//----------------------------------------------------------------------------- // Merlok - June 2011, 2012 // Gerhard de Koning Gans - May 2008 // Hagen Fritsch - June 2010 // Midnitesnake - Dec 2013 // Andy Davies - Apr 2014 // Iceman - May 2014,2015,2016 // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Routines to support ISO 14443 type A. //----------------------------------------------------------------------------- #include "mifarecmd.h" #include #ifndef HARDNESTED_AUTHENTICATION_TIMEOUT # define HARDNESTED_AUTHENTICATION_TIMEOUT 848 //848 // card times out 1ms after wrong authentication (according to NXP documentation) #endif #ifndef HARDNESTED_PRE_AUTHENTICATION_LEADTIME # define HARDNESTED_PRE_AUTHENTICATION_LEADTIME 400 // some (non standard) cards need a pause after select before they are ready for first authentication #endif // send an incomplete dummy response in order to trigger the card's authentication failure timeout #ifndef CHK_TIMEOUT # define CHK_TIMEOUT() { \ ReaderTransmit(&dummy_answer, 1, NULL); \ uint32_t timeout = GetCountSspClk() + HARDNESTED_AUTHENTICATION_TIMEOUT; \ while (GetCountSspClk() < timeout) {}; \ } #endif static uint8_t dummy_answer = 0; //----------------------------------------------------------------------------- // Select, Authenticate, Read a MIFARE tag. // read block //----------------------------------------------------------------------------- void MifareReadBlock(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain) { // params uint8_t blockNo = arg0; uint8_t keyType = arg1; uint64_t ui64Key = 0; ui64Key = bytes_to_num(datain, 6); // variables byte_t isOK = 0; byte_t dataoutbuf[16] = {0x00}; uint8_t uid[10] = {0x00}; uint32_t cuid = 0; struct Crypto1State mpcs = {0, 0}; struct Crypto1State *pcs; pcs = &mpcs; iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); LED_A_ON(); LED_B_OFF(); LED_C_OFF(); while (true) { if(!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) { if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card"); break; }; if(mifare_classic_auth(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST)) { if (MF_DBGLEVEL >= 1) Dbprintf("Auth error"); break; }; if(mifare_classic_readblock(pcs, cuid, blockNo, dataoutbuf)) { if (MF_DBGLEVEL >= 1) Dbprintf("Read block error"); break; }; if(mifare_classic_halt(pcs, cuid)) { if (MF_DBGLEVEL >= 1) Dbprintf("Halt error"); break; }; isOK = 1; break; } crypto1_destroy(pcs); if (MF_DBGLEVEL >= 2) DbpString("READ BLOCK FINISHED"); LED_B_ON(); cmd_send(CMD_ACK,isOK,0,0,dataoutbuf,16); LED_B_OFF(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); } void MifareUC_Auth(uint8_t arg0, uint8_t *keybytes){ bool turnOffField = (arg0 == 1); LED_A_ON(); LED_B_OFF(); LED_C_OFF(); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); if(!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Can't select card"); OnError(0); return; }; if(!mifare_ultra_auth(keybytes)){ if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Authentication failed"); OnError(1); return; } if (turnOffField) { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); } cmd_send(CMD_ACK,1,0,0,0,0); } // Arg0 = BlockNo, // Arg1 = UsePwd bool // datain = PWD bytes, void MifareUReadBlock(uint8_t arg0, uint8_t arg1, uint8_t *datain) { uint8_t blockNo = arg0; byte_t dataout[16] = {0x00}; bool useKey = (arg1 == 1); //UL_C bool usePwd = (arg1 == 2); //UL_EV1/NTAG LEDsoff(); LED_A_ON(); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); int len = iso14443a_select_card(NULL, NULL, NULL, true, 0, true); if(!len) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Can't select card (RC:%02X)",len); OnError(1); return; } // UL-C authentication if ( useKey ) { uint8_t key[16] = {0x00}; memcpy(key, datain, sizeof(key) ); if ( !mifare_ultra_auth(key) ) { OnError(1); return; } } // UL-EV1 / NTAG authentication if ( usePwd ) { uint8_t pwd[4] = {0x00}; memcpy(pwd, datain, 4); uint8_t pack[4] = {0,0,0,0}; if (!mifare_ul_ev1_auth(pwd, pack)) { OnError(1); return; } } if( mifare_ultra_readblock(blockNo, dataout) ) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Read block error"); OnError(2); return; } if( mifare_ultra_halt() ) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Halt error"); OnError(3); return; } cmd_send(CMD_ACK,1,0,0,dataout,16); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); } //----------------------------------------------------------------------------- // Select, Authenticate, Read a MIFARE tag. // read sector (data = 4 x 16 bytes = 64 bytes, or 16 x 16 bytes = 256 bytes) //----------------------------------------------------------------------------- void MifareReadSector(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain) { // params uint8_t sectorNo = arg0; uint8_t keyType = arg1; uint64_t ui64Key = 0; ui64Key = bytes_to_num(datain, 6); // variables byte_t isOK = 0; byte_t dataoutbuf[16 * 16]; uint8_t uid[10] = {0x00}; uint32_t cuid = 0; struct Crypto1State mpcs = {0, 0}; struct Crypto1State *pcs; pcs = &mpcs; iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); LED_A_ON(); LED_B_OFF(); LED_C_OFF(); isOK = 1; if(!