//----------------------------------------------------------------------------- // (c) 2009 Henryk Plötz // 2016 Iceman // 2018 AntiCat (rwd rewritten) // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // LEGIC RF simulation code //----------------------------------------------------------------------------- #include "legicrf.h" #include "ticks.h" /* timers */ #include "crc.h" /* legic crc-4 */ #include "legic_prng.h" /* legic PRNG impl */ #include "legic.h" /* legic_card_select_t struct */ static uint8_t* legic_mem; /* card memory, used for read, write and sim */ static legic_card_select_t card;/* metadata of currently selected card */ static crc_t legic_crc; //----------------------------------------------------------------------------- // Frame timing and pseudorandom number generator // // The Prng is forwarded every 100us (TAG_BIT_PERIOD), except when the reader is // transmitting. In that case the prng has to be forwarded every bit transmitted: // - 60us for a 0 (RWD_TIME_0) // - 100us for a 1 (RWD_TIME_1) // // The data dependent timing makes writing comprehensible code significantly // harder. The current aproach forwards the prng data based if there is data on // air and time based, using GET_TICKS, during computational and wait periodes. // // To not have the necessity to calculate/guess exection time dependend timeouts // tx_frame and rx_frame use a shared timestamp to coordinate tx and rx timeslots. //----------------------------------------------------------------------------- static uint32_t last_frame_end; /* ts of last bit of previews rx or tx frame */ #define RWD_TIME_PAUSE 30 /* 20us */ #define RWD_TIME_1 150 /* READER_TIME_PAUSE 20us off + 80us on = 100us */ #define RWD_TIME_0 90 /* READER_TIME_PAUSE 20us off + 40us on = 60us */ #define RWD_FRAME_WAIT 330 /* 220us from TAG frame end to READER frame start */ #define TAG_FRAME_WAIT 495 /* 330us from READER frame end to TAG frame start */ #define TAG_BIT_PERIOD 150 /* 100us */ #define TAG_WRITE_TIMEOUT 60 /* 40 * 100us (write should take at most 3.6ms) */ #define LEGIC_CARD_MEMSIZE 1024 /* The largest Legic Prime card is 1k */ #define WRITE_LOWERLIMIT 4 /* UID and MCC are not writable */ #define INPUT_THRESHOLD 8 /* heuristically determined, lower values */ /* lead to detecting false ack during write */ //----------------------------------------------------------------------------- // I/O interface abstraction (FPGA -> ARM) //----------------------------------------------------------------------------- static inline uint8_t rx_byte_from_fpga() { for(;;) { WDT_HIT(); // wait for byte be become available in rx holding register if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { return AT91C_BASE_SSC->SSC_RHR; } } } //----------------------------------------------------------------------------- // Demodulation //----------------------------------------------------------------------------- // Returns am aproximated power measurement // // The FPGA running on the xcorrelation kernel samples the subcarrier at ~3 MHz. // The kernel was initialy designed to receive BSPK/2-PSK. Hance, it reports an // I/Q pair every 18.9us (8 bits i and 8 bits q). // // The subcarrier amplitude can be calculated using Pythagoras sqrt(i^2 + q^2). // To reduce CPU time the amplitude is approximated by using linear functions: // am = MAX(ABS(i),ABS(q)) + 1/2*MIN(ABS(i),ABSq)) // // Note: The SSC receiver is never synchronized the calculation my be performed // on a i/q pair from two