR; default : return MIFARE_1K_MAXSECTOR; } } uint8_t FirstBlockOfSector(uint8_t sectorNo) { if (sectorNo < 32) { return sectorNo * 4; } else { return 32 * 4 + (sectorNo - 32) * 16; } } uint8_t NumBlocksPerSector(uint8_t sectorNo) { if (sectorNo < 32) { return 4; } else { return 16; } } int CmdHF14AMfDump(const char *Cmd) { uint8_t sectorNo, blockNo; uint8_t keyA[40][6]; uint8_t keyB[40][6]; uint8_t rights[40][4]; uint8_t carddata[256][16]; uint8_t numSectors = 16; uint8_t cmdp = 0; char keyFilename[FILE_PATH_SIZE] = {0}; char dataFilename[FILE_PATH_SIZE]; char * fptr; memset(keyFilename, 0, sizeof(keyFilename)); memset(dataFilename, 0, sizeof(dataFilename)); FILE *f; UsbCommand resp; while(param_getchar(Cmd, cmdp) != 0x00) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_hf14_dump(); case 'k': param_getstr(Cmd, cmdp+1, keyFilename, FILE_PATH_SIZE); cmdp += 2; break; case 'f': param_getstr(Cmd, cmdp+1, dataFilename, FILE_PATH_SIZE); cmdp += 2; break; default: if (cmdp == 0) { numSectors = NumOfSectors(param_getchar(Cmd, cmdp)); cmdp++; } else { PrintAndLogEx(WARNING, "Unknown parameter '%c'\n", param_getchar(Cmd, cmdp)); return usage_hf14_dump(); } } } if ( keyFilename[0] == 0x00 ) { fptr = GenerateFilename("hf-mf-", "-key.bin"); if (fptr == NULL) return 1; strcpy(keyFilename, fptr); } if ((f = fopen(keyFilename, "rb")) == NULL) { PrintAndLogEx(WARNING, "Could not find file " _YELLOW_(%s), keyFilename); return 1; } // Read keys A from file size_t bytes_read; for (sectorNo=0; sectorNo> 2) | ((data[8] & 0x1) << 1) | ((data[8] & 0x10) >> 4); // C1C2C3 for data area 0 rights[sectorNo][1] = ((data[7] & 0x20) >> 3) | ((data[8] & 0x2) << 0) | ((data[8] & 0x20) >> 5); // C1C2C3 for data area 1 rights[sectorNo][2] = ((data[7] & 0x40) >> 4) | ((data[8] & 0x4) >> 1) | ((data[8] & 0x40) >> 6); // C1C2C3 for data area 2 rights[sectorNo][3] = ((data[7] & 0x80) >> 5) | ((data[8] & 0x8) >> 2) | ((data[8] & 0x80) >> 7); // C1C2C3 for sector trailer break; } else if (tries == 2) { // on last try set defaults PrintAndLogEx(FAILED, "could not get access rights for sector %2d. Trying with defaults...", sectorNo); rights[sectorNo][0] = rights[sectorNo][1] = rights[sectorNo][2] = 0x00; rights[sectorNo][3] = 0x01; } } else { PrintAndLogEx(FAILED, "command execute timeout when trying to read access rights for sector %2d. Trying with defaults...", sectorNo); rights[sectorNo][0] = rights[sectorNo][1] = rights[sectorNo][2] = 0x00; rights[sectorNo][3] = 0x01; } } } PrintAndLogEx(SUCCESS, "Finished reading sector access bits"); PrintAndLogEx(INFO, "Dumping all blocks from card..."); bool isOK = true; for (sectorNo = 0; isOK && sectorNo < numSectors; sectorNo++) { for (blockNo = 0; isOK && blockNo < NumBlocksPerSector(sectorNo); blockNo++) { bool received = false; for (tries = 0; tries < MIFARE_SECTOR_RETRY; tries++) { if (blockNo == NumBlocksPerSector(sectorNo) - 1) { // sector trailer. At least the Access Conditions can always be read with key A. UsbCommand c = {CMD_MIFARE_READBL, {FirstBlockOfSector(sectorNo) + blockNo, 0, 0}}; memcpy(c.d.asBytes, keyA[sectorNo], 6); clearCommandBuffer(); SendCommand(&c); received = WaitForResponseTimeout(CMD_ACK, &resp, 1500); } else { // data block. Check if it can be read with key A or key B uint8_t data_area = (sectorNo < 32) ? blockNo : blockNo/5; if ((rights[sectorNo][data_area] == 0x03) || (rights[sectorNo][data_area] == 0x05)) { // only key B would work UsbCommand c = {CMD_MIFARE_READBL, {FirstBlockOfSector(sectorNo) + blockNo, 1, 0}}; memcpy(c.d.asBytes, keyB[sectorNo], 6); SendCommand(&c); received = WaitForResponseTimeout(CMD_ACK, &resp, 1500); } else if (rights[sectorNo][data_area] == 0x07) { // no key would work isOK = false; PrintAndLogEx(WARNING, "access rights do not allow reading of sector %2d block %3d", sectorNo, blockNo); tries = MIFARE_SECTOR_RETRY; } else { // key A would work UsbCommand c = {CMD_MIFARE_READBL, {FirstBlockOfSector(sectorNo) + blockNo, 0, 0}}; memcpy(c.d.asBytes, keyA[sectorNo], 6); clearCommandBuffer(); SendCommand(&c); received = WaitForResponseTimeout(CMD_ACK, &resp, 1500); } } if (received) { isOK = resp.arg[0] & 0xff; if (isOK) break; } } if (received) { isOK = resp.arg[0] & 0xff; uint8_t *data = resp.d.asBytes; if (blockNo == NumBlocksPerSector(sectorNo) - 1) { // sector trailer. Fill in the keys. data[0] = (keyA[sectorNo][0]); data[1] = (keyA[sectorNo][1]); data[2] = (keyA[sectorNo][2]); data[3] = (keyA[sectorNo][3]); data[4] = (keyA[sectorNo][4]); data[5] = (keyA[sectorNo][5]); data[10] = (keyB[sectorNo][0]); data[11] = (keyB[sectorNo][1]); data[12] = (keyB[sectorNo][2]); data[13] = (keyB[sectorNo][3]); data[14] = (keyB[sectorNo][4]); data[15] = (keyB[sectorNo][5]); } if (isOK) { memcpy(carddata[FirstBlockOfSector(sectorNo) + blockNo], data, 16); PrintAndLogEx(SUCCESS, "successfully read block %2d of sector %2d.", blockNo, sectorNo); } else { PrintAndLogEx(FAILED, "could not read block %2d of sector %2d", blockNo, sectorNo); break; } } else { isOK = false; PrintAndLogEx(WARNING, "command execute timeout when trying to read block %2d of sector %2d.", blockNo, sectorNo); break; } } } if (isOK == 0) { PrintAndLogEx(FAILED, "Something went wrong"); return 0; } PrintAndLogEx(SUCCESS, "\nSuccedded in dumping all blocks"); if ( strlen(dataFilename) < 1 ) { fptr = dataFilename; fptr += sprintf(fptr, "hf-mf-"); FillFileNameByUID(fptr, (uint8_t *)carddata, "-data", 4); } uint16_t bytes = 16*(FirstBlockOfSector(numSectors - 1) + NumBlocksPerSector(numSectors - 1)); saveFile(dataFilename, "bin", (uint8_t *)carddata, bytes); saveFileEML(dataFilename, "eml", (uint8_t *)carddata, bytes, MFBLOCK_SIZE); saveFileJSON(dataFilename, "json", jsfCardMemory, (uint8_t *)carddata, bytes); return 0; } int CmdHF14AMfRestore(const char *Cmd) { uint8_t sectorNo,blockNo; uint8_t keyType = 0; uint8_t key[6] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF}; uint8_t bldata[16] = {0x00}; uint8_t keyA[40][6]; uint8_t keyB[40][6]; uint8_t numSectors = 16; uint8_t cmdp = 0; char keyFilename[FILE_PATH_SIZE] = ""; char dataFilename[FILE_PATH_SIZE] = ""; char szTemp[FILE_PATH_SIZE-20] = ""; char *fptr; FILE *fdump, *fkeys; while(param_getchar(Cmd, cmdp) != 0x00) { switch(tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_hf14_restore(); case 'u': param_getstr(Cmd, cmdp+1, szTemp, FILE_PATH_SIZE-20); if(keyFilename[0]==0x00) snprintf(keyFilename, FILE_PATH_SIZE, "hf-mf-%s-key.bin", szTemp); if(dataFilename[0]==0x00) snprintf(dataFilename, FILE_PATH_SIZE, "hf-mf-%s-data.bin", szTemp); cmdp+=2; break; case 'k': param_getstr(Cmd, cmdp+1, keyFilename, FILE_PATH_SIZE); cmdp += 2; break; case 'f': param_getstr(Cmd, cmdp+1, dataFilename, FILE_PATH_SIZE); cmdp += 2; break; default: if ( cmdp == 0 ) { numSectors = NumOfSectors(param_getchar(Cmd, cmdp)); cmdp++; } else { PrintAndLogEx(WARNING, "Unknown parameter '%c'\n", param_getchar(Cmd, cmdp)); return usage_hf14_restore(); } } } if ( keyFilename[0] == 0x00 ) { fptr = GenerateFilename("hf-mf-", "-key.bin"); if (fptr == NULL) return 1; strcpy(keyFilename, fptr); } if ((fkeys = fopen(keyFilename, "rb")) == NULL) { PrintAndLogEx(WARNING, "Could not find file " _YELLOW_(%s), keyFilename); return 1; } size_t bytes_read; for (sectorNo = 0; sectorNo < numSectors; sectorNo++) { bytes_read = fread( keyA[sectorNo], 1, 6, fkeys ); if ( bytes_read != 6 ) { PrintAndLogEx(WARNING, "File reading error " _YELLOW_(%s), keyFilename); fclose(fkeys); return 2; } } for (sectorNo = 0; sectorNo < numSectors; sectorNo++) { bytes_read = fread( keyB[sectorNo], 1, 6, fkeys ); if ( bytes_read != 6 ) { PrintAndLogEx(WARNING, "File reading error " _YELLOW_(%s), keyFilename); fclose(fkeys); return 2; } } fclose(fkeys); if ( dataFilename[0] == 0x00 ) { fptr = GenerateFilename("hf-mf-", "-data.bin"); if (fptr == NULL) return 1; strcpy(dataFilename,fptr); } if ((fdump = fopen(dataFilename, "rb")) == NULL) { PrintAndLogEx(WARNING, "Could not find file " _YELLOW_(%s), dataFilename); return 1; } PrintAndLogEx(INFO, "Restoring " _YELLOW_(%s)" to card", dataFilename); for (sectorNo = 0; sectorNo < numSectors; sectorNo++) { for (blockNo = 0; blockNo < NumBlocksPerSector(sectorNo); blockNo++) { UsbCommand c = {CMD_MIFARE_WRITEBL, {FirstBlockOfSector(sectorNo) + blockNo, keyType, 0}}; memcpy(c.d.asBytes, key, 6); bytes_read = fread(bldata, 1, 16, fdump); if ( bytes_read != 16) { PrintAndLogEx(WARNING, "File reading error " _YELLOW_(%s), dataFilename); fclose(fdump); fdump = NULL; return 2; } if (blockNo == NumBlocksPerSector(sectorNo) - 1) { // sector trailer bldata[0] = (keyA[sectorNo][0]); bldata[1] = (keyA[sectorNo][1]); bldata[2] = (keyA[sectorNo][2]); bldata[3] = (keyA[sectorNo][3]); bldata[4] = (keyA[sectorNo][4]); bldata[5] = (keyA[sectorNo][5]); bldata[10] = (keyB[sectorNo][0]); bldata[11] = (keyB[sectorNo][1]); bldata[12] = (keyB[sectorNo][2]); bldata[13] = (keyB[sectorNo][3]); bldata[14] = (keyB[sectorNo][4]); bldata[15] = (keyB[sectorNo][5]); } PrintAndLogEx(NORMAL, "Writing to block %3d: %s", FirstBlockOfSector(sectorNo) + blockNo, sprint_hex(bldata, 16)); memcpy(c.d.asBytes + 10, bldata, 16); clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { uint8_t isOK = resp.arg[0] & 0xff; PrintAndLogEx(SUCCESS, "isOk:%02x", isOK); } else { PrintAndLogEx(WARNING, "Command execute timeout"); } } } fclose(fdump); return 0; } int CmdHF14AMfNested(const char *Cmd) { int i, res, iterations; sector_t *e_sector = NULL; uint8_t blockNo = 0; uint8_t keyType = 0; uint8_t trgBlockNo = 0; uint8_t trgKeyType = 0; uint8_t SectorsCnt = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; uint8_t keyBlock[(MIFARE_DEFAULTKEYS_SIZE + 1) *6]; uint64_t key64 = 0; bool transferToEml = false; bool createDumpFile = false; FILE *fkeys; uint8_t standart[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; uint8_t tempkey[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; char *fptr; if (strlen(Cmd) < 3) return usage_hf14_nested(); char cmdp, ctmp; cmdp = tolower(param_getchar(Cmd, 0)); blockNo = param_get8(Cmd, 1); ctmp = tolower(param_getchar(Cmd, 2)); if (ctmp != 'a' && ctmp != 'b') { PrintAndLogEx(WARNING, "key type must be A or B"); return 1; } if (ctmp != 'a') keyType = 1; if (param_gethex(Cmd, 3, key, 12)) { PrintAndLogEx(WARNING, "key must include 12 HEX symbols"); return 1; } if (cmdp == 'o') { trgBlockNo = param_get8(Cmd, 4); ctmp = tolower(param_getchar(Cmd, 5)); if (ctmp != 'a' && ctmp != 'b') { PrintAndLogEx(WARNING, "target key type must be A or B"); return 1; } if (ctmp != 'a') { trgKeyType = 1; } } else { SectorsCnt = NumOfSectors(cmdp); } uint8_t j = 4; while ( ctmp != 0x00 ) { ctmp = tolower(param_getchar(Cmd, j)); transferToEml |= (ctmp == 't'); createDumpFile |= (ctmp == 'd'); j++; } // check if we can authenticate to sector res = mfCheckKeys(blockNo, keyType, true, 1, key, &key64); if (res) { PrintAndLogEx(WARNING, "Wrong key. Can't authenticate to block:%3d key type:%c", blockNo, keyType ? 'B' : 'A'); return 3; } if (cmdp == 'o') { int16_t isOK = mfnested(blockNo, keyType, key, trgBlockNo, trgKeyType, keyBlock, true); switch (isOK) { case -1 : PrintAndLogEx(WARNING, "Error: No response from Proxmark.\n"); break; case -2 : PrintAndLogEx(WARNING, "Button pressed. Aborted.\n"); break; case -3 : PrintAndLogEx(FAILED, "Tag isn't vulnerable to Nested Attack (PRNG is not predictable).\n"); break; case -4 : PrintAndLogEx(FAILED, "No valid key found"); break; case -5 : key64 = bytes_to_num(keyBlock, 6); // transfer key to the emulator if (transferToEml) { uint8_t sectortrailer; if (trgBlockNo < 32*4) { // 4 block sector sectortrailer = trgBlockNo | 0x03; } else { // 16 block sector sectortrailer = trgBlockNo | 0x0f; } mfEmlGetMem(keyBlock, sectortrailer, 1); if (!trgKeyType) num_to_bytes(key64, 6, keyBlock); else num_to_bytes(key64, 6, &keyBlock[10]); mfEmlSetMem(keyBlock, sectortrailer, 1); PrintAndLogEx(SUCCESS, "Key transferred to emulator memory."); } return 0; default : PrintAndLogEx(WARNING, "Unknown Error.\n"); } return 2; } else { // ------------------------------------ multiple sectors working uint64_t t1 = msclock(); e_sector = calloc(SectorsCnt, sizeof(sector_t)); if (e_sector == NULL) return 1; //test current key and additional standard keys first // add parameter key memcpy( keyBlock + (MIFARE_DEFAULTKEYS_SIZE * 6), key, 6 ); for (int cnt = 0; cnt < MIFARE_DEFAULTKEYS_SIZE; cnt++){ num_to_bytes(g_mifare_default_keys[cnt], 6, (uint8_t*)(keyBlock + cnt * 6)); } PrintAndLogEx(SUCCESS, "Testing known keys. Sector count=%d", SectorsCnt); res = mfCheckKeys_fast( SectorsCnt, true, true, 1, MIFARE_DEFAULTKEYS_SIZE + 1, keyBlock, e_sector, false); uint64_t t2 = msclock() - t1; PrintAndLogEx(SUCCESS, "Time to check %d known keys: %.0f seconds\n", MIFARE_DEFAULTKEYS_SIZE, (float)t2/1000.0 ); PrintAndLogEx(SUCCESS, "enter nested attack"); // nested sectors iterations = 0; bool calibrate = true; for (i = 0; i < MIFARE_SECTOR_RETRY; i++) { for (uint8_t sectorNo = 0; sectorNo < SectorsCnt; ++sectorNo) { for (trgKeyType = 0; trgKeyType < 2; ++trgKeyType) { if (e_sector[sectorNo].foundKey[trgKeyType]) continue; int16_t isOK = mfnested(blockNo, keyType, key, FirstBlockOfSector(sectorNo), trgKeyType, keyBlock, calibrate); switch (isOK) { case -1 : PrintAndLogEx(WARNING, "error: No response from Proxmark.\n"); break; case -2 : PrintAndLogEx(WARNING, "button pressed. Aborted.\n"); break; case -3 : PrintAndLogEx(FAILED, "Tag isn't vulnerable to Nested Attack (PRNG is not predictable).\n"); break; case -4 : //key not found calibrate = false; iterations++; continue; case -5 : calibrate = false; iterations++; e_sector[sectorNo].foundKey[trgKeyType] = 1; e_sector[sectorNo].Key[trgKeyType] = bytes_to_num(keyBlock, 6); res = mfCheckKeys_fast( SectorsCnt, true, true, 2, 1, keyBlock, e_sector, false); continue; default : PrintAndLogEx(WARNING, "unknown Error.