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) { isOK = 0; if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card"); } if(isOK && mifare_classic_auth(pcs, cuid, FirstBlockOfSector(sectorNo), keyType, ui64Key, AUTH_FIRST)) { isOK = 0; if (MF_DBGLEVEL >= 1) Dbprintf("Auth error"); } for (uint8_t blockNo = 0; isOK && blockNo < NumBlocksPerSector(sectorNo); blockNo++) { if(mifare_classic_readblock(pcs, cuid, FirstBlockOfSector(sectorNo) + blockNo, dataoutbuf + 16 * blockNo)) { isOK = 0; if (MF_DBGLEVEL >= 1) Dbprintf("Read sector %2d block %2d error", sectorNo, blockNo); break; } } if(mifare_classic_halt(pcs, cuid)) { if (MF_DBGLEVEL >= 1) Dbprintf("Halt error"); } if (MF_DBGLEVEL >= 2) DbpString("READ SECTOR FINISHED"); crypto1_destroy(pcs); LED_B_ON(); cmd_send(CMD_ACK,isOK,0,0,dataoutbuf,16*NumBlocksPerSector(sectorNo)); LED_B_OFF(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); set_tracing(false); } // arg0 = blockNo (start) // arg1 = Pages (number of blocks) // arg2 = useKey // datain = KEY bytes void MifareUReadCard(uint8_t arg0, uint16_t arg1, uint8_t arg2, uint8_t *datain) { LEDsoff(); LED_A_ON(); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); // free eventually allocated BigBuf memory BigBuf_free(); BigBuf_Clear_ext(false); clear_trace(); set_tracing(true); // params uint8_t blockNo = arg0; uint16_t blocks = arg1; bool useKey = (arg2 == 1); //UL_C bool usePwd = (arg2 == 2); //UL_EV1/NTAG uint32_t countblocks = 0; uint8_t *dataout = BigBuf_malloc(CARD_MEMORY_SIZE); if (dataout == NULL){ Dbprintf("out of memory"); OnError(1); return; } int len = iso14443a_select_card(NULL, NULL, NULL, true, 0, true); if (!len) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Can't select card (RC:%d)",len); OnError(1); return; } // UL-C authentication if ( useKey ) { uint8_t key[16] = {0x00}; memcpy(key, datain, sizeof(key) ); if ( !mifare_ultra_auth(key) ) { OnError(1); return; } } // UL-EV1 / NTAG authentication if (usePwd) { uint8_t pwd[4] = {0x00}; memcpy(pwd, datain, sizeof(pwd)); uint8_t pack[4] = {0,0,0,0}; if (!mifare_ul_ev1_auth(pwd, pack)){ OnError(1); return; } } for (int i = 0; i < blocks; i++){ if ((i*4) + 4 >= CARD_MEMORY_SIZE) { Dbprintf("Data exceeds buffer!!"); break; } len = mifare_ultra_readblock(blockNo + i, dataout + 4 * i); if (len) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Read block %d error",i); // if no blocks read - error out if (i == 0) { OnError(2); return; } else { //stop at last successful read block and return what we got break; } } else { countblocks++; } } len = mifare_ultra_halt(); if (len) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Halt error"); OnError(3); return; } if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Blocks read %d", countblocks); countblocks *= 4; cmd_send(CMD_ACK, 1, countblocks, BigBuf_max_traceLen(), 0, 0); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); BigBuf_free(); set_tracing(false); } //----------------------------------------------------------------------------- // Select, Authenticate, Write a MIFARE tag. // read block //----------------------------------------------------------------------------- void MifareWriteBlock(uint8_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain) { // params uint8_t blockNo = arg0; uint8_t keyType = arg1; uint64_t ui64Key = 0; byte_t blockdata[16] = {0x00}; ui64Key = bytes_to_num(datain, 6); memcpy(blockdata, datain + 10, 16); // variables byte_t isOK = 0; uint8_t uid[10] = {0x00}; uint32_t cuid = 0; struct Crypto1State mpcs = {0, 0}; struct Crypto1State *pcs; pcs = &mpcs; iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); LED_A_ON(); LED_B_OFF(); LED_C_OFF(); while (true) { if(!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) { if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card"); break; }; if(mifare_classic_auth(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST)) { if (MF_DBGLEVEL >= 1) Dbprintf("Auth error"); break; }; if(mifare_classic_writeblock(pcs, cuid, blockNo, blockdata)) { if (MF_DBGLEVEL >= 1) Dbprintf("Write block error"); break; }; if(mifare_classic_halt(pcs, cuid)) { if (MF_DBGLEVEL >= 1) Dbprintf("Halt error"); break; }; isOK = 1; break; } crypto1_destroy(pcs); if (MF_DBGLEVEL >= 2) DbpString("WRITE BLOCK FINISHED"); cmd_send(CMD_ACK,isOK,0,0,0,0); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); set_tracing(false); } /* // Command not needed but left for future testing void MifareUWriteBlockCompat(uint8_t arg0, uint8_t *datain) { uint8_t blockNo = arg0; byte_t blockdata[16] = {0x00}; memcpy(blockdata, datain, 16); uint8_t uid[10] = {0x00}; LED_A_ON(); LED_B_OFF(); LED_C_OFF(); clear_trace(); set_tracing(true); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); if(!iso14443a_select_card(uid, NULL, NULL, true, 0, true)) { if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card"); OnError(0); return; }; if(mifare_ultra_writeblock_compat(blockNo, blockdata)) { if (MF_DBGLEVEL >= 1) Dbprintf("Write block error"); OnError(0); return; }; if(mifare_ultra_halt()) { if (MF_DBGLEVEL >= 1) Dbprintf("Halt error"); OnError(0); return; }; if (MF_DBGLEVEL >= 2) DbpString("WRITE BLOCK FINISHED"); cmd_send(CMD_ACK,1,0,0,0,0); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); } */ // Arg0 : Block to write to. // Arg1 : 0 = use no authentication. // 1 = use 0x1A authentication. // 2 = use 0x1B authentication. // datain : 4 first bytes is data to be written. // : 4/16 next bytes is authentication key. void MifareUWriteBlock(uint8_t arg0, uint8_t arg1, uint8_t *datain) { uint8_t blockNo = arg0; bool useKey = (arg1 == 1); //UL_C bool usePwd = (arg1 == 2); //UL_EV1/NTAG byte_t blockdata[4] = {0x00}; memcpy(blockdata, datain, 4); LEDsoff(); LED_A_ON(); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); if (!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) { if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card"); OnError(0); return; }; // UL-C authentication if ( useKey ) { uint8_t key[16] = {0x00}; memcpy(key, datain+4, sizeof(key) ); if ( !mifare_ultra_auth(key) ) { OnError(1); return; } } // UL-EV1 / NTAG authentication if (usePwd) { uint8_t pwd[4] = {0x00}; memcpy(pwd, datain+4, 4); uint8_t pack[4] = {0,0,0,0}; if (!mifare_ul_ev1_auth(pwd, pack)) { OnError(1); return; } } if (mifare_ultra_writeblock(blockNo, blockdata)) { if (MF_DBGLEVEL >= 1) Dbprintf("Write block error"); OnError(0); return; }; if (mifare_ultra_halt()) { if (MF_DBGLEVEL >= 1) Dbprintf("Halt error"); OnError(0); return; }; if (MF_DBGLEVEL >= 2) DbpString("WRITE BLOCK FINISHED"); cmd_send(CMD_ACK,1,0,0,0,0); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); set_tracing(false); } void MifareUSetPwd(uint8_t arg0, uint8_t *datain){ uint8_t pwd[16] = {0x00}; byte_t blockdata[4] = {0x00}; memcpy(pwd, datain, 16); LED_A_ON(); LED_B_OFF(); LED_C_OFF(); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); if (!