subsequent correlations, but does not matter. static inline int32_t sample_power() { int32_t q = (int8_t)rx_byte_from_fpga(); q = ABS(q); int32_t i = (int8_t)rx_byte_from_fpga(); i = ABS(i); return MAX(i, q) + (MIN(i, q) >> 1); } // Returns a demedulated bit // // An aproximated power measurement is available every 18.9us. The bit time // is 100us. The code samples 5 times and uses the last (most stable) sample. // // Note: The demodulator would be drifting (18.9us * 5 != 100us), rx_frame // has a delay loop that aligns rx_bit calls to the TAG tx timeslots. static inline bool rx_bit() { int32_t power; for(size_t i = 0; i<5; ++i) { power = sample_power(); } return (power > INPUT_THRESHOLD); } //----------------------------------------------------------------------------- // Modulation // // I've tried to modulate the Legic specific pause-puls using ssc and the default // ssc clock of 105.4 kHz (bit periode of 9.4us) - previous commit. However, // the timing was not precise enough. By increasing the ssc clock this could // be circumvented, but the adventage over bitbang would be little. //----------------------------------------------------------------------------- static inline void tx_bit(bool bit) { // insert pause LOW(GPIO_SSC_DOUT); last_frame_end += RWD_TIME_PAUSE; while(GET_TICKS < last_frame_end) { }; HIGH(GPIO_SSC_DOUT); // return to high, wait for bit periode to end last_frame_end += (bit ? RWD_TIME_1 : RWD_TIME_0) - RWD_TIME_PAUSE; while(GET_TICKS < last_frame_end) { }; } //----------------------------------------------------------------------------- // Frame Handling // // The LEGIC RF protocol from card to reader does not include explicit frame // start/stop information or length information. The reader must know beforehand // how many bits it wants to receive. // Notably: a card sending a stream of 0-bits is indistinguishable from no card // present. //----------------------------------------------------------------------------- static void tx_frame(uint32_t frame, uint8_t len) { FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX); // wait for next tx timeslot last_frame_end += RWD_FRAME_WAIT; while(GET_TICKS < last_frame_end) { }; // backup ts for trace log uint32_t last_frame_start = last_frame_end; // transmit frame, MSB first for(uint8_t i = 0; i < len; ++i) { bool bit = (frame >> i) & 0x01; tx_bit(bit ^ legic_prng_get_bit()); legic_prng_forward(1); }; // add pause to mark end of the frame LOW(GPIO_SSC_DOUT); last_frame_end += RWD_TIME_PAUSE; while(GET_TICKS < last_frame_end) { }; HIGH(GPIO_SSC_DOUT); // log uint8_t cmdbytes[] = {len, BYTEx(frame, 0), BYTEx(frame, 1), BYTEx(frame, 2)}; LogTrace(cmdbytes, sizeof(cmdbytes), last_frame_start, last_frame_end, NULL, true); } static uint32_t rx_frame(uint8_t len) { FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_QUARTER); // hold sampling until card is expected to respond last_frame_end += TAG_FRAME_WAIT; while(GET_TICKS < last_frame_end) { }; // backup ts for trace log uint32_t last_frame_start = last_frame_end; uint32_t frame = 0; for(uint8_t i = 0; i < len; i++) { frame |= (rx_bit() ^ legic_prng_get_bit()) << i; legic_prng_forward(1); // rx_bit runs only 95us, resync to TAG_BIT_PERIOD last_frame_end += TAG_BIT_PERIOD; while(GET_TICKS < last_frame_end) { }; } // log uint8_t cmdbytes[] = {len, BYTEx(frame, 0), BYTEx(frame, 1)}; LogTrace(cmdbytes, sizeof(cmdbytes), last_frame_start, last_frame_end, NULL, false); return frame; } static bool rx_ack() { // change fpga