\n"); } free(e_sector); return 2; } } } t1 = msclock() - t1; PrintAndLogEx(SUCCESS, "time in nested: %.0f seconds\n", (float)t1/1000.0); // 20160116 If Sector A is found, but not Sector B, try just reading it of the tag? PrintAndLogEx(INFO, "trying to read key B..."); for (i = 0; i < SectorsCnt; i++) { // KEY A but not KEY B if ( e_sector[i].foundKey[0] && !e_sector[i].foundKey[1] ) { uint8_t sectrail = (FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1); PrintAndLogEx(SUCCESS, "reading block %d", sectrail); UsbCommand c = {CMD_MIFARE_READBL, {sectrail, 0, 0}}; num_to_bytes(e_sector[i].Key[0], 6, c.d.asBytes); // KEY A clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if ( !WaitForResponseTimeout(CMD_ACK,&resp,1500)) continue; uint8_t isOK = resp.arg[0] & 0xff; if (!isOK) continue; uint8_t *data = resp.d.asBytes; key64 = bytes_to_num(data+10, 6); if (key64) { PrintAndLogEx(SUCCESS, "data: %s", sprint_hex(data+10, 6)); e_sector[i].foundKey[1] = true; e_sector[i].Key[1] = key64; } } } //print them printKeyTable( SectorsCnt, e_sector ); // transfer them to the emulator if (transferToEml) { for (i = 0; i < SectorsCnt; i++) { mfEmlGetMem(keyBlock, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1); if (e_sector[i].foundKey[0]) num_to_bytes(e_sector[i].Key[0], 6, keyBlock); if (e_sector[i].foundKey[1]) num_to_bytes(e_sector[i].Key[1], 6, &keyBlock[10]); mfEmlSetMem(keyBlock, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1); } PrintAndLogEx(SUCCESS, "keys transferred to emulator memory."); } // Create dump file if (createDumpFile) { fptr = GenerateFilename("hf-mf-", "-key.bin"); if (fptr == NULL) { free(e_sector); return 1; } if ((fkeys = fopen(fptr, "wb")) == NULL) { PrintAndLogEx(WARNING, "could not create file " _YELLOW_(%s), fptr); free(e_sector); return 1; } PrintAndLogEx(SUCCESS, "saving keys to binary file " _YELLOW_(%s), fptr); for (i=0; i= FILE_PATH_SIZE ) { PrintAndLogEx(FAILED, "Filename too long"); continue; } f = fopen( filename, "r"); if ( !f ){ PrintAndLogEx(FAILED, "File: " _YELLOW_(%s) ": not found or locked.", filename); continue; } // read file while( fgets(buf, sizeof(buf), f) ){ if (strlen(buf) < 12 || buf[11] == '\n') continue; while (fgetc(f) != '\n' && !feof(f)) ; //goto next line if( buf[0]=='#' ) continue; //The line start with # is comment, skip if (!isxdigit(buf[0])){ PrintAndLogEx(FAILED, "File content error. '" _YELLOW_(%s)"' must include 12 HEX symbols", buf); continue; } buf[12] = 0; if ( keyitems - keycnt < 2) { p = realloc(keyBlock, 6 * (keyitems += 64)); if (!p) { PrintAndLogEx(FAILED, "Cannot allocate memory for default keys"); free(keyBlock); fclose(f); return 2; } keyBlock = p; } int pos = 6 * keycnt; memset(keyBlock + pos, 0, 6); num_to_bytes(strtoll(buf, NULL, 16), 6, keyBlock + pos); keycnt++; memset(buf, 0, sizeof(buf)); } fclose(f); PrintAndLogEx(SUCCESS, "Loaded %2d keys from " _YELLOW_(%s), keycnt, filename); } } if (keycnt == 0 && !use_flashmemory) { PrintAndLogEx(SUCCESS, "No key specified, trying default keys"); for (;keycnt < MIFARE_DEFAULTKEYS_SIZE; keycnt++) PrintAndLogEx(NORMAL, "[%2d] %02x%02x%02x%02x%02x%02x", keycnt, (keyBlock + 6*keycnt)[0],(keyBlock + 6*keycnt)[1], (keyBlock + 6*keycnt)[2], (keyBlock + 6*keycnt)[3], (keyBlock + 6*keycnt)[4], (keyBlock + 6*keycnt)[5]); } // // initialize storage for found keys e_sector = calloc(sectorsCnt, sizeof(sector_t)); if (e_sector == NULL) { free(keyBlock); return 1; } uint32_t chunksize = keycnt > (USB_CMD_DATA_SIZE/6) ? (USB_CMD_DATA_SIZE/6) : keycnt; bool firstChunk = true, lastChunk = false; // time uint64_t t1 = msclock(); if ( use_flashmemory ) { PrintAndLogEx(SUCCESS, "Using dictionary in flash memory"); mfCheckKeys_fast( sectorsCnt, true, true, 1, 0, keyBlock, e_sector, use_flashmemory); } else { // strategys. 1= deep first on sector 0 AB, 2= width first on all sectors for (uint8_t strategy = 1; strategy < 3; strategy++) { PrintAndLogEx(SUCCESS, "Running strategy %u", strategy); // main keychunk loop for (uint32_t i = 0; i < keycnt; i += chunksize) { if (ukbhit()) { int gc = getchar(); (void)gc; PrintAndLogEx(WARNING, "\naborted via keyboard!\n"); goto out; } uint32_t size = ((keycnt - i) > chunksize) ? chunksize : keycnt - i; // last chunk? if ( size == keycnt - i) lastChunk = true; int res = mfCheckKeys_fast( sectorsCnt, firstChunk, lastChunk, strategy, size, keyBlock + (i * 6), e_sector, false); if ( firstChunk ) firstChunk = false; // all keys, aborted if ( res == 0 || res == 2 ) goto out; } // end chunks of keys firstChunk = true; lastChunk = false; } // end strategy } out: t1 = msclock() - t1; PrintAndLogEx(SUCCESS, "Time in checkkeys (fast): %.1fs\n", (float)(t1/1000.0)); // check.. uint8_t found_keys = 0; for (uint8_t i = 0; i < sectorsCnt; ++i) { if ( e_sector[i].foundKey[0] ) found_keys++; if ( e_sector[i].foundKey[1] ) found_keys++; } if ( found_keys == 0 ) { PrintAndLogEx(WARNING, "No keys found"); } else { printKeyTable( sectorsCnt, e_sector ); if (transferToEml) { uint8_t block[16] = {0x00}; for (uint8_t i = 0; i < sectorsCnt; ++i ) { mfEmlGetMem(block, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1); if (e_sector[i].foundKey[0]) num_to_bytes(e_sector[i].Key[0], 6, block); if (e_sector[i].foundKey[1]) num_to_bytes(e_sector[i].Key[1], 6, block+10); mfEmlSetMem(block, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1); } PrintAndLogEx(SUCCESS, "Found keys have been transferred to the emulator memory"); } if (createDumpFile) { fptr = GenerateFilename("hf-mf-", "-key.bin"); if (fptr == NULL) return 1; FILE *fkeys = fopen(fptr, "wb"); if (fkeys == NULL) { PrintAndLogEx(WARNING, "Could not create file " _YELLOW_(%s), fptr); free(keyBlock); free(e_sector); return 1; } PrintAndLogEx(SUCCESS, "Printing keys to binary file " _YELLOW_(%s)"...", fptr); for (i=0; i 0xffffffffffff has been inserted for unknown keys.", fptr); } } free(keyBlock); free(e_sector); PrintAndLogEx(NORMAL, ""); return 0; } int CmdHF14AMfChk(const char *Cmd) { char ctmp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) < 3 || ctmp == 'h') return usage_hf14_chk(); FILE * f; char filename[FILE_PATH_SIZE] = {0}; char buf[13]; uint8_t *keyBlock = NULL, *p; sector_t *e_sector = NULL; uint8_t blockNo = 0; uint8_t SectorsCnt = 1; uint8_t keyType = 0; uint32_t keyitems = MIFARE_DEFAULTKEYS_SIZE; uint64_t key64 = 0; uint8_t tempkey[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; char *fptr; int clen = 0; int transferToEml = 0; int createDumpFile = 0; int i, res, keycnt = 0; keyBlock = calloc(MIFARE_DEFAULTKEYS_SIZE, 6); if (keyBlock == NULL) return 1; for (int cnt = 0; cnt < MIFARE_DEFAULTKEYS_SIZE; cnt++) num_to_bytes(g_mifare_default_keys[cnt], 6, (uint8_t*)(keyBlock + cnt * 6)); if (param_getchar(Cmd, 0)=='*') { blockNo = 3; SectorsCnt = NumOfSectors( param_getchar(Cmd+1, 0) ); } else { blockNo = param_get8(Cmd, 0); } ctmp = tolower(param_getchar(Cmd, 1)); clen = param_getlength(Cmd, 1); if (clen == 1) { switch (ctmp) { case 'a': keyType = 0; break; case 'b': keyType = 1; break; case '?': keyType = 2; break; default: PrintAndLogEx(FAILED, "Key type must be A , B or ?"); free(keyBlock); return 1; }; } for (i = 2; param_getchar(Cmd, i); i++) { ctmp = tolower(param_getchar(Cmd, i)); clen = param_getlength(Cmd, i); if (clen == 12) { if ( param_gethex(Cmd, i, keyBlock + 6 * keycnt, 12) ){ PrintAndLogEx(FAILED, "not hex, skipping"); continue; } if ( keyitems - keycnt < 2) { p = realloc(keyBlock, 6 * (keyitems += 64)); if (!p) { PrintAndLogEx(FAILED, "cannot allocate memory for Keys"); free(keyBlock); return 2; } keyBlock = p; } PrintAndLogEx(NORMAL, "[%2d] key %s", keycnt, sprint_hex( (keyBlock + 6*keycnt), 6 ) );; keycnt++; } else if ( clen == 1 ) { if (ctmp == 't' ) { transferToEml = 1; continue; } if (ctmp == 'd' ) { createDumpFile = 1; continue; } } else { // May