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) { if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card"); OnError(0); return; }; blockdata[0] = pwd[7]; blockdata[1] = pwd[6]; blockdata[2] = pwd[5]; blockdata[3] = pwd[4]; if (mifare_ultra_writeblock( 44, blockdata)) { if (MF_DBGLEVEL >= 1) Dbprintf("Write block error"); OnError(44); return; }; blockdata[0] = pwd[3]; blockdata[1] = pwd[2]; blockdata[2] = pwd[1]; blockdata[3] = pwd[0]; if (mifare_ultra_writeblock( 45, blockdata)) { if (MF_DBGLEVEL >= 1) Dbprintf("Write block error"); OnError(45); return; }; blockdata[0] = pwd[15]; blockdata[1] = pwd[14]; blockdata[2] = pwd[13]; blockdata[3] = pwd[12]; if (mifare_ultra_writeblock( 46, blockdata)) { if (MF_DBGLEVEL >= 1) Dbprintf("Write block error"); OnError(46); return; }; blockdata[0] = pwd[11]; blockdata[1] = pwd[10]; blockdata[2] = pwd[9]; blockdata[3] = pwd[8]; if (mifare_ultra_writeblock( 47, blockdata)) { if (MF_DBGLEVEL >= 1) Dbprintf("Write block error"); OnError(47); return; }; if (mifare_ultra_halt()) { if (MF_DBGLEVEL >= 1) Dbprintf("Halt error"); OnError(0); return; }; cmd_send(CMD_ACK,1,0,0,0,0); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); set_tracing(false); } // Return 1 if the nonce is invalid else return 0 int valid_nonce(uint32_t Nt, uint32_t NtEnc, uint32_t Ks1, uint8_t *parity) { return ((oddparity8((Nt >> 24) & 0xFF) == ((parity[0]) ^ oddparity8((NtEnc >> 24) & 0xFF) ^ BIT(Ks1,16))) & \ (oddparity8((Nt >> 16) & 0xFF) == ((parity[1]) ^ oddparity8((NtEnc >> 16) & 0xFF) ^ BIT(Ks1,8))) & \ (oddparity8((Nt >> 8) & 0xFF) == ((parity[2]) ^ oddparity8((NtEnc >> 8) & 0xFF) ^ BIT(Ks1,0)))) ? 1 : 0; } void MifareAcquireNonces(uint32_t arg0, uint32_t arg1, uint32_t flags, uint8_t *datain) { uint8_t uid[10] = {0x00}; uint8_t answer[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t par[1] = {0x00}; uint8_t buf[USB_CMD_DATA_SIZE] = {0x00}; uint32_t cuid = 0; int16_t isOK = 0; uint16_t num_nonces = 0; uint8_t cascade_levels = 0; uint8_t blockNo = arg0 & 0xff; uint8_t keyType = (arg0 >> 8) & 0xff; bool initialize = flags & 0x0001; bool field_off = flags & 0x0004; bool have_uid = false; LED_A_ON(); LED_C_OFF(); BigBuf_free(); BigBuf_Clear_ext(false); clear_trace(); set_tracing(true); if (initialize) iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); LED_C_ON(); for (uint16_t i = 0; i <= USB_CMD_DATA_SIZE-4; i += 4 ) { // Test if the action was cancelled if (BUTTON_PRESS()) { isOK = 2; field_off = true; break; } if (!have_uid) { // need a full select cycle to get the uid first iso14a_card_select_t card_info; if (!iso14443a_select_card(uid, &card_info, &cuid, true, 0, true)) { if (MF_DBGLEVEL >= 1) Dbprintf("AcquireNonces: Can't select card (ALL)"); continue; } switch (card_info.uidlen) { case 4 : cascade_levels = 1; break; case 7 : cascade_levels = 2; break; case 10: cascade_levels = 3; break; default: break; } have_uid = true; } else { // no need for anticollision. We can directly select the card if (!iso14443a_fast_select_card(uid, cascade_levels)) { if (MF_DBGLEVEL >= 1) Dbprintf("AcquireNonces: Can't select card (UID)"); continue; } } // Transmit MIFARE_CLASSIC_AUTH uint8_t dcmd[4] = {0x60 + (keyType & 0x01), blockNo, 0x00, 0x00}; AddCrc14A(dcmd, 2); ReaderTransmit(dcmd, sizeof(dcmd), NULL); int len = ReaderReceive(answer, par); // wait for the card to become ready again CHK_TIMEOUT(); if (len != 4) { if (MF_DBGLEVEL >= 2) Dbprintf("AcquireNonces: Auth1 error"); continue; } num_nonces++; // Save the tag nonce (nt) buf[i] = answer[0]; buf[i+1] = answer[1]; buf[i+2] = answer[2]; buf[i+3] = answer[3]; } LED_C_OFF(); LED_B_ON(); cmd_send(CMD_ACK, isOK, cuid, num_nonces-1, buf, sizeof(buf)); LED_B_OFF(); if (MF_DBGLEVEL >= 3) DbpString("AcquireNonces finished"); if (field_off) { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); set_tracing(false); } } //----------------------------------------------------------------------------- // acquire encrypted nonces in order to perform the attack described in // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on // Computer and Communications Security, 2015 //----------------------------------------------------------------------------- void MifareAcquireEncryptedNonces(uint32_t arg0, uint32_t arg1, uint32_t flags, uint8_t *datain) { struct Crypto1State mpcs = {0, 0}; struct Crypto1State *pcs; pcs = &mpcs; uint8_t uid[10] = {0x00}; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t par_enc[1] = {0x00}; uint8_t buf[USB_CMD_DATA_SIZE] = {0x00}; uint64_t ui64Key = bytes_to_num(datain, 6); uint32_t cuid = 0; int16_t isOK = 0; uint16_t num_nonces = 0; uint8_t nt_par_enc = 0; uint8_t cascade_levels = 0; uint8_t blockNo = arg0 & 0xff; uint8_t keyType = (arg0 >> 8) & 0xff; uint8_t targetBlockNo = arg1 & 0xff; uint8_t targetKeyType = (arg1 >> 8) & 0xff; bool initialize = flags & 0x0001; bool slow = flags & 0x0002; bool field_off = flags & 0x0004; bool have_uid = false; LED_A_ON(); LED_C_OFF(); BigBuf_free(); BigBuf_Clear_ext(false); clear_trace(); set_tracing(false); if (initialize) iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); LED_C_ON(); for (uint16_t i = 0; i <= USB_CMD_DATA_SIZE - 9; ) { // Test if the action was cancelled if(BUTTON_PRESS()) { isOK = 2; field_off = true; break; } if (!have_uid) { // need a full select cycle to get the uid first iso14a_card_select_t card_info; if(!iso14443a_select_card(uid, &card_info, &cuid, true, 0, true)) { if (MF_DBGLEVEL >= 1) Dbprintf("AcquireNonces: Can't select card (ALL)"); continue; } switch (card_info.uidlen) { case 4 : cascade_levels = 1; break; case 7 : cascade_levels = 2; break; case 10: cascade_levels = 3; break; default: break; } have_uid = true; } else { // no need for