into rx mode FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_QUARTER); // hold sampling until card is expected to respond last_frame_end += TAG_FRAME_WAIT; while(GET_TICKS < last_frame_end) { }; // backup ts for trace log uint32_t last_frame_start = last_frame_end; uint32_t ack = 0; for(uint8_t i = 0; i < TAG_WRITE_TIMEOUT; ++i) { // sample bit ack = rx_bit(); legic_prng_forward(1); // rx_bit runs only 95us, resync to TAG_BIT_PERIOD last_frame_end += TAG_BIT_PERIOD; while(GET_TICKS < last_frame_end) { }; // check if it was an ACK if(ack) { break; } } // log uint8_t cmdbytes[] = {1, BYTEx(ack, 0)}; LogTrace(cmdbytes, sizeof(cmdbytes), last_frame_start, last_frame_end, NULL, false); return ack; } //----------------------------------------------------------------------------- // Legic Reader //----------------------------------------------------------------------------- int init_card(uint8_t cardtype, legic_card_select_t *p_card) { p_card->tagtype = cardtype; switch(p_card->tagtype) { case 0x0d: p_card->cmdsize = 6; p_card->addrsize = 5; p_card->cardsize = 22; break; case 0x1d: p_card->cmdsize = 9; p_card->addrsize = 8; p_card->cardsize = 256; break; case 0x3d: p_card->cmdsize = 11; p_card->addrsize = 10; p_card->cardsize = 1024; break; default: p_card->cmdsize = 0; p_card->addrsize = 0; p_card->cardsize = 0; return 2; } return 0; } static void init_reader(bool clear_mem) { // configure FPGA FpgaDownloadAndGo(FPGA_BITSTREAM_HF); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR | FPGA_HF_READER_RX_XCORR_848_KHZ | FPGA_HF_READER_RX_XCORR_QUARTER); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); LED_A_ON(); // configure SSC with defaults FpgaSetupSsc(); // re-claim GPIO_SSC_DOUT as GPIO and enable output AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; HIGH(GPIO_SSC_DOUT); // reserve a cardmem, meaning we can use the tracelog function in bigbuff easier. legic_mem = BigBuf_get_EM_addr(); if(legic_mem) { memset(legic_mem, 0x00, LEGIC_CARD_MEMSIZE); } // start trace clear_trace(); set_tracing(true); // init crc calculator crc_init(&legic_crc, 4, 0x19 >> 1, 0x05, 0); // start us timer StartTicks(); } // Setup reader to card connection // // The setup consists of a three way handshake: // - Transmit initialisation vector 7 bits // - Receive card type 6 bits // - Acknowledge frame 6 bits static uint32_t setup_phase_reader(uint8_t iv) { // init coordination timestamp last_frame_end = GET_TICKS; // Switch on carrier and let the card charge for 5ms. last_frame_end += 7500; while(GET_TICKS < last_frame_end) { }; legic_prng_init(0); tx_frame(iv, 7); // configure iv legic_prng_init(iv); legic_prng_forward(2); // receive card type int32_t card_type = rx_frame(6); legic_prng_forward(3); // send obsfuscated acknowledgment frame switch (card_type) { case 0x0D: tx_frame(0x19, 6); // MIM22 | READCMD = 0x18 | 0x01 break; case 0x1D: case 0x3D: tx_frame(0x39, 6); // MIM256 | READCMD = 0x38 | 0x01 break; } return card_type; } static uint8_t calc_crc4(uint16_t cmd, uint8_t cmd_sz, uint8_t value) { crc_clear(&legic_crc); crc_update(&legic_crc, (value << cmd_sz) | cmd, 8 + cmd_sz); return crc_finish(&legic_crc); } static int16_t read_byte(uint16_t index, uint8_t cmd_sz) { uint16_t cmd = (index << 1) | LEGIC_READ; // read one byte LED_B_ON(); legic_prng_forward(2); tx_frame(cmd, cmd_sz); legic_prng_forward(2); uint32_t frame = rx_frame(12); LED_B_OFF(); // split frame into data and crc uint8_t byte = BYTEx(frame, 0); uint8_t crc = BYTEx(frame, 