be a dic file if ( param_getstr(Cmd, i, filename, sizeof(filename)) >= FILE_PATH_SIZE ) { PrintAndLogEx(FAILED, "File name too long"); continue; } f = fopen( filename , "r"); if ( !f ) { PrintAndLogEx(FAILED, "File: " _YELLOW_(%s) ": not found or locked.", filename); continue; } // load keys from dictionary file while( fgets(buf, sizeof(buf), f) ){ if (strlen(buf) < 12 || buf[11] == '\n') continue; while (fgetc(f) != '\n' && !feof(f)) ; //goto next line if( buf[0]=='#' ) continue; //The line start with # is comment, skip // codesmell, only checks first char? if (!isxdigit(buf[0])){ PrintAndLogEx(FAILED, "File content error. '" _YELLOW_(%s)"' must include 12 HEX symbols",buf); continue; } buf[12] = 0; if ( keyitems - keycnt < 2) { p = realloc(keyBlock, 6 * (keyitems += 64)); if (!p) { PrintAndLogEx(FAILED, "Cannot allocate memory for defKeys"); free(keyBlock); fclose(f); return 2; } keyBlock = p; } memset(keyBlock + 6 * keycnt, 0, 6); num_to_bytes(strtoll(buf, NULL, 16), 6, keyBlock + 6*keycnt); //PrintAndLogEx(NORMAL, "check key[%2d] %012" PRIx64, keycnt, bytes_to_num(keyBlock + 6*keycnt, 6)); keycnt++; memset(buf, 0, sizeof(buf)); } fclose(f); PrintAndLogEx(SUCCESS, "Loaded %2d keys from " _YELLOW_(%s), keycnt, filename); } } if (keycnt == 0) { PrintAndLogEx(INFO, "No key specified, trying default keys"); for (;keycnt < MIFARE_DEFAULTKEYS_SIZE; keycnt++) PrintAndLogEx(NORMAL, "[%2d] %02x%02x%02x%02x%02x%02x", keycnt, (keyBlock + 6*keycnt)[0],(keyBlock + 6*keycnt)[1], (keyBlock + 6*keycnt)[2], (keyBlock + 6*keycnt)[3], (keyBlock + 6*keycnt)[4], (keyBlock + 6*keycnt)[5], 6); } // initialize storage for found keys e_sector = calloc(SectorsCnt, sizeof(sector_t)); if (e_sector == NULL) { free(keyBlock); return 1; } // empty e_sector for(int i = 0; i < SectorsCnt; ++i){ e_sector[i].Key[0] = 0xffffffffffff; e_sector[i].Key[1] = 0xffffffffffff; e_sector[i].foundKey[0] = false; e_sector[i].foundKey[1] = false; } uint8_t trgKeyType = 0; uint32_t max_keys = keycnt > (USB_CMD_DATA_SIZE/6) ? (USB_CMD_DATA_SIZE/6) : keycnt; // time uint64_t t1 = msclock(); // check keys. for (trgKeyType = (keyType==2)?0:keyType; trgKeyType < 2; (keyType==2) ? (++trgKeyType) : (trgKeyType=2) ) { int b = blockNo; for (int i = 0; i < SectorsCnt; ++i) { // skip already found keys. if (e_sector[i].foundKey[trgKeyType]) continue; for (uint32_t c = 0; c < keycnt; c += max_keys) { printf("."); fflush(stdout); if (ukbhit()) { int gc = getchar(); (void)gc; PrintAndLogEx(INFO, "\naborted via keyboard!\n"); goto out; } uint32_t size = keycnt-c > max_keys ? max_keys : keycnt-c; res = mfCheckKeys(b, trgKeyType, true, size, &keyBlock[6*c], &key64); if (!res) { e_sector[i].Key[trgKeyType] = key64; e_sector[i].foundKey[trgKeyType] = true; break; } } b < 127 ? ( b +=4 ) : ( b += 16 ); } } t1 = msclock() - t1; PrintAndLogEx(SUCCESS, "\nTime in checkkeys: %.0f seconds\n", (float)t1/1000.0); // 20160116 If Sector A is found, but not Sector B, try just reading it of the tag? if ( keyType != 1 ) { PrintAndLogEx(INFO, "testing to read key B..."); for (i = 0; i < SectorsCnt; i++) { // KEY A but not KEY B if ( e_sector[i].foundKey[0] && !e_sector[i].foundKey[1] ) { uint8_t sectrail = (FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1); PrintAndLogEx(NORMAL, "Reading block %d", sectrail); UsbCommand c = {CMD_MIFARE_READBL, {sectrail, 0, 0}}; num_to_bytes(e_sector[i].Key[0], 6, c.d.asBytes); // KEY A clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if ( !WaitForResponseTimeout(CMD_ACK,&resp,1500)) continue; uint8_t isOK = resp.arg[0] & 0xff; if (!isOK) continue; uint8_t *data = resp.d.asBytes; key64 = bytes_to_num(data+10, 6); if (key64) { PrintAndLogEx(NORMAL, "Data:%s", sprint_hex(data+10, 6)); e_sector[i].foundKey[1] = 1; e_sector[i].Key[1] = key64; } } } } out: //print keys printKeyTable( SectorsCnt, e_sector ); if (transferToEml) { uint8_t block[16] = {0x00}; for (uint8_t i = 0; i < SectorsCnt; ++i ) { mfEmlGetMem(block, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1); if (e_sector[i].foundKey[0]) num_to_bytes(e_sector[i].Key[0], 6, block); if (e_sector[i].foundKey[1]) num_to_bytes(e_sector[i].Key[1], 6, block+10); mfEmlSetMem(block, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1); } PrintAndLogEx(SUCCESS, "Found keys have been transferred to the emulator memory"); } if (createDumpFile) { fptr = GenerateFilename("hf-mf-", "-key.bin"); if (fptr == NULL) { free(keyBlock); free(e_sector); return 1; } FILE *fkeys = fopen(fptr, "wb"); if (fkeys == NULL) { PrintAndLogEx(WARNING, "Could not create file " _YELLOW_(%s), fptr); free(keyBlock); free(e_sector); return 1; } PrintAndLogEx(INFO, "Printing keys to binary file " _YELLOW_(%s)"...", fptr); for( i=0; i>1) , exitAfterNReads , flags , flags); UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads, 0}}; memcpy(c.d.asBytes, uid, sizeof(uid)); clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if(flags & FLAG_INTERACTIVE) { PrintAndLogEx(INFO, "Press pm3-button or send another cmd to abort simulation"); while( !ukbhit() ){ if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500) ) continue; if ( !(flags & FLAG_NR_AR_ATTACK) ) break; if ( (resp.arg[0] & 0xffff) != CMD_SIMULATE_MIFARE_CARD ) break; memcpy(data, resp.d.asBytes, sizeof(data)); readerAttack(data[0], setEmulatorMem, verbose); } showSectorTable(); } return 0; } int CmdHF14AMfSniff(const char *Cmd){ bool wantLogToFile = false; bool wantDecrypt = false; //bool wantSaveToEml = false; TODO bool wantSaveToEmlFile = false; //var int res = 0, len = 0, blockLen = 0; int pckNum = 0, num = 0; uint8_t sak = 0; uint8_t uid[10]; uint8_t uid_len = 0; uint8_t atqa[2] = {0x00, 0x00}; bool isTag = false; uint8_t *buf = NULL; uint16_t bufsize = 0; uint8_t *bufPtr = NULL; uint16_t traceLen = 0; memset(uid, 0x00, sizeof(uid)); char ctmp = tolower(param_getchar(Cmd, 0)); if ( ctmp == 'h') return usage_hf14_sniff(); for (int i = 0; i < 4; i++) { ctmp = tolower(param_getchar(Cmd, i)); if (ctmp == 'l') wantLogToFile = true; if (ctmp == 'd') wantDecrypt = true; //if (ctmp == 'e') wantSaveToEml = true; TODO if (ctmp == 'f') wantSaveToEmlFile = true; } PrintAndLogEx(NORMAL, "-------------------------------------------------------------------------\n"); PrintAndLogEx(NORMAL, "Executing mifare sniffing command. \n"); PrintAndLogEx(NORMAL, "Press the key on the proxmark3 device to abort both proxmark3 and client.\n"); PrintAndLogEx(NORMAL, "Press the key on pc keyboard to abort the client.\n"); PrintAndLogEx(NORMAL, "-------------------------------------------------------------------------\n"); UsbCommand c = {CMD_MIFARE_SNIFFER, {0, 0, 0}}; clearCommandBuffer(); SendCommand(&c); UsbCommand resp; // wait cycle while (true) { printf("."); fflush(stdout); if (ukbhit()) { int gc = getchar(); (void)gc; PrintAndLogEx(INFO, "\naborted via keyboard!