anticollision. We can directly select the card if (!iso14443a_fast_select_card(uid, cascade_levels)) { if (MF_DBGLEVEL >= 1) Dbprintf("AcquireNonces: Can't select card (UID)"); continue; } } if (slow) SpinDelayUs(HARDNESTED_PRE_AUTHENTICATION_LEADTIME); uint32_t nt1; if (mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1, NULL)) { if (MF_DBGLEVEL >= 1) Dbprintf("AcquireNonces: Auth1 error"); continue; } // nested authentication uint16_t len = mifare_sendcmd_short(pcs, AUTH_NESTED, 0x60 + (targetKeyType & 0x01), targetBlockNo, receivedAnswer, par_enc, NULL); // wait for the card to become ready again CHK_TIMEOUT(); if (len != 4) { if (MF_DBGLEVEL >= 1) Dbprintf("AcquireNonces: Auth2 error len=%d", len); continue; } num_nonces++; if (num_nonces % 2) { memcpy(buf+i, receivedAnswer, 4); nt_par_enc = par_enc[0] & 0xf0; } else { nt_par_enc |= par_enc[0] >> 4; memcpy(buf+i+4, receivedAnswer, 4); memcpy(buf+i+8, &nt_par_enc, 1); i += 9; } } LED_C_OFF(); crypto1_destroy(pcs); LED_B_ON(); cmd_send(CMD_ACK, isOK, cuid, num_nonces, buf, sizeof(buf)); LED_B_OFF(); if (MF_DBGLEVEL >= 3) DbpString("AcquireEncryptedNonces finished"); if (field_off) { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); set_tracing(false); } } //----------------------------------------------------------------------------- // MIFARE nested authentication. // //----------------------------------------------------------------------------- void MifareNested(uint32_t arg0, uint32_t arg1, uint32_t calibrate, uint8_t *datain) { // params uint8_t blockNo = arg0 & 0xff; uint8_t keyType = (arg0 >> 8) & 0xff; uint8_t targetBlockNo = arg1 & 0xff; uint8_t targetKeyType = (arg1 >> 8) & 0xff; uint64_t ui64Key = 0; ui64Key = bytes_to_num(datain, 6); // variables uint16_t rtr, i, j, len; uint16_t davg = 0; static uint16_t dmin, dmax; uint8_t uid[10] = {0x00}; uint32_t cuid = 0, nt1, nt2, nttmp, nttest, ks1; uint8_t par[1] = {0x00}; uint32_t target_nt[2] = {0x00}, target_ks[2] = {0x00}; uint8_t par_array[4] = {0x00}; uint16_t ncount = 0; struct Crypto1State mpcs = {0, 0}; struct Crypto1State *pcs; pcs = &mpcs; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint32_t auth1_time, auth2_time; static uint16_t delta_time = 0; LED_A_ON(); LED_C_OFF(); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); // free eventually allocated BigBuf memory BigBuf_free(); BigBuf_Clear_ext(false); if (calibrate) clear_trace(); set_tracing(true); // statistics on nonce distance int16_t isOK = 0; #define NESTED_MAX_TRIES 12 uint16_t unsuccessfull_tries = 0; if (calibrate) { // for first call only. Otherwise reuse previous calibration LED_B_ON(); WDT_HIT(); davg = dmax = 0; dmin = 2000; delta_time = 0; for (rtr = 0; rtr < 17; rtr++) { // Test if the action was cancelled if(BUTTON_PRESS()) { isOK = -2; break; } // prepare next select. No need to power down the card. if(mifare_classic_halt(pcs, cuid)) { if (MF_DBGLEVEL >= 2) Dbprintf("Nested: Halt error"); rtr--; continue; } if(!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) { if (MF_DBGLEVEL >= 2) Dbprintf("Nested: Can't select card"); rtr--; continue; }; auth1_time = 0; if(mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1, &auth1_time)) { if (MF_DBGLEVEL >= 2) Dbprintf("Nested: Auth1 error"); rtr--; continue; }; auth2_time = (delta_time) ? auth1_time + delta_time : 0; if(mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_NESTED, &nt2, &auth2_time)) { if (MF_DBGLEVEL >= 2) Dbprintf("Nested: Auth2 error"); rtr--; continue; }; nttmp = prng_successor(nt1, 100); //NXP Mifare is typical around 840,but for some unlicensed/compatible mifare card this can be 160 for (i = 101; i < 1200; i++) { nttmp = prng_successor(nttmp, 1); if (nttmp == nt2) break; } if (i != 1200) { if (rtr != 0) { davg += i; dmin = MIN(dmin, i); dmax = MAX(dmax, i); } else { delta_time = auth2_time - auth1_time + 32; // allow some slack for proper timing } if (MF_DBGLEVEL >= 3) Dbprintf("Nested: calibrating... ntdist=%d", i); } else { unsuccessfull_tries++; if (unsuccessfull_tries > NESTED_MAX_TRIES) { // card isn't vulnerable to nested attack (random numbers are not predictable) isOK = -3; } } } davg = (davg + (rtr - 1)/2) / (rtr - 1); if (MF_DBGLEVEL >= 3) Dbprintf("rtr=%d isOK=%d min=%d max=%d avg=%d, delta_time=%d", rtr, isOK, dmin, dmax, davg, delta_time); dmin = davg - 2; dmax = davg + 2; LED_B_OFF(); } // ------------------------------------------------------------------------------------------------- LED_C_ON(); // get crypted nonces for target sector for(i=0; i < 2 && !isOK; i++) { // look for exactly two different nonces target_nt[i] = 0; while(target_nt[i] == 0) { // continue until we have an unambiguous nonce // prepare next select. No need to power down the card. if(mifare_classic_halt(pcs, cuid)) { if (MF_DBGLEVEL >= 2) Dbprintf("Nested: Halt error"); continue; } if(!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) { if (MF_DBGLEVEL >= 2) Dbprintf("Nested: Can't select card"); continue; }; auth1_time = 0; if(mifare_classic_authex(pcs, cuid, blockNo, keyType, ui64Key, AUTH_FIRST, &nt1, &auth1_time)) { if (MF_DBGLEVEL >= 2) Dbprintf("Nested: Auth1 error"); continue; }; // nested authentication auth2_time = auth1_time + delta_time; len = mifare_sendcmd_short(pcs, AUTH_NESTED, 0x60 + (targetKeyType & 0x01), targetBlockNo, receivedAnswer, par, &auth2_time); if (len != 4) { if (MF_DBGLEVEL >= 2) Dbprintf("Nested: Auth2 error len=%d", len); continue; }; nt2 = bytes_to_num(receivedAnswer, 4); if (MF_DBGLEVEL >= 3) Dbprintf("Nonce#%d: Testing nt1=%08x nt2enc=%08x nt2par=%02x", i+1, nt1, nt2, par[0]); // Parity validity check for (j = 0; j < 4; j++) { par_array[j] = (oddparity8(receivedAnswer[j]) != ((par[0] >> (7-j)) & 0x01)); } ncount = 0; nttest = prng_successor(nt1, dmin - 1); for (j = dmin; j < dmax + 1; j++) { nttest = prng_successor(nttest, 1); ks1 = nt2 ^ nttest; if (valid_nonce(nttest, nt2, ks1, par_array)){ if (ncount > 0) { // we are only interested in disambiguous nonces, try again if (MF_DBGLEVEL >= 3) Dbprintf("Nonce#%d: dismissed (ambigous), ntdist=%d", i+1, j); target_nt[i] = 0; break; } target_nt[i] = nttest; target_ks[i] = ks1; ncount++; if (i == 1 && target_nt[1] == target_nt[0]) { // we need two different nonces target_nt[i] = 0; if (MF_DBGLEVEL >= 3) Dbprintf("Nonce#2: dismissed (= nonce#1), ntdist=%d", j); break; } if (MF_DBGLEVEL >= 3) Dbprintf("Nonce#%d: valid, ntdist=%d", i+1, j); } } if (target_nt[i] == 0 && j == dmax+1 && MF_DBGLEVEL >= 3) Dbprintf("Nonce#%d: dismissed (all invalid)", i+1); } } LED_C_OFF(); crypto1_destroy(pcs); uint8_t buf[4 + 4 * 4] = {0}; memcpy(buf, &cuid, 4); memcpy(buf+4, &target_nt[0], 4); memcpy(buf+8, &target_ks[0], 4); memcpy(buf+12, &target_nt[1], 4); memcpy(buf+16, &target_ks[1], 4); LED_B_ON(); cmd_send(CMD_ACK, isOK, 0, targetBlockNo + (targetKeyType * 0x100), buf, sizeof(buf)); LED_B_OFF(); if (MF_DBGLEVEL >= 3) DbpString("NESTED FINISHED"); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); set_tracing(false); } //----------------------------------------------------------------------------- // MIFARE check keys. key count up to 85. // //----------------------------------------------------------------------------- typedef struct sector_t { uint8_t keyA[6]; uint8_t keyB[6]; } sector_t; typedef struct chk_t { uint64_t key; uint32_t cuid; uint8_t cl; uint8_t block; uint8_t keyType; uint8_t *uid; struct Crypto1State *pcs; } chk_t; // checks one key. // fast select, tries 5 times to select // // return: // 2 = failed to select. // 1 = wrong key // 0 = correct key uint8_t chkKey( struct chk_t *c ) { uint8_t i = 0, res = 2; while( i < 5 ) { // this part is from Piwi's faster nonce collecting part in Hardnested. // assume: fast select if (!iso14443a_fast_select_card(c->uid, c->cl)) { ++i; continue; } res = mifare_classic_authex(c->pcs, c->cuid, c->block, c->keyType, c->key, AUTH_FIRST, NULL, NULL); CHK_TIMEOUT(); // if successfull auth, send HALT // if ( !res ) // mifare_classic_halt_ex(c->pcs); break; } return res; } uint8_t chkKey_readb(struct chk_t *c, uint8_t *keyb) { if (!iso14443a_fast_select_card(c->uid, c->cl)) return 2; if ( mifare_classic_authex(c->pcs, c->cuid, c->block, 0, c->key, AUTH_FIRST, NULL, NULL) ) return 1; uint8_t data[16] = {0x00}; uint8_t res = mifare_classic_readblock(c->pcs, c->cuid, c->block, data); // successful read if ( !res ) { // data was something else than zeros. if ( memcmp(data+10, "\x00\x00\x00\x00\x00\x00", 6) != 0) { memcpy(keyb, data+10, 6); res = 0; } else { res = 3; } mifare_classic_halt_ex(c->pcs); } return res; } void chkKey_scanA(struct chk_t *c, struct sector_t *k_sector, uint8_t *found, uint8_t *sectorcnt, uint8_t *foundkeys) { uint8_t status; for (uint8_t s = 0; s < *sectorcnt; s++) { // skip already found A keys if ( found[(s*2)] ) continue; c->block = FirstBlockOfSector( s ); status = chkKey( c ); if ( status == 0 ) { num_to_bytes(c->key, 6, k_sector[s].keyA); found[(s*2)] = 1; ++*foundkeys; if (MF_DBGLEVEL >= 3) Dbprintf("ChkKeys_fast: Scan A found (%d)", c->block); } } } void chkKey_scanB(struct chk_t *c, struct sector_t *k_sector, uint8_t *found, uint8_t *sectorcnt, uint8_t *foundkeys) { uint8_t status; for (uint8_t s = 0; s < *sectorcnt; s++) { // skip already found B keys if ( found[(s*2)+1] ) continue; c->block = FirstBlockOfSector( s ); status = chkKey( c ); if ( status == 0 ) { num_to_bytes(c->key, 6, k_sector[s].keyB); found[(s*2)+1] = 1; ++*foundkeys; if (MF_DBGLEVEL >= 3) Dbprintf("ChkKeys_fast: Scan B found (%d)", c->block); } } } // loop all A keys, // when A is found but not B, try to read B. void chkKey_loopBonly(struct chk_t *c, struct sector_t *k_sector, uint8_t *found, uint8_t *sectorcnt, uint8_t *foundkeys) { // read Block B, if A is found. for (uint8_t s = 0; s < *sectorcnt; ++s) { c->block = (FirstBlockOfSector( s ) + NumBlocksPerSector( s ) - 1); // A but not B if ( found[(s*2)] && !found[(s*2)+1] ){ c->key = bytes_to_num(k_sector[s].keyA, 6); uint8_t status = chkKey_readb(c, k_sector[s].keyB); if ( status == 0 ){ found[(s*2)+1] = 1; ++*foundkeys; if (MF_DBGLEVEL >= 3) Dbprintf("ChkKeys_fast: Reading B found (%d)", c->block); // try quick find all B? // assume: keys comes in groups. Find one B, test against all B. c->key = bytes_to_num( k_sector[s].keyB, 6); c->keyType = 1; chkKey_scanB(c, k_sector, found, sectorcnt, foundkeys); } } } } // get Chunks of keys, to test authentication against card. // arg0 = antal sectorer // arg0 = first time // arg1 = clear trace // arg2 = antal nycklar i keychunk // datain = keys as array void MifareChkKeys_fast(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) { // first call or uint8_t sectorcnt = arg0 & 0xFF; // 16; uint8_t firstchunk = (arg0 >> 8) & 0xF; uint8_t lastchunk = (arg0 >> 12) & 0xF; uint8_t strategy = arg1 & 0xFF; uint8_t keyCount = arg2 & 0xFF; uint8_t status = 0; struct Crypto1State mpcs = {0, 0}; struct Crypto1State *pcs; pcs = &mpcs; struct chk_t chk_data; uint8_t allkeys = sectorcnt << 1; static uint32_t cuid = 0; static uint8_t cascade_levels = 0; static uint8_t foundkeys = 0; static sector_t k_sector[80]; static uint8_t found[80]; static uint8_t *uid; iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); if (uid == NULL || firstchunk) { uid = BigBuf_malloc(10); if (uid == NULL ) { if (MF_DBGLEVEL >= 3) Dbprintf("ChkKeys: uid malloc failed"); goto OUT; } } LEDsoff(); LED_A_ON(); if ( firstchunk ) { clear_trace(); set_tracing(false); memset(k_sector, 0x00, 480+10); memset(found, 0x00, sizeof(found)); foundkeys = 0; iso14a_card_select_t card_info; if ( !iso14443a_select_card(uid, &card_info, &cuid, true, 0, true)) { if (MF_DBGLEVEL >= 1) Dbprintf("ChkKeys: Can't select card (ALL)"); goto OUT; } switch (card_info.uidlen) { case 4 : cascade_levels = 1; break; case 7 : cascade_levels = 2; break; case 10: cascade_levels = 3; break; default: break; } CHK_TIMEOUT(); } // set check struct. chk_data.uid = uid; chk_data.cuid = cuid; chk_data.cl = cascade_levels; chk_data.pcs = pcs; chk_data.block = 0; // keychunk loop - depth first one sector. if ( strategy == 1 ) { uint8_t newfound = foundkeys; // Sector main loop // keep track of how many sectors on card. for (uint8_t s = 0; s < sectorcnt; ++s) { if ( found[(s*2)] && found[(s*2)+1] ) continue; for (uint8_t i = 0; i < keyCount; ++i) { // Allow button press / usb cmd to interrupt device if (BUTTON_PRESS() && !usb_poll_validate_length()) { goto OUT; } // found all keys? if ( foundkeys == allkeys ) goto OUT; WDT_HIT(); // assume: block0,1,2 has more read rights in accessbits than the sectortrailer. authenticating against block0 in each sector chk_data.block = FirstBlockOfSector( s ); // new key chk_data.key = bytes_to_num(datain + i * 6, 6); // assume: block0,1,2 has more read rights in accessbits than the sectortrailer. authenticating against block0 in each sector // skip already found A keys if( !found[(s*2)] ) { chk_data.keyType = 0; status = chkKey( &chk_data); if ( status == 0 ) { memcpy(k_sector[s].keyA, datain + i * 6, 6); found[(s*2)] = 1; ++foundkeys; chkKey_scanA(&chk_data, k_sector, found, §orcnt, &foundkeys); // read Block B, if A is found. chkKey_loopBonly( &chk_data, k_sector, found, §orcnt, &foundkeys); chk_data.block = FirstBlockOfSector( s ); } } // skip already found B keys if( !found[(s*2)+1] ) { chk_data.keyType = 1; status = chkKey( &chk_data); if ( status == 0 ) { memcpy(k_sector[s].keyB, datain + i * 6, 6); found[(s*2)+1] = 1; ++foundkeys; chkKey_scanB(&chk_data, k_sector, found, §orcnt, &foundkeys); } } } // end keys test loop - depth first // assume1. if no keys found in first sector, get next keychunk from client if ( newfound-foundkeys == 0 ) goto OUT; } // end loop - sector } // end strategy 1 if ( strategy == 2 ) { // Keychunk loop for (uint8_t i = 0; i < keyCount; i++) { // Allow button press / usb cmd to interrupt device if (BUTTON_PRESS() && !usb_poll_validate_length()) break; WDT_HIT(); // new key chk_data.key = bytes_to_num(datain + i * 6, 6); // Sector main loop // keep track of how many sectors on card. for (uint8_t s = 0; s < sectorcnt; ++s) { // found all keys? if ( foundkeys == allkeys ) goto OUT; // assume: block0,1,2 has more read rights in accessbits than the sectortrailer. authenticating against block0 in each sector chk_data.block = FirstBlockOfSector( s ); // skip already found A keys if( !found[(s*2)] ) { chk_data.keyType = 0; status = chkKey( &chk_data); if ( status == 0 ) { memcpy(k_sector[s].keyA, datain + i * 6, 6); found[(s*2)] = 1; ++foundkeys; chkKey_scanA( &chk_data, k_sector, found, §orcnt, &foundkeys); // read Block B, if A is found. chkKey_loopBonly( &chk_data, k_sector, found, §orcnt, &foundkeys); chk_data.block = FirstBlockOfSector( s ); } } // skip already found B keys if( !found[(s*2)+1] ) { chk_data.keyType = 1; status = chkKey( &chk_data); if ( status == 0 ) { memcpy(k_sector[s].keyB, datain + i * 6, 6); found[(s*2)+1] = 1; ++foundkeys; chkKey_scanB(&chk_data, k_sector, found, §orcnt, &foundkeys); } } } // end loop sectors } // end loop keys } // end loop strategy 2 OUT: LEDsoff(); crypto1_destroy(pcs); // All keys found, send to client, or last keychunk from client if (foundkeys == allkeys || lastchunk ) { uint64_t foo = 0; uint16_t bar = 0; for (uint8_t m = 0; m < 64; ++m) foo |= (found[m] << m); for (uint8_t m=64; m < sizeof(found); ++m) bar |= (found[m] << (m-64)); uint8_t *tmp = BigBuf_malloc(480+10); memcpy(tmp, k_sector, sectorcnt * sizeof(sector_t) ); num_to_bytes(foo, 8, tmp+480); tmp[488] = bar & 0xFF; tmp[489] = bar >> 8 & 0xFF; cmd_send(CMD_ACK, foundkeys, 0, 0, tmp, 480+10); set_tracing(false); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); BigBuf_free(); BigBuf_Clear_ext(false); } else { // partial/none keys found cmd_send(CMD_ACK, foundkeys, 0, 0, 0, 0); } } void MifareChkKeys(uint16_t arg0, uint8_t arg1, uint8_t arg2, uint8_t *datain) { struct Crypto1State mpcs = {0, 0}; struct Crypto1State *pcs; pcs = &mpcs; uint8_t uid[10] = {0x00}; uint64_t key = 0; uint32_t cuid = 0; int i, res; uint8_t blockNo = arg0 & 0xFF; uint8_t keyType = (arg0 >> 8) & 0xFF; uint8_t keyCount = arg2; uint8_t cascade_levels = 0; uint8_t isOK = 0; bool have_uid = false; bool clearTrace = arg1 & 0xFF; LEDsoff(); LED_A_ON(); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); if (clearTrace) clear_trace(); set_tracing(true); for (i = 0; i < keyCount; i++) { // Iceman: use piwi's faster nonce collecting part in hardnested. if (!have_uid) { // need a full select cycle to get the uid first iso14a_card_select_t card_info; if (!iso14443a_select_card(uid, &card_info, &cuid, true, 0, true)) { if (MF_DBGLEVEL >= 1) Dbprintf("ChkKeys: Can't select card (ALL)"); --i; // try same key once again continue; } switch (card_info.uidlen) { case 4 : cascade_levels = 1; break; case 7 : cascade_levels = 2; break; case 10: cascade_levels = 3; break; default: break; } have_uid = true; } else { // no need for anticollision. We can directly select the card if (!iso14443a_select_card(uid, NULL, NULL, false, cascade_levels, true)) { if (MF_DBGLEVEL >= 1) Dbprintf("ChkKeys: Can't select card (UID)"); --i; // try same key once again continue; } } key = bytes_to_num(datain + i * 6, 6); res = mifare_classic_auth(pcs, cuid, blockNo, keyType, key, AUTH_FIRST); CHK_TIMEOUT(); if (res) continue; isOK = 1; break; } LED_B_ON(); cmd_send(CMD_ACK, isOK, 0, 0, datain + i * 6, 6); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); set_tracing(false); crypto1_destroy(pcs); } //----------------------------------------------------------------------------- // MIFARE commands set debug level // //----------------------------------------------------------------------------- void MifareSetDbgLvl(uint16_t arg0){ MF_DBGLEVEL = arg0; Dbprintf("Debug level: %d", MF_DBGLEVEL); } //----------------------------------------------------------------------------- // Work with emulator memory // // Note: we call FpgaDownloadAndGo(FPGA_BITSTREAM_HF) here although FPGA is not // involved in dealing with emulator memory. But if it is called later, it might // destroy the Emulator Memory. //----------------------------------------------------------------------------- void MifareEMemClr(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain){ FpgaDownloadAndGo(FPGA_BITSTREAM_HF); emlClearMem(); } void MifareEMemSet(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain){ FpgaDownloadAndGo(FPGA_BITSTREAM_HF); if (arg2==0) arg2 = 16; // backwards compat... default bytewidth emlSetMem_xt(datain, arg0, arg1, arg2); // data, block num, blocks count, block byte width } void MifareEMemGet(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain){ FpgaDownloadAndGo(FPGA_BITSTREAM_HF); byte_t buf[USB_CMD_DATA_SIZE] = {0x00}; emlGetMem(buf, arg0, arg1); // data, block num, blocks count (max 4) LED_B_ON(); cmd_send(CMD_ACK,arg0,arg1,0,buf,USB_CMD_DATA_SIZE); LED_B_OFF(); } //----------------------------------------------------------------------------- // Load a card into the emulator memory // //----------------------------------------------------------------------------- void MifareECardLoad(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain){ uint8_t numSectors = arg0; uint8_t keyType = arg1; uint64_t ui64Key = 0; uint32_t cuid = 0; struct Crypto1State mpcs = {0, 0}; struct Crypto1State *pcs; pcs = &mpcs; // variables byte_t dataoutbuf[16] = {0x00}; byte_t dataoutbuf2[16] = {0x00}; uint8_t uid[10] = {0x00}; LED_A_ON(); LED_B_OFF(); LED_C_OFF(); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); bool isOK = true; if(!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) { isOK = false; if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card"); } for (uint8_t sectorNo = 0; isOK && sectorNo < numSectors; sectorNo++) { ui64Key = emlGetKey(sectorNo, keyType); if (sectorNo == 0){ if(isOK && mifare_classic_auth(pcs, cuid, FirstBlockOfSector(sectorNo), keyType, ui64Key, AUTH_FIRST)) { isOK = false; if (MF_DBGLEVEL >= 1) Dbprintf("Sector[%2d]. Auth error", sectorNo); break; } } else { if(isOK && mifare_classic_auth(pcs, cuid, FirstBlockOfSector(sectorNo), keyType, ui64Key, AUTH_NESTED)) { isOK = false; if (MF_DBGLEVEL >= 1) Dbprintf("Sector[%2d]. Auth nested error", sectorNo); break; } } for (uint8_t blockNo = 0; isOK && blockNo < NumBlocksPerSector(sectorNo); blockNo++) { if(isOK && mifare_classic_readblock(pcs, cuid, FirstBlockOfSector(sectorNo) + blockNo, dataoutbuf)) { isOK = false; if (MF_DBGLEVEL >= 1) Dbprintf("Error reading sector %2d block %2d", sectorNo, blockNo); break; } if (isOK) { if (blockNo < NumBlocksPerSector(sectorNo) - 1) { emlSetMem(dataoutbuf, FirstBlockOfSector(sectorNo) + blockNo, 1); } else { // sector trailer, keep the keys, set only the AC emlGetMem(dataoutbuf2, FirstBlockOfSector(sectorNo) + blockNo, 1); memcpy(&dataoutbuf2[6], &dataoutbuf[6], 4); emlSetMem(dataoutbuf2, FirstBlockOfSector(sectorNo) + blockNo, 1); } } } } if(mifare_classic_halt(pcs, cuid)) if (MF_DBGLEVEL >= 1) Dbprintf("Halt error"); // ----------------------------- crypto1 destroy crypto1_destroy(pcs); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); if (MF_DBGLEVEL >= 2) DbpString("EMUL FILL SECTORS FINISHED"); set_tracing(false); } //----------------------------------------------------------------------------- // Work with "magic Chinese" card (email him: ouyangweidaxian@live.cn) // // PARAMS - workFlags // bit 0 - need get UID // bit 1 - need wupC // bit 2 - need HALT after sequence // bit 3 - need turn on FPGA before sequence // bit 4 - need turn off FPGA // bit 5 - need to set datain instead of issuing USB reply (called via ARM for StandAloneMode14a) // bit 6 - wipe tag. //----------------------------------------------------------------------------- // magic uid card generation 1 commands uint8_t wupC1[] = { MIFARE_MAGICWUPC1 }; uint8_t wupC2[] = { MIFARE_MAGICWUPC2 }; uint8_t wipeC[] = { MIFARE_MAGICWIPEC }; void MifareCSetBlock(uint32_t arg0, uint32_t arg1, uint8_t *datain){ // params uint8_t workFlags = arg0; uint8_t blockNo = arg1; // detect 1a/1b bool is1b = false; // variables bool isOK = false; //assume we will get an error uint8_t errormsg = 0x00; uint8_t uid[10] = {0x00}; uint8_t data[18] = {0x00}; uint32_t cuid = 0; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00}; if (workFlags & MAGIC_INIT) { LED_A_ON(); LED_B_OFF(); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); } //loop doesn't loop just breaks out if error while (true) { // read UID and return to client with write if (workFlags & MAGIC_UID) { if(!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Can't select card"); errormsg = MAGIC_UID; } mifare_classic_halt_ex(NULL); break; } // wipe tag, fill it with zeros if (workFlags & MAGIC_WIPE){ ReaderTransmitBitsPar(wupC1, 7, NULL, NULL); if(!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("wupC1 error"); errormsg = MAGIC_WIPE; break; } ReaderTransmit(wipeC, sizeof(wipeC), NULL); if(!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("wipeC error"); errormsg = MAGIC_WIPE; break; } mifare_classic_halt_ex(NULL); } // write block if (workFlags & MAGIC_WUPC) { ReaderTransmitBitsPar(wupC1, 7, NULL, NULL); if(!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("wupC1 error"); errormsg = MAGIC_WUPC; break; } if ( !is1b ) { ReaderTransmit(wupC2, sizeof(wupC2), NULL); if(!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) { if (MF_DBGLEVEL >= MF_DBG_ALL) Dbprintf("Assuming Magic Gen 1B tag. [wupC2 failed]"); is1b = true; continue; } } } if ((mifare_sendcmd_short(NULL, 0, ISO14443A_CMD_WRITEBLOCK, blockNo, receivedAnswer, receivedAnswerPar, NULL) != 1) || (receivedAnswer[0] != 0x0a)) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("write block send command error"); errormsg = 4; break; } memcpy(data, datain, 16); AddCrc14A(data, 16); ReaderTransmit(data, sizeof(data), NULL); if ((ReaderReceive(receivedAnswer, receivedAnswerPar) != 1) || (receivedAnswer[0] != 0x0a)) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("write block send data error"); errormsg = 0; break; } if (workFlags & MAGIC_HALT) mifare_classic_halt_ex(NULL); isOK = true; break; } // end while if (isOK ) cmd_send(CMD_ACK,1,0,0,uid,sizeof(uid)); else OnErrorMagic(errormsg); if (workFlags & MAGIC_OFF) OnSuccessMagic(); } void MifareCGetBlock(uint32_t arg0, uint32_t arg1, uint8_t *datain){ uint8_t workFlags = arg0; uint8_t blockNo = arg1; uint8_t errormsg = 0x00; bool isOK = false; //assume we will get an error // detect 1a/1b bool is1b = false; // variables uint8_t data[MAX_MIFARE_FRAME_SIZE]; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0x00}; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0x00}; memset(data, 0x00, sizeof(data)); if (workFlags & MAGIC_INIT) { LED_A_ON(); LED_B_OFF(); iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); } //loop doesn't loop just breaks out if error or done while (true) { if (workFlags & MAGIC_WUPC) { ReaderTransmitBitsPar(wupC1, 7, NULL, NULL); if(!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("wupC1 error"); errormsg = MAGIC_WUPC; break; } if ( !is1b ) { ReaderTransmit(wupC2, sizeof(wupC2), NULL); if(!ReaderReceive(receivedAnswer, receivedAnswerPar) || (receivedAnswer[0] != 0x0a)) { if (MF_DBGLEVEL >= MF_DBG_ALL) Dbprintf("Assuming Magic Gen 1B tag. [wupC2 failed]"); is1b = true; continue; } } } // read block if ((mifare_sendcmd_short(NULL, 0, ISO14443A_CMD_READBLOCK, blockNo, receivedAnswer, receivedAnswerPar, NULL) != 18)) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("read block send command error"); errormsg = 0; break; } memcpy(data, receivedAnswer, sizeof(data)); // send HALT if (workFlags & MAGIC_HALT) mifare_classic_halt_ex(NULL); isOK = true; break; } // if MAGIC_DATAIN, the data stays on device side. if (workFlags & MAGIC_DATAIN) { if (isOK) memcpy(datain, data, sizeof(data)); } else { if (isOK) cmd_send(CMD_ACK,1,0,0,data,sizeof(data)); else OnErrorMagic(errormsg); } if (workFlags & MAGIC_OFF) OnSuccessMagic(); } void MifareCIdent(){ #define GEN_1A 1 #define GEN_1B 2 #define GEN_2 4 // variables uint8_t isGen = 0; uint8_t rec[1] = {0x00}; uint8_t recpar[1] = {0x00}; iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); // Generation 1 test ReaderTransmitBitsPar(wupC1, 7, NULL, NULL); if(!ReaderReceive(rec, recpar) || (rec[0] != 0x0a)) { goto TEST2; }; isGen = GEN_1B; ReaderTransmit(wupC2, sizeof(wupC2), NULL); if(!ReaderReceive(rec, recpar) || (rec[0] != 0x0a)) { goto OUT; }; isGen = GEN_1A; goto OUT; TEST2:; /* // Generation 2 test // halt previous. mifare_classic_halt(NULL, 0); //select if (!iso14443a_select_card(NULL, NULL, NULL, true, 0, true)) { goto OUT; }; // MIFARE_CLASSIC_WRITEBLOCK 0xA0 // ACK 0x0a uint16_t len = mifare_sendcmd_short(null, 1, 0xA0, 0, rec, recpar, NULL); if ((len != 1) || (rec[0] != 0x0A)) { isGen = GEN_2; }; */ OUT:; // removed the if, since some magic tags misbehavies and send an answer to it. mifare_classic_halt_ex(NULL); cmd_send(CMD_ACK, isGen, 0, 0, 0, 0); // turns off OnSuccessMagic(); } void OnSuccessMagic(){ FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); set_tracing(false); } void OnErrorMagic(uint8_t reason){ // ACK, ISOK, reason,0,0,0 cmd_send(CMD_ACK,0,reason,0,0,0); OnSuccessMagic(); } void MifareSetMod(uint8_t mod, uint8_t *key) { uint64_t ui64Key = bytes_to_num(key, 6); // variables uint8_t isOK = 0; uint8_t uid[10] = {0}; uint32_t cuid = 0; struct Crypto1State mpcs = {0, 0}; struct Crypto1State *pcs = &mpcs; int respLen = 0; uint8_t receivedAnswer[MAX_MIFARE_FRAME_SIZE] = {0}; uint8_t receivedAnswerPar[MAX_MIFARE_PARITY_SIZE] = {0}; iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); LED_A_ON(); LED_B_OFF(); LED_C_OFF(); while (true) { if(!iso14443a_select_card(uid, NULL, &cuid, true, 0, true)) { if (MF_DBGLEVEL >= 1) Dbprintf("Can't select card"); break; } if(mifare_classic_auth(pcs, cuid, 0, 0, ui64Key, AUTH_FIRST)) { if (MF_DBGLEVEL >= 1) Dbprintf("Auth error"); break; } if (((respLen = mifare_sendcmd_short(pcs, 1, 0x43, mod, receivedAnswer, receivedAnswerPar, NULL)) != 1) || (receivedAnswer[0] != 0x0a)) { if (MF_DBGLEVEL >= 1) Dbprintf("SetMod error; response[0]: %hhX, len: %d", receivedAnswer[0], respLen); break; } if(mifare_classic_halt(pcs, cuid)) { if (MF_DBGLEVEL >= 1) Dbprintf("Halt error"); break; } isOK = 1; break; } crypto1_destroy(pcs); LED_B_ON(); cmd_send(CMD_ACK, isOK, 0, 0, 0, 0); LED_B_OFF(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); } // // DESFIRE // void Mifare_DES_Auth1(uint8_t arg0, uint8_t *datain){ byte_t dataout[12] = {0x00}; uint8_t uid[10] = {0x00}; uint32_t cuid = 0; iso14443a_setup(FPGA_HF_ISO14443A_READER_LISTEN); clear_trace(); set_tracing(true); int len = iso14443a_select_card(uid, NULL, &cuid, true, 0, false); if(!len) { if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Can't select card"); OnError(1); return; }; if(mifare_desfire_des_auth1(cuid, dataout)){ if (MF_DBGLEVEL >= MF_DBG_ERROR) Dbprintf("Authentication part1: Fail."); OnError(4); return; } if (MF_DBGLEVEL >= MF_DBG_EXTENDED) DbpString("AUTH 1 FINISHED"); cmd_send(CMD_ACK, 1, cuid, 0, dataout, sizeof(dataout)); } void Mifare_DES_Auth2(uint32_t arg0, uint8_t *datain){ uint32_t cuid = arg0; uint8_t key[16] = {0x00}; byte_t dataout[12] = {0x00}; byte_t isOK = 0; memcpy(key, datain, 16); isOK = mifare_desfire_des_auth2(cuid, key, dataout); if( isOK) { if (MF_DBGLEVEL >= MF_DBG_EXTENDED) Dbprintf("Authentication part2: Failed"); OnError(4); return; } if (MF_DBGLEVEL >= MF_DBG_EXTENDED) DbpString("AUTH 2 FINISHED"); cmd_send(CMD_ACK, isOK, 0, 0, dataout, sizeof(dataout)); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); set_tracing(false); }