1); // check received against calculated crc uint8_t calc_crc = calc_crc4(cmd, cmd_sz, byte); if(calc_crc != crc) { Dbprintf("!!! crc mismatch: %x != %x !!!", calc_crc, crc); return -1; } legic_prng_forward(1); return byte; } // Transmit write command, wait until (3.6ms) the tag sends back an unencrypted // ACK ('1' bit) and forward the prng time based. bool write_byte(uint16_t index, uint8_t byte, uint8_t addr_sz) { uint32_t cmd = index << 1 | LEGIC_WRITE; // prepare command uint8_t crc = calc_crc4(cmd, addr_sz + 1, byte); // calculate crc cmd |= byte << (addr_sz + 1); // append value cmd |= (crc & 0xF) << (addr_sz + 1 + 8); // and crc // send write command LED_C_ON(); legic_prng_forward(2); tx_frame(cmd, addr_sz + 1 + 8 + 4); // cmd_sz = addr_sz + cmd + data + crc legic_prng_forward(3); LED_C_OFF(); // wait for ack return rx_ack(); } //----------------------------------------------------------------------------- // Command Line Interface // // Only this functions are public / called from appmain.c //----------------------------------------------------------------------------- void LegicRfInfo(void) { // configure ARM and FPGA init_reader(false); // establish shared secret and detect card type uint8_t card_type = setup_phase_reader(0x01); if(init_card(card_type, &card) != 0) { cmd_send(CMD_ACK, 0, 0, 0, 0, 0); goto OUT; } // read UID for(uint8_t i = 0; i < sizeof(card.uid); ++i) { int16_t byte = read_byte(i, card.cmdsize); if(byte == -1) { cmd_send(CMD_ACK, 0, 0, 0, 0, 0); goto OUT; } card.uid[i] = byte & 0xFF; } // read MCC and check against UID int16_t mcc = read_byte(4, card.cmdsize); int16_t calc_mcc = CRC8Legic(card.uid, 4);; if(mcc != calc_mcc) { cmd_send(CMD_ACK, 0, 0, 0, 0, 0); goto OUT; } // OK cmd_send(CMD_ACK, 1, 0, 0, (uint8_t*)&card, sizeof(legic_card_select_t)); OUT: switch_off(); StopTicks(); } void LegicRfReader(uint16_t offset, uint16_t len, uint8_t iv) { // configure ARM and FPGA init_reader(false); // establish shared secret and detect card type uint8_t card_type = setup_phase_reader(iv); if(init_card(card_type, &card) != 0) { cmd_send(CMD_ACK, 0, 0, 0, 0, 0); goto OUT; } // do not read beyond card memory if(len + offset > card.cardsize) { len = card.cardsize - offset; } for(uint16_t i = 0; i < len; ++i) { int16_t byte = read_byte(offset + i, card.cmdsize); if(byte == -1) { cmd_send(CMD_ACK, 0, 0, 0, 0, 0); goto OUT; } legic_mem[i] = byte; } // OK cmd_send(CMD_ACK, 1, len, 0, legic_mem, len); OUT: switch_off(); StopTicks(); } void LegicRfWriter(uint16_t offset, uint16_t len, uint8_t iv, uint8_t *data) { // configure ARM and FPGA init_reader(false); // uid is not writeable if(offset <= WRITE_LOWERLIMIT) { cmd_send(CMD_ACK, 0, 0, 0, 0, 0); goto OUT; } // establish shared secret and detect card type uint8_t card_type = setup_phase_reader(iv); if(init_card(card_type, &card) != 0) { cmd_send(CMD_ACK, 0, 0, 0, 0, 0); goto OUT; } // do not write beyond card memory if(len + offset > card.cardsize) { len = card.cardsize - offset; } // write in reverse order, only then is DCF (decremental field) writable while(len-- > 0 && !BUTTON_PRESS()) { if(!write_byte(len + offset, data[len], card.addrsize)) { Dbprintf("operation failed | %02X | %02X | %02X", len + offset, len, data[len]); cmd_send(CMD_ACK, 0, 0, 0, 0, 0); goto OUT; } } // OK cmd_send(CMD_ACK, 1, len, 0, legic_mem, len); OUT: switch_off(); StopTicks(); } void LegicRfSimulate(int phase, int frame, int reqresp) { cmd_send(CMD_ACK, 0, 0, 0, 0, 0); //TODO Implement }