\n"); break; } if ( !WaitForResponseTimeout(CMD_ACK, &resp, 2000) ) { continue; } res = resp.arg[0] & 0xff; traceLen = resp.arg[1]; len = resp.arg[2]; if (res == 0) { PrintAndLogEx(SUCCESS, "hf mifare sniff finished"); free(buf); return 0; } if (res == 1) { // there is (more) data to be transferred if (pckNum == 0) { // first packet, (re)allocate necessary buffer if (traceLen > bufsize || buf == NULL) { uint8_t *p; if (buf == NULL) // not yet allocated p = calloc(traceLen, sizeof(uint8_t)); else // need more memory p = realloc(buf, traceLen); if (p == NULL) { PrintAndLogEx(FAILED, "Cannot allocate memory for trace"); free(buf); return 2; } buf = p; } bufPtr = buf; bufsize = traceLen; memset(buf, 0x00, traceLen); } // what happens if LEN is bigger then TRACELEN --iceman memcpy(bufPtr, resp.d.asBytes, len); bufPtr += len; pckNum++; } if (res == 2) { // received all data, start displaying blockLen = bufPtr - buf; bufPtr = buf; PrintAndLogEx(NORMAL, ">\n"); PrintAndLogEx(SUCCESS, "received trace len: %d packages: %d", blockLen, pckNum); while (bufPtr - buf < blockLen) { bufPtr += 6; // skip (void) timing information len = *((uint16_t *)bufPtr); if(len & 0x8000) { isTag = true; len &= 0x7fff; } else { isTag = false; } bufPtr += 2; // the uid identification package // 0xFF 0xFF xx xx xx xx xx xx xx xx xx xx aa aa cc 0xFF 0xFF // x = uid, a = atqa, c = sak if ((len == 17) && (bufPtr[0] == 0xff) && (bufPtr[1] == 0xff) && (bufPtr[15] == 0xff) && (bufPtr[16] == 0xff)) { memcpy(uid, bufPtr + 2, 10); memcpy(atqa, bufPtr + 2 + 10, 2); switch (atqa[0] & 0xC0) { case 0x80: uid_len = 10; break; case 0x40: uid_len = 7; break; default: uid_len = 4; break; } sak = bufPtr[14]; PrintAndLogEx(SUCCESS, "UID %s | ATQA %02x %02x | SAK 0x%02x", sprint_hex(uid, uid_len), atqa[1], atqa[0], sak); if (wantLogToFile || wantDecrypt) { FillFileNameByUID(logHexFileName, uid, ".log", uid_len); AddLogCurrentDT(logHexFileName); PrintAndLogEx(SUCCESS, "Trace saved to %s", logHexFileName); } if (wantDecrypt) mfTraceInit(uid, uid_len, atqa, sak, wantSaveToEmlFile); } else { PrintAndLogEx(NORMAL, "%03d| %s |%s", num, isTag ? "TAG" : "RDR", sprint_hex(bufPtr, len)); if (wantLogToFile) AddLogHex(logHexFileName, isTag ? "TAG| ":"RDR| ", bufPtr, len); if (wantDecrypt) mfTraceDecode(bufPtr, len, wantSaveToEmlFile); num++; } bufPtr += len; bufPtr += ((len-1)/8+1); // ignore parity } pckNum = 0; } } // while (true) free(buf); return 0; } int CmdHF14AMfDbg(const char *Cmd) { char ctmp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) < 1 || ctmp == 'h' ) return usage_hf14_dbg(); uint8_t dbgMode = param_get8ex(Cmd, 0, 0, 10); if (dbgMode > 4) return usage_hf14_dbg(); UsbCommand c = {CMD_MIFARE_SET_DBGMODE, {dbgMode, 0, 0}}; SendCommand(&c); return 0; } int CmdHF14AMfKeyBrute(const char *Cmd) { uint8_t blockNo = 0, keytype = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; uint64_t foundkey = 0; char cmdp = tolower(param_getchar(Cmd, 0)); if ( cmdp == 'h' ) return usage_hf14_keybrute(); // block number blockNo = param_get8(Cmd, 0); // keytype cmdp = tolower(param_getchar(Cmd, 1)); if ( cmdp == 'b' ) keytype = 1; // key if (param_gethex(Cmd, 2, key, 12)) return usage_hf14_keybrute(); uint64_t t1 = msclock(); if (mfKeyBrute( blockNo, keytype, key, &foundkey)) PrintAndLogEx(SUCCESS, "found valid key: %012" PRIx64 " \n", foundkey); else PrintAndLogEx(FAILED, "key not found"); t1 = msclock() - t1; PrintAndLogEx(SUCCESS, "\ntime in keybrute: %.0f seconds\n", (float)t1/1000.0); return 0; } void printKeyTable( uint8_t sectorscnt, sector_t *e_sector ){ char strA[12+1] = {0}; char strB[12+1] = {0}; PrintAndLogEx(NORMAL, "|---|----------------|---|----------------|---|"); PrintAndLogEx(NORMAL, "|sec|key A |res|key B |res|"); PrintAndLogEx(NORMAL, "|---|----------------|---|----------------|---|"); for (uint8_t i = 0; i < sectorscnt; ++i) { snprintf(strA, sizeof(strA), "------------"); snprintf(strB, sizeof(strB), "------------"); if ( e_sector[i].foundKey[0] ) snprintf(strA, sizeof(strA), "%012" PRIx64, e_sector[i].Key[0]); if ( e_sector[i].foundKey[1] ) snprintf(strB, sizeof(strB), "%012" PRIx64, e_sector[i].Key[1]); PrintAndLogEx(NORMAL, "|%03d| %s | %d | %s | %d |" , i , strA, e_sector[i].foundKey[0] , strB, e_sector[i].foundKey[1] ); } PrintAndLogEx(NORMAL, "|---|----------------|---|----------------|---|"); } // EMULATOR COMMANDS int CmdHF14AMfEGet(const char *Cmd) { uint8_t blockNo = 0; uint8_t data[16] = {0x00}; char c = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) < 1 || c == 'h') return usage_hf14_eget(); blockNo = param_get8(Cmd, 0); PrintAndLogEx(NORMAL, ""); if (!mfEmlGetMem(data, blockNo, 1)) { PrintAndLogEx(NORMAL, "data[%3d]:%s", blockNo, sprint_hex(data, sizeof(data))); } else { PrintAndLogEx(WARNING, "Command execute timeout"); } return 0; } int CmdHF14AMfEClear(const char *Cmd) { char c = tolower(param_getchar(Cmd, 0)); if (c == 'h') return usage_hf14_eclr(); UsbCommand cmd = {CMD_MIFARE_EML_MEMCLR, {0, 0, 0}}; clearCommandBuffer(); SendCommand(&cmd); return 0; } int CmdHF14AMfESet(const char *Cmd) { char c = tolower(param_getchar(Cmd, 0)); uint8_t memBlock[16]; uint8_t blockNo = 0; memset(memBlock, 0x00, sizeof(memBlock)); if (strlen(Cmd) < 3 || c == 'h') return usage_hf14_eset(); blockNo = param_get8(Cmd, 0); if (param_gethex(Cmd, 1, memBlock, 32)) { PrintAndLogEx(WARNING, "block data must include 32 HEX symbols"); return 1; } // 1 - blocks count return mfEmlSetMem(memBlock, blockNo, 1); } int CmdHF14AMfELoad(const char *Cmd) { size_t counter = 0; char filename[FILE_PATH_SIZE]; int blockNum, numBlocks, nameParamNo = 1; uint8_t blockWidth = 16; char c = tolower(param_getchar(Cmd, 0)); if ( strlen(Cmd) < 2 && c == 'h' ) return usage_hf14_eload(); switch (c) { case '0' : numBlocks = MIFARE_MINI_MAXBLOCK; break; case '1' : case '\0': numBlocks = MIFARE_1K_MAXBLOCK; break; case '2' : numBlocks = MIFARE_2K_MAXBLOCK; break; case '4' : numBlocks = MIFARE_4K_MAXBLOCK; break; case 'u' : numBlocks = 255; blockWidth = 4; break; default: { numBlocks = MIFARE_1K_MAXBLOCK; nameParamNo = 0; } } uint32_t numblk2 = param_get32ex(Cmd, 2, 0, 10); if (numblk2 > 0) numBlocks = numblk2; param_getstr(Cmd, nameParamNo, filename, sizeof(filename)); uint8_t *data = calloc(4096, sizeof(uint8_t)); size_t datalen = 0; //int res = loadFile(filename, "bin", data, &datalen); int res = loadFileEML( filename, "eml", data, &datalen); if ( res ) { free(data); return 1; } // 64 or 256 blocks. if ( (datalen % blockWidth) != 0 ) { PrintAndLogEx(FAILED, "File content error. Size doesn't match blockwidth "); free(data); return 2; } PrintAndLogEx(INFO, "Copying to emulator memory"); blockNum = 0; while ( datalen ) { if (mfEmlSetMem_xt(data + counter, blockNum, 1, blockWidth)) { PrintAndLogEx(FAILED, "Cant set emul block: %3d", blockNum); free(data); return 3; } printf("."); fflush(stdout); blockNum++; counter += blockWidth; datalen -= blockWidth; } PrintAndLogEx(NORMAL, "\n"); // Ultralight /Ntag if ( blockWidth == 4 ) { if ((blockNum != numBlocks)) { PrintAndLogEx(FAILED, "Warning, Ultralight/Ntag file content, Loaded %d blocks into emulator memory", blockNum); free(data); return 0; } } else { if ((blockNum != numBlocks)) { PrintAndLogEx(FAILED, "Error, file content, Only loaded %d blocks, must be %d blocks into emulator memory", blockNum, numBlocks); free(data); return 4; } } PrintAndLogEx(SUCCESS, "Loaded %d blocks from file: " _YELLOW_(%s), blockNum, filename); free(data); return 0; } int CmdHF14AMfESave(const char *Cmd) { char filename[FILE_PATH_SIZE]; char * fnameptr = filename; uint8_t *dump; int len, bytes, nameParamNo = 1; uint16_t blocks; memset(filename, 0, sizeof(filename)); char c = tolower(param_getchar(Cmd, 0)); if (c == 'h') return usage_hf14_esave(); blocks = NumOfBlocks(c); bytes = blocks * MFBLOCK_SIZE; dump = calloc(bytes, sizeof(uint8_t)); if (!dump) { PrintAndLogEx(WARNING, "Fail, cannot allocate memory"); return 1; } memset(dump, 0, bytes); PrintAndLogEx(INFO, "downloading from emulator memory"); if (!GetFromDevice( BIG_BUF_EML, dump, bytes, 0, NULL, 2500, false)) { PrintAndLogEx(WARNING, "Fail, transfer from device time-out"); free(dump); return 2; } len = param_getstr(Cmd, nameParamNo, filename, sizeof(filename)); if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5; // user supplied filename? if (len < 1) { fnameptr += sprintf(fnameptr, "hf-mf-"); FillFileNameByUID(fnameptr, dump, "-dump", 4); } saveFile(filename, "bin", dump, bytes); saveFileEML(filename, "eml", dump, bytes, MFBLOCK_SIZE); saveFileJSON(filename, "json", jsfCardMemory, dump, bytes); free(dump); return 0; } int CmdHF14AMfECFill(const char *Cmd) { uint8_t keyType = 0; uint8_t numSectors = 16; char c = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) < 1 || c == 'h') return usage_hf14_ecfill(); if (c != 'a' && c != 'b') { PrintAndLogEx(WARNING, "Key type must be A or B"); return 1; } if (c != 'a') keyType = 1; c = tolower(param_getchar(Cmd, 1)); numSectors = NumOfSectors(c); PrintAndLogEx(NORMAL, "--params: numSectors: %d, keyType: %c\n", numSectors, (keyType == 0) ? 'A' : 'B'); UsbCommand cmd = {CMD_MIFARE_EML_CARDLOAD, {numSectors, keyType, 0}}; clearCommandBuffer(); SendCommand(&cmd); return 0; } int CmdHF14AMfEKeyPrn(const char *Cmd) { int i; uint8_t numSectors; uint8_t data[16]; uint64_t keyA, keyB; char c = tolower(param_getchar(Cmd, 0)); if ( c == 'h' ) return usage_hf14_ekeyprn(); numSectors = NumOfSectors(c); PrintAndLogEx(NORMAL, "|---|----------------|----------------|"); PrintAndLogEx(NORMAL, "|sec|key A |key B |"); PrintAndLogEx(NORMAL, "|---|----------------|----------------|"); for (i = 0; i < numSectors; i++) { if (mfEmlGetMem(data, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1)) { PrintAndLogEx(WARNING, "error get block %d", FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1); break; } keyA = bytes_to_num(data, 6); keyB = bytes_to_num(data + 10, 6); PrintAndLogEx(NORMAL, "|%03d| %012" PRIx64 " | %012" PRIx64 " |", i, keyA, keyB); } PrintAndLogEx(NORMAL, "|---|----------------|----------------|"); return 0; } // CHINESE MAGIC COMMANDS int CmdHF14AMfCSetUID(const char *Cmd) { uint8_t wipeCard = 0; uint8_t uid[8] = {0x00}; uint8_t oldUid[8] = {0x00}; uint8_t atqa[2] = {0x00}; uint8_t sak[1] = {0x00}; uint8_t atqaPresent = 1; int res, argi = 0; char ctmp; if (strlen(Cmd) < 1 || param_getchar(Cmd, argi) == 'h') return usage_hf14_csetuid(); if (param_getchar(Cmd, argi) && param_gethex(Cmd, argi, uid, 8)) return usage_hf14_csetuid(); argi++; ctmp = tolower(param_getchar(Cmd, argi)); if (ctmp == 'w') { wipeCard = 1; atqaPresent = 0; } if (atqaPresent) { if (param_getchar(Cmd, argi)) { if (param_gethex(Cmd, argi, atqa, 4)) { PrintAndLogEx(WARNING, "ATQA must include 4 HEX symbols"); return 1; } argi++; if (!param_getchar(Cmd, argi) || param_gethex(Cmd, argi, sak, 2)) { PrintAndLogEx(WARNING, "SAK must include 2 HEX symbols"); return 1; } argi++; } else atqaPresent = 0; } if (!wipeCard) { ctmp = tolower(param_getchar(Cmd, argi)); if (ctmp == 'w') { wipeCard = 1; } } PrintAndLogEx(NORMAL, "--wipe card:%s uid:%s", (wipeCard)?"YES":"NO", sprint_hex(uid, 4)); res = mfCSetUID(uid, (atqaPresent) ? atqa : NULL, (atqaPresent) ? sak : NULL, oldUid, wipeCard); if (res) { PrintAndLogEx(WARNING, "Can't set UID. error=%d", res); return 1; } PrintAndLogEx(SUCCESS, "old UID:%s", sprint_hex(oldUid, 4)); PrintAndLogEx(SUCCESS, "new UID:%s", sprint_hex(uid, 4)); return 0; } int CmdHF14AMfCSetBlk(const char *Cmd) { uint8_t block[16] = {0x00}; uint8_t blockNo = 0; uint8_t params = MAGIC_SINGLE; int res; char ctmp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) < 1 || ctmp == 'h') return usage_hf14_csetblk(); blockNo = param_get8(Cmd, 0); if (param_gethex(Cmd, 1, block, 32)) return usage_hf14_csetblk(); ctmp = tolower(param_getchar(Cmd, 2)); if (ctmp == 'w') params |= MAGIC_WIPE; PrintAndLogEx(NORMAL, "--block number:%2d data:%s", blockNo, sprint_hex(block, 16)); res = mfCSetBlock(blockNo, block, NULL, params); if (res) { PrintAndLogEx(WARNING, "Can't write block. error=%d", res); return 1; } return 0; } int CmdHF14AMfCLoad(const char *Cmd) { uint8_t buf8[16] = {0x00}; uint8_t fillFromEmulator = 0; int blockNum, flags = 0; bool fillFromJson = false; bool fillFromBin = false; char fileName[50] = {0}; char ctmp = tolower(param_getchar(Cmd, 0)); if ( param_getlength(Cmd, 0) == 1 ) { if (ctmp == 'h' || ctmp == 0x00) return usage_hf14_cload(); if (ctmp == 'e' ) fillFromEmulator = 1; if (ctmp == 'j' ) fillFromJson = true; if (ctmp == 'b' ) fillFromBin = true; } if (fillFromJson || fillFromBin) param_getstr(Cmd, 1, fileName, sizeof(fileName)); if (fillFromEmulator) { for (blockNum = 0; blockNum < 16 * 4; blockNum += 1) { if (mfEmlGetMem(buf8, blockNum, 1)) { PrintAndLogEx(WARNING, "Cant get block: %d", blockNum); return 2; } if (blockNum == 0) flags = MAGIC_INIT + MAGIC_WUPC; // switch on field and send magic sequence if (blockNum == 1) flags = 0; // just write if (blockNum == 16 * 4 - 1) flags = MAGIC_HALT + MAGIC_OFF; // Done. Magic Halt and switch off field. if (mfCSetBlock(blockNum, buf8, NULL, flags)) { PrintAndLogEx(WARNING, "Cant set magic card block: %d", blockNum); return 3; } printf("."); fflush(stdout); } PrintAndLogEx(NORMAL, "\n"); return 0; } size_t maxdatalen = 4096; uint8_t *data = calloc(maxdatalen, sizeof(uint8_t)); size_t datalen = 0; int res = 0; if (fillFromBin) { res = loadFile(fileName, "bin", data, &datalen); } else { if (fillFromJson) { res = loadFileJSON(fileName, "json", data, maxdatalen, &datalen); } else { res = loadFileEML( Cmd, "eml", data, &datalen); } } if ( res ) { if ( data ) free(data); return 1; } // PrintAndLogEx(INFO, "DATA | %s", sprint_hex(data+1000, 24) ); // 64 or 256blocks. if (datalen != 1024 && datalen != 4096) { PrintAndLogEx(WARNING, "File content error. "); free(data); return 2; } PrintAndLogEx(INFO, "Copying to magic card"); blockNum = 0; while ( datalen ) { // switch on field and send magic sequence if (blockNum == 0) flags = MAGIC_INIT + MAGIC_WUPC; // write if (blockNum == 1) flags = 0; // Switch off field. if (blockNum == 16 * 4 - 1) flags = MAGIC_HALT + MAGIC_OFF; if (mfCSetBlock(blockNum, data + (16 * blockNum), NULL, flags)) { PrintAndLogEx(WARNING, "Can't set magic card block: %d", blockNum); free(data); return 3; } datalen -= 16; printf("."); fflush(stdout); blockNum++; // magic card type - mifare 1K if (blockNum >= MIFARE_1K_MAXBLOCK ) break; } PrintAndLogEx(NORMAL, "\n"); // 64 or 256blocks. if (blockNum != 16 * 4 && blockNum != 32 * 4 + 8 * 16){ PrintAndLogEx(WARNING, "File content error. There must be 64 blocks"); free(data); return 4; } PrintAndLogEx(SUCCESS, "Card loaded %d blocks from file", blockNum); free(data); return 0; } int CmdHF14AMfCGetBlk(const char *Cmd) { uint8_t data[16] = {0}; uint8_t blockNo = 0; int res; memset(data, 0x00, sizeof(data)); char ctmp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) < 1 || ctmp == 'h') return usage_hf14_cgetblk(); blockNo = param_get8(Cmd, 0); PrintAndLogEx(NORMAL, "--block number:%2d ", blockNo); res = mfCGetBlock(blockNo, data, MAGIC_SINGLE); if (res) { PrintAndLogEx(WARNING, "Can't read block. error=%d", res); return 1; } PrintAndLogEx(NORMAL, "data: %s", sprint_hex(data, sizeof(data))); if (mfIsSectorTrailer(blockNo)) { PrintAndLogEx(NORMAL, "Trailer decoded:"); PrintAndLogEx(NORMAL, "Key A: %s", sprint_hex_inrow(data, 6)); PrintAndLogEx(NORMAL, "Key B: %s", sprint_hex_inrow(&data[10], 6)); int bln = mfFirstBlockOfSector(mfSectorNum(blockNo)); int blinc = (mfNumBlocksPerSector(mfSectorNum(blockNo)) > 4) ? 5 : 1; for (int i = 0; i < 4; i++) { PrintAndLogEx(NORMAL, "Access block %d%s: %s", bln, ((blinc > 1) && (i < 3) ? "+" : "") , mfGetAccessConditionsDesc(i, &data[6])); bln += blinc; } PrintAndLogEx(NORMAL, "UserData: %s", sprint_hex_inrow(&data[9], 1)); } return 0; } int CmdHF14AMfCGetSc(const char *Cmd) { uint8_t data[16] = {0}; uint8_t sector = 0; int i, res, flags; char ctmp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) < 1 || ctmp == 'h') return usage_hf14_cgetsc(); sector = param_get8(Cmd, 0); if (sector > 39) { PrintAndLogEx(WARNING, "Sector number must be less then 40"); return 1; } PrintAndLogEx(NORMAL, "\n # | data | Sector | %02d/ 0x%02X ", sector, sector); PrintAndLogEx(NORMAL, "----+------------------------------------------------"); uint8_t blocks = 4; uint8_t start = sector * 4; if ( sector > 32 ) { blocks = 16; start = 128 + ( sector - 32 ) * 16; } flags = MAGIC_INIT + MAGIC_WUPC; for (i = 0; i < blocks; i++) { if (i == 1) flags = 0; if (i == blocks-1) flags = MAGIC_HALT + MAGIC_OFF; res = mfCGetBlock( start + i, data, flags); if (res) { PrintAndLogEx(WARNING, "Can't read block. %d error=%d", start + i, res); return 1; } PrintAndLogEx(NORMAL, "%3d | %s", start + i, sprint_hex(data, 16)); } return 0; } int CmdHF14AMfCSave(const char *Cmd) { char filename[FILE_PATH_SIZE]; char * fnameptr = filename; uint8_t *dump; bool fillEmulator = false; bool errors = false, hasname = false, useuid = false; int i, len, flags; uint8_t numblocks = 0, cmdp = 0; uint16_t bytes = 0; char ctmp; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { ctmp = tolower(param_getchar(Cmd, cmdp)); switch (ctmp) { case 'e': useuid = true; fillEmulator = true; cmdp++; break; case 'h': return usage_hf14_csave(); case '0': case '1': case '2': case '4': numblocks = NumOfBlocks(ctmp); bytes = numblocks * MFBLOCK_SIZE; PrintAndLogEx(SUCCESS, "Saving magic mifare %cK", ctmp); cmdp++; break; case 'u': useuid = true; hasname = true; cmdp++; break; case 'o': len = param_getstr(Cmd, cmdp+1, filename, FILE_PATH_SIZE); if (len < 1) { errors = true; break; } useuid = false; hasname = true; cmdp += 2; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } if (!hasname && !fillEmulator) errors = true; if (errors || cmdp == 0) return usage_hf14_csave(); dump = calloc(bytes, sizeof(uint8_t)); if (!dump) { PrintAndLogEx(WARNING, "Fail, cannot allocate memory"); return 1; } memset(dump, 0, bytes); flags = MAGIC_INIT + MAGIC_WUPC; for (i = 0; i < numblocks; i++) { if (i == 1) flags = 0; if (i == numblocks - 1) flags = MAGIC_HALT + MAGIC_OFF; if (mfCGetBlock(i, dump + (i*MFBLOCK_SIZE), flags)) { PrintAndLogEx(WARNING, "Cant get block: %d", i); free(dump); return 2; } } if ( useuid ){ fnameptr += sprintf(fnameptr, "hf-mf-"); FillFileNameByUID(fnameptr, dump, "-dump", 4); } if (fillEmulator) { PrintAndLogEx(INFO, "uploading to emulator memory"); for (i = 0; i < numblocks; i += 5) { if (mfEmlSetMem(dump + (i*MFBLOCK_SIZE), i, 5)) { PrintAndLogEx(WARNING, "Cant set emul block: %d", i); } printf("."); fflush(stdout); } PrintAndLogEx(NORMAL, "\n"); PrintAndLogEx(SUCCESS, "uploaded %d bytes to emulator memory", bytes); } saveFile(filename, "bin", dump, bytes); saveFileEML(filename, "eml", dump, bytes, MFBLOCK_SIZE); saveFileJSON(filename, "json", jsfCardMemory, dump, bytes); free(dump); return 0; } //needs nt, ar, at, Data to decrypt int CmdHf14AMfDecryptBytes(const char *Cmd){ char ctmp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) < 1 || ctmp == 'h') return usage_hf14_decryptbytes(); uint32_t nt = param_get32ex(Cmd,0,0,16); uint32_t ar_enc = param_get32ex(Cmd,1,0,16); uint32_t at_enc = param_get32ex(Cmd,2,0,16); int len = param_getlength(Cmd, 3); if (len & 1 ) { PrintAndLogEx(WARNING, "Uneven hex string length. LEN=%d", len); return 1; } PrintAndLogEx(NORMAL, "nt\t%08X", nt); PrintAndLogEx(NORMAL, "ar enc\t%08X", ar_enc); PrintAndLogEx(NORMAL, "at enc\t%08X", at_enc); uint8_t *data = calloc(len, sizeof(uint8_t)); param_gethex_ex(Cmd, 3, data, &len); len >>= 1; tryDecryptWord( nt, ar_enc, at_enc, data, len); free (data); return 0; } int CmdHf14AMfSetMod(const char *Cmd) { uint8_t key[6] = {0, 0, 0, 0, 0, 0}; uint8_t mod = 2; char ctmp = param_getchar(Cmd, 0); if (ctmp == '0') { mod = 0; } else if (ctmp == '1') { mod = 1; } int gethexfail = param_gethex(Cmd, 1, key, 12); if (mod == 2 || gethexfail) { PrintAndLogEx(NORMAL, "Sets the load modulation strength of a MIFARE Classic EV1 card."); PrintAndLogEx(NORMAL, "Usage: hf mf setmod <0|1> "); PrintAndLogEx(NORMAL, " 0 = normal modulation"); PrintAndLogEx(NORMAL, " 1 = strong modulation (default)"); return 1; } UsbCommand c = {CMD_MIFARE_SETMOD, {mod, 0, 0}}; memcpy(c.d.asBytes, key, 6); clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { uint8_t ok = resp.arg[0] & 0xff; PrintAndLogEx(SUCCESS, "isOk:%02x", ok); if (!ok) PrintAndLogEx(FAILED, "Failed."); } else { PrintAndLogEx(WARNING, "Command execute timeout"); } return 0; } // Mifare NACK bug detection int CmdHf14AMfNack(const char *Cmd) { bool verbose = false; char ctmp = tolower(param_getchar(Cmd, 0)); if ( ctmp == 'h' ) return usage_hf14_nack(); if ( ctmp == 'v' ) verbose = true; if ( verbose ) PrintAndLogEx(INFO, "Started testing card for NACK bug. Press key to abort"); detect_classic_nackbug(verbose); return 0; } int CmdHF14AMfice(const char *Cmd) { uint8_t blockNo = 0; uint8_t keyType = 0; uint8_t trgBlockNo = 0; uint8_t trgKeyType = 1; bool slow = false; bool initialize = true; bool acquisition_completed = false; uint8_t cmdp=0; uint32_t flags = 0; uint32_t total_num_nonces = 0; char ctmp; char filename[FILE_PATH_SIZE], *fptr; FILE *fnonces = NULL; UsbCommand resp; uint32_t part_limit = 3000; uint32_t limit = 50000; while ((ctmp = param_getchar(Cmd, cmdp))) { switch(tolower(ctmp)) { case 'h': return usage_hf14_ice(); case 'f': param_getstr(Cmd, cmdp+1, filename, FILE_PATH_SIZE); cmdp++; break; case 'l': limit = param_get32ex(Cmd, cmdp+1, 50000, 10); cmdp++; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'\n", ctmp); usage_hf14_ice(); return 1; } cmdp++; } if(filename[0]=='\0') { fptr = GenerateFilename("hf-mf-","-nonces.bin"); if (fptr == NULL) return 1; strcpy(filename, fptr); } PrintAndLogEx(NORMAL, "Collecting %u nonces \n", limit); if ((fnonces = fopen(filename,"wb")) == NULL) { PrintAndLogEx(WARNING, "Could not create file " _YELLOW_(%s),filename); return 3; } clearCommandBuffer(); uint64_t t1 = msclock(); do { if (ukbhit()) { int gc = getchar(); (void)gc; PrintAndLogEx(INFO, "\naborted via keyboard!\n"); break; } flags = 0; flags |= initialize ? 0x0001 : 0; flags |= slow ? 0x0002 : 0; UsbCommand c = {CMD_MIFARE_ACQUIRE_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags}}; clearCommandBuffer(); SendCommand(&c); if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) goto out; if (resp.arg[0]) goto out; uint32_t items = resp.arg[2]; if (fnonces) { fwrite(resp.d.asBytes, 1, items*4, fnonces); fflush(fnonces); } total_num_nonces += items; if ( total_num_nonces > part_limit ) { PrintAndLogEx(INFO, "Total nonces %u\n", total_num_nonces); part_limit += 3000; } acquisition_completed = ( total_num_nonces > limit); initialize = false; } while (!acquisition_completed); out: PrintAndLogEx(SUCCESS, "time: %" PRIu64 " seconds\n", (msclock()-t1)/1000); if ( fnonces ) { fflush(fnonces); fclose(fnonces); } UsbCommand c = {CMD_MIFARE_ACQUIRE_NONCES, {blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, 4}}; clearCommandBuffer(); SendCommand(&c); return 0; } int CmdHF14AMfAuth4(const char *Cmd) { uint8_t keyn[20] = {0}; int keynlen = 0; uint8_t key[16] = {0}; int keylen = 0; CLIParserInit("hf mf auth4", "Executes AES authentication command in ISO14443-4", "Usage:\n\thf mf auth4 4000 000102030405060708090a0b0c0d0e0f -> executes authentication\n" "\thf mf auth4 9003 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -> executes authentication\n"); void* argtable[] = { arg_param_begin, arg_str1(NULL, NULL, "", NULL), arg_str1(NULL, NULL, "", NULL), arg_param_end }; CLIExecWithReturn(Cmd, argtable, true); CLIGetHexWithReturn(1, keyn, &keynlen); CLIGetHexWithReturn(2, key, &keylen); CLIParserFree(); if (keynlen != 2) { PrintAndLogEx(ERR, " must be 2 bytes long instead of: %d", keynlen); return 1; } if (keylen != 16) { PrintAndLogEx(ERR, " must be 16 bytes long instead of: %d", keylen); return 1; } return MifareAuth4(NULL, keyn, key, true, false, true); } // https://www.nxp.com/docs/en/application-note/AN10787.pdf int CmdHF14AMfMAD(const char *cmd) { CLIParserInit("hf mf mad", "Checks and prints Mifare Application Directory (MAD)", "Usage:\n\thf mf mad -> shows MAD if exists\n" "\thf mf mad -a 03e1 -k d3f7d3f7d3f7 -> shows NDEF data if exists\n"); void* argtable[] = { arg_param_begin, arg_lit0("vV", "verbose", "show technical data"), arg_str0("aA", "aid", "print all sectors with aid", NULL), arg_str0("kK", "key", "key for printing sectors", NULL), arg_lit0("bB", "keyb", "use key B for access printing sectors (by default: key A)"), arg_param_end }; CLIExecWithReturn(cmd, argtable, true); bool verbose = arg_get_lit(1); uint8_t aid[2] = {0}; int aidlen; CLIGetHexWithReturn(2, aid, &aidlen); uint8_t key[6] = {0}; int keylen; CLIGetHexWithReturn(3, key, &keylen); bool keyB = arg_get_lit(4); CLIParserFree(); if (aidlen != 2 && keylen > 0) { PrintAndLogEx(WARNING, "do not need a key without aid."); } uint8_t sector0[16 * 4] = {0}; uint8_t sector10[16 * 4] = {0}; if (mfReadSector(MF_MAD1_SECTOR, MF_KEY_A, (uint8_t *)g_mifare_mad_key, sector0)) { PrintAndLogEx(ERR, "read sector 0 error. card don't have MAD or don't have MAD on default keys."); return 2; } if (verbose) { for(int i = 0; i < 4; i ++) PrintAndLogEx(NORMAL, "[%d] %s", i, sprint_hex(§or0[i * 16], 16)); } bool haveMAD2 = false; MAD1DecodeAndPrint(sector0, verbose, &haveMAD2); if (haveMAD2) { if (mfReadSector(MF_MAD2_SECTOR, MF_KEY_A, (uint8_t *)g_mifare_mad_key, sector10)) { PrintAndLogEx(ERR, "read sector 0x10 error. card don't have MAD or don't have MAD on default keys."); return 2; } MAD2DecodeAndPrint(sector10, verbose); } if (aidlen == 2) { uint16_t aaid = (aid[0] << 8) + aid[1]; PrintAndLogEx(NORMAL, "\n-------------- AID 0x%04x ---------------", aaid); uint16_t mad[7 + 8 + 8 + 8 + 8] = {0}; size_t madlen = 0; if (MADDecode(sector0, sector10, mad, &madlen)) { PrintAndLogEx(ERR, "can't decode mad."); return 10; } uint8_t akey[6] = {0}; memcpy(akey, g_mifare_ndef_key, 6); if (keylen == 6) { memcpy(akey, key, 6); } for (int i = 0; i < madlen; i++) { if (aaid == mad[i]) { uint8_t vsector[16 * 4] = {0}; if (mfReadSector(i + 1, keyB ? MF_KEY_B : MF_KEY_A, akey, vsector)) { PrintAndLogEx(NORMAL, ""); PrintAndLogEx(ERR, "read sector %d error.", i + 1); return 2; } for(int j = 0; j < (verbose ? 4 : 3); j ++) PrintAndLogEx(NORMAL, " [%03d] %s", (i + 1) * 4 + j, sprint_hex(&vsector[j * 16], 16)); } } } return 0; } int CmdHF14AMfList(const char *Cmd) { CmdTraceList("mf"); return 0; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"list", CmdHF14AMfList, 0, "[Deprecated] List ISO 14443-a / Mifare history"}, {"darkside", CmdHF14AMfDarkside, 0, "Darkside attack. read parity error messages."}, {"nested", CmdHF14AMfNested, 0, "Nested attack. Test nested authentication"}, {"hardnested", CmdHF14AMfNestedHard, 0, "Nested attack for hardened Mifare cards"}, {"keybrute", CmdHF14AMfKeyBrute, 0, "J_Run's 2nd phase of multiple sector nested authentication key recovery"}, {"nack", CmdHf14AMfNack, 0, "Test for Mifare NACK bug"}, {"chk", CmdHF14AMfChk, 0, "Check keys"}, {"fchk", CmdHF14AMfChk_fast, 0, "Check keys fast, targets all keys on card"}, {"decrypt", CmdHf14AMfDecryptBytes, 1, "[nt] [ar_enc] [at_enc] [data] - to decrypt snoop or trace"}, {"-----------", CmdHelp, 1, ""}, {"dbg", CmdHF14AMfDbg, 0, "Set default debug mode"}, {"rdbl", CmdHF14AMfRdBl, 0, "Read MIFARE classic block"}, {"rdsc", CmdHF14AMfRdSc, 0, "Read MIFARE classic sector"}, {"dump", CmdHF14AMfDump, 0, "Dump MIFARE classic tag to binary file"}, {"restore", CmdHF14AMfRestore, 0, "Restore MIFARE classic binary file to BLANK tag"}, {"wrbl", CmdHF14AMfWrBl, 0, "Write MIFARE classic block"}, {"setmod", CmdHf14AMfSetMod, 0, "Set MIFARE Classic EV1 load modulation strength"}, {"auth4", CmdHF14AMfAuth4, 0, "ISO14443-4 AES authentication"}, // {"sniff", CmdHF14AMfSniff, 0, "Sniff card-reader communication"}, {"-----------", CmdHelp, 1, ""}, {"sim", CmdHF14AMf1kSim, 0, "Simulate MIFARE card"}, {"eclr", CmdHF14AMfEClear, 0, "Clear simulator memory block"}, {"eget", CmdHF14AMfEGet, 0, "Get simulator memory block"}, {"eset", CmdHF14AMfESet, 0, "Set simulator memory block"}, {"eload", CmdHF14AMfELoad, 0, "Load from file emul dump"}, {"esave", CmdHF14AMfESave, 0, "Save to file emul dump"}, {"ecfill", CmdHF14AMfECFill, 0, "Fill simulator memory with help of keys from simulator"}, {"ekeyprn", CmdHF14AMfEKeyPrn, 0, "Print keys from simulator memory"}, {"-----------", CmdHelp, 1, ""}, {"csetuid", CmdHF14AMfCSetUID, 0, "Set UID for magic Chinese card"}, {"csetblk", CmdHF14AMfCSetBlk, 0, "Write block - Magic Chinese card"}, {"cgetblk", CmdHF14AMfCGetBlk, 0, "Read block - Magic Chinese card"}, {"cgetsc", CmdHF14AMfCGetSc, 0, "Read sector - Magic Chinese card"}, {"cload", CmdHF14AMfCLoad, 0, "Load dump into magic Chinese card"}, {"csave", CmdHF14AMfCSave, 0, "Save dump from magic Chinese card into file or emulator"}, {"-----------", CmdHelp, 1, ""}, {"mad", CmdHF14AMfMAD, 0, "Checks and prints MAD"}, // {"ndef", CmdHF14AMfHDEF, 0, "Checks and prints NDEF records from card"}, {"ice", CmdHF14AMfice, 0, "collect Mifare Classic nonces to file"}, {NULL, NULL, 0, NULL} }; int CmdHFMF(const char *Cmd) { clearCommandBuffer(); CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }