//----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Low frequency commands //----------------------------------------------------------------------------- #include "cmdlf.h" bool g_lf_threshold_set = FALSE; static int CmdHelp(const char *Cmd); int usage_lf_cmdread(void) { PrintAndLog("Usage: lf cmdread d z o c [H]"); PrintAndLog("Options:"); PrintAndLog(" h This help"); PrintAndLog(" L Low frequency (125 KHz)"); PrintAndLog(" H High frequency (134 KHz)"); PrintAndLog(" d delay OFF period, (decimal)"); PrintAndLog(" z time period ZERO, (decimal)"); PrintAndLog(" o time period ONE, (decimal)"); PrintAndLog(" c Command bytes (in ones and zeros)"); PrintAndLog(" ************* All periods in microseconds (ms)"); PrintAndLog("Examples:"); PrintAndLog(" lf cmdread d 80 z 100 o 200 c 11000"); PrintAndLog(" lf cmdread d 80 z 100 o 100 c 11000 H"); return 0; } int usage_lf_read(void){ PrintAndLog("Usage: lf read [h] [s]"); PrintAndLog("Options:"); PrintAndLog(" h This help"); PrintAndLog(" s silent run no printout"); PrintAndLog("Use 'lf config' to set parameters."); return 0; } int usage_lf_snoop(void) { PrintAndLog("Snoop low frequence signal. Use 'lf config' to set parameters."); PrintAndLog("Usage: lf snoop [h]"); PrintAndLog("Options:"); PrintAndLog(" h This help"); return 0; } int usage_lf_config(void) { PrintAndLog("Usage: lf config [h] [H|] [b ] [d ] [a 0|1]"); PrintAndLog("Options:"); PrintAndLog(" h This help"); PrintAndLog(" L Low frequency (125 KHz)"); PrintAndLog(" H High frequency (134 KHz)"); PrintAndLog(" q Manually set divisor. 88-> 134KHz, 95-> 125 Hz"); PrintAndLog(" b Sets resolution of bits per sample. Default (max): 8"); PrintAndLog(" d Sets decimation. A value of N saves only 1 in N samples. Default: 1"); PrintAndLog(" a [0|1] Averaging - if set, will average the stored sample value when decimating. Default: 1"); PrintAndLog(" t Sets trigger threshold. 0 means no threshold (range: 0-128)"); PrintAndLog("Examples:"); PrintAndLog(" lf config b 8 L"); PrintAndLog(" Samples at 125KHz, 8bps."); PrintAndLog(" lf config H b 4 d 3"); PrintAndLog(" Samples at 134KHz, averages three samples into one, stored with "); PrintAndLog(" a resolution of 4 bits per sample."); PrintAndLog(" lf read"); PrintAndLog(" Performs a read (active field)"); PrintAndLog(" lf snoop"); PrintAndLog(" Performs a snoop (no active field)"); return 0; } int usage_lf_simfsk(void) { PrintAndLog("Usage: lf simfsk [c ] [i] [H ] [L ] [d ]"); PrintAndLog("Options:"); PrintAndLog(" h This help"); PrintAndLog(" c Manually set clock - can autodetect if using DemodBuffer"); PrintAndLog(" i invert data"); PrintAndLog(" H Manually set the larger Field Clock"); PrintAndLog(" L Manually set the smaller Field Clock"); //PrintAndLog(" s TBD- -to enable a gap between playback repetitions - default: no gap"); PrintAndLog(" d Data to sim as hex - omit to sim from DemodBuffer"); PrintAndLog("\n NOTE: if you set one clock manually set them all manually"); return 0; } int usage_lf_simask(void) { PrintAndLog("Usage: lf simask [c ] [i] [b|m|r] [s] [d ]"); PrintAndLog("Options:"); PrintAndLog(" h This help"); PrintAndLog(" c Manually set clock - can autodetect if using DemodBuffer"); PrintAndLog(" i invert data"); PrintAndLog(" b sim ask/biphase"); PrintAndLog(" m sim ask/manchester - Default"); PrintAndLog(" r sim ask/raw"); PrintAndLog(" s add t55xx Sequence Terminator gap - default: no gaps (only manchester)"); PrintAndLog(" d Data to sim as hex - omit to sim from DemodBuffer"); return 0; } int usage_lf_simpsk(void) { PrintAndLog("Usage: lf simpsk [1|2|3] [c ] [i] [r ] [d ]"); PrintAndLog("Options:"); PrintAndLog(" h This help"); PrintAndLog(" c Manually set clock - can autodetect if using DemodBuffer"); PrintAndLog(" i invert data"); PrintAndLog(" 1 set PSK1 (default)"); PrintAndLog(" 2 set PSK2"); PrintAndLog(" 3 set PSK3"); PrintAndLog(" r 2|4|8 are valid carriers: default = 2"); PrintAndLog(" d Data to sim as hex - omit to sim from DemodBuffer"); return 0; } int usage_lf_find(void){ PrintAndLog("Usage: lf search [h] <0|1> [u]"); PrintAndLog(""); PrintAndLog("Options:"); PrintAndLog(" h This help"); PrintAndLog(" <0|1> Use data from Graphbuffer, if not set, try reading data from tag."); PrintAndLog(" u Search for Unknown tags, if not set, reads only known tags."); PrintAndLog("Examples:"); PrintAndLog(" lf search = try reading data from tag & search for known tags"); PrintAndLog(" lf search 1 = use data from GraphBuffer & search for known tags"); PrintAndLog(" lf search u = try reading data from tag & search for known and unknown tags"); PrintAndLog(" lf search 1 u = use data from GraphBuffer & search for known and unknown tags"); return 0; } /* send a LF command before reading */ int CmdLFCommandRead(const char *Cmd) { bool errors = FALSE; bool useHighFreq = FALSE; uint16_t one = 0, zero = 0; uint8_t cmdp = 0; UsbCommand c = {CMD_MOD_THEN_ACQUIRE_RAW_ADC_SAMPLES_125K, {0,0,0}}; while(param_getchar(Cmd, cmdp) != 0x00) { switch(param_getchar(Cmd, cmdp)) { case 'h': return usage_lf_cmdread(); case 'H': useHighFreq = TRUE; cmdp++; break; case 'L': cmdp++; break; case 'c': param_getstr(Cmd, cmdp+1, (char *)&c.d.asBytes); cmdp+=2; break; case 'd': c.arg[0] = param_get32ex(Cmd, cmdp+1, 0, 10); cmdp+=2; break; case 'z': zero = param_get32ex(Cmd, cmdp+1, 0, 10) & 0xFFFF; cmdp+=2; break; case 'o': one = param_get32ex(Cmd, cmdp+1, 0, 10) & 0xFFFF; cmdp+=2; break; default: PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = 1; break; } if(errors) break; } // No args if (cmdp == 0) errors = TRUE; //Validations if (errors) return usage_lf_cmdread(); // zero and one lengths c.arg[1] = (uint32_t)(zero << 16 | one); // add frequency 125 or 134 c.arg[2] = useHighFreq; clearCommandBuffer(); SendCommand(&c); return 0; } int CmdFlexdemod(const char *Cmd) { #define LONG_WAIT 100 int i, j, start, bit, sum; int phase = 0; for (i = 0; i < GraphTraceLen; ++i) GraphBuffer[i] = (GraphBuffer[i] < 0) ? -1 : 1; for (start = 0; start < GraphTraceLen - LONG_WAIT; start++) { int first = GraphBuffer[start]; for (i = start; i < start + LONG_WAIT; i++) { if (GraphBuffer[i] != first) { break; } } if (i == (start + LONG_WAIT)) break; } if (start == GraphTraceLen - LONG_WAIT) { PrintAndLog("nothing to wait for"); return 0; } GraphBuffer[start] = 2; GraphBuffer[start+1] = -2; uint8_t bits[64] = {0x00}; i = start; for (bit = 0; bit < 64; bit++) { sum = 0; for (int j = 0; j < 16; j++) { sum += GraphBuffer[i++]; } bits[bit] = (sum > 0) ? 1 : 0; PrintAndLog("bit %d sum %d", bit, sum); } for (bit = 0; bit < 64; bit++) { sum = 0; for (j = 0; j < 16; j++) sum += GraphBuffer[i++]; if (sum > 0 && bits[bit] != 1) PrintAndLog("oops1 at %d", bit); if (sum < 0 && bits[bit] != 0) PrintAndLog("oops2 at %d", bit); } // HACK writing back to graphbuffer. GraphTraceLen = 32*64; i = 0; for (bit = 0; bit < 64; bit++) { phase = (bits[bit] == 0) ? 0 : 1; for (j = 0; j < 32; j++) { GraphBuffer[i++] = phase; phase = !phase; } } RepaintGraphWindow(); return 0; } int CmdIndalaDemod(const char *Cmd) { // PSK1, Bitrate 32, // Usage: recover 64bit UID by default, specify "224" as arg to recover a 224bit UID int state = -1; int count = 0; int i, j; // worst case with GraphTraceLen=64000 is < 4096 // under normal conditions it's < 2048 uint8_t rawbits[4096]; int rawbit = 0, worst = 0, worstPos = 0; // PrintAndLog("Expecting a bit less than %d raw bits", GraphTraceLen / 32); // loop through raw signal - since we know it is psk1 rf/32 fc/2 skip every other value (+=2) for (i = 0; i < GraphTraceLen-1; i += 2) { count += 1; if ((GraphBuffer[i] > GraphBuffer[i + 1]) && (state != 1)) { // appears redundant - marshmellow if (state == 0) { for (j = 0; j < count - 8; j += 16) { rawbits[rawbit++] = 0; } if ((abs(count - j)) > worst) { worst = abs(count - j); worstPos = i; } } state = 1; count = 0; } else if ((GraphBuffer[i] < GraphBuffer[i + 1]) && (state != 0)) { //appears redundant if (state == 1) { for (j = 0; j < count - 8; j += 16) { rawbits[rawbit++] = 1; } if ((abs(count - j)) > worst) { worst = abs(count - j); worstPos = i; } } state = 0; count = 0; } } if ( rawbit<1 ) return 0; if (g_debugMode) { PrintAndLog("Recovered %d raw bits, expected: %d", rawbit, GraphTraceLen/32); PrintAndLog("worst metric (0=best..7=worst): %d at pos %d", worst, worstPos); } // Finding the start of a UID int uidlen, long_wait; if (strcmp(Cmd, "224") == 0) { uidlen = 224; long_wait = 30; } else { uidlen = 64; long_wait = 29; } int start; int first = 0; for (start = 0; start <= rawbit - uidlen; start++) { first = rawbits[start]; for (i = start; i < start + long_wait; i++) { if (rawbits[i] != first) { break; } } if (i == (start + long_wait)) { break; } } if (start == rawbit - uidlen + 1) { if (g_debugMode) PrintAndLog("nothing to wait for"); return 0; } // Inverting signal if needed if (first == 1) { for (i = start; i < rawbit; i++) rawbits[i] = !rawbits[i]; } // Dumping UID uint8_t bits[224] = {0x00}; char showbits[225] = {0x00}; int bit; i = start; int times = 0; if (uidlen > rawbit) { PrintAndLog("Warning: not enough raw bits to get a full UID"); for (bit = 0; bit < rawbit; bit++) { bits[bit] = rawbits[i++]; // As we cannot know the parity, let's use "." and "/" showbits[bit] = '.' + bits[bit]; } showbits[bit+1]='\0'; PrintAndLog("Partial UID=%s", showbits); return 0; } else { for (bit = 0; bit < uidlen; bit++) { bits[bit] = rawbits[i++]; showbits[bit] = '0' + bits[bit]; } times = 1; } //convert UID to HEX uint32_t uid1, uid2, uid3, uid4, uid5, uid6, uid7; int idx; uid1 = uid2 = 0; if (uidlen==64){ for( idx=0; idx<64; idx++) { if (showbits[idx] == '0') { uid1 = (uid1<<1) | (uid2>>31); uid2 = (uid2<<1) | 0; } else { uid1 = (uid1<<1) | (uid2>>31); uid2 = (uid2<<1) | 1; } } PrintAndLog("UID=%s (%x%08x)", showbits, uid1, uid2); } else { uid3 = uid4 = uid5 = uid6 = uid7 = 0; for( idx=0; idx<224; idx++) { uid1 = (uid1<<1) | (uid2>>31); uid2 = (uid2<<1) | (uid3>>31); uid3 = (uid3<<1) | (uid4>>31); uid4 = (uid4<<1) | (uid5>>31); uid5 = (uid5<<1) | (uid6>>31); uid6 = (uid6<<1) | (uid7>>31); if (showbits[idx] == '0') uid7 = (uid7<<1) | 0; else uid7 = (uid7<<1) | 1; } PrintAndLog("UID=%s (%x%08x%08x%08x%08x%08x%08x)", showbits, uid1, uid2, uid3, uid4, uid5, uid6, uid7); } // Checking UID against next occurrences int failed = 0; for (; i + uidlen <= rawbit;) { failed = 0; for (bit = 0; bit < uidlen; bit++) { if (bits[bit] != rawbits[i++]) { failed = 1; break; } } if (failed == 1) { break; } times += 1; } if (g_debugMode) PrintAndLog("Occurrences: %d (expected %d)", times, (rawbit - start) / uidlen); // Remodulating for tag cloning // HACK: 2015-01-04 this will have an impact on our new way of seening lf commands (demod) // since this changes graphbuffer data. GraphTraceLen = 32 * uidlen; i = 0; int phase = 0; for (bit = 0; bit < uidlen; bit++) { phase = (bits[bit] == 0) ? 0 : 1; int j; for (j = 0; j < 32; j++) { GraphBuffer[i++] = phase; phase = !phase; } } RepaintGraphWindow(); return 1; } int CmdIndalaClone(const char *Cmd){ UsbCommand c; unsigned int uid1, uid2, uid3, uid4, uid5, uid6, uid7; uid1 = uid2 = uid3 = uid4 = uid5 = uid6 = uid7 = 0; int n = 0, i = 0; if (strchr(Cmd,'l') != 0) { while (sscanf(&Cmd[i++], "%1x", &n ) == 1) { uid1 = (uid1 << 4) | (uid2 >> 28); uid2 = (uid2 << 4) | (uid3 >> 28); uid3 = (uid3 << 4) | (uid4 >> 28); uid4 = (uid4 << 4) | (uid5 >> 28); uid5 = (uid5 << 4) | (uid6 >> 28); uid6 = (uid6 << 4) | (uid7 >> 28); uid7 = (uid7 << 4) | (n & 0xf); } PrintAndLog("Cloning 224bit tag with UID %x%08x%08x%08x%08x%08x%08x", uid1, uid2, uid3, uid4, uid5, uid6, uid7); c.cmd = CMD_INDALA_CLONE_TAG_L; c.d.asDwords[0] = uid1; c.d.asDwords[1] = uid2; c.d.asDwords[2] = uid3; c.d.asDwords[3] = uid4; c.d.asDwords[4] = uid5; c.d.asDwords[5] = uid6; c.d.asDwords[6] = uid7; } else { while (sscanf(&Cmd[i++], "%1x", &n ) == 1) { uid1 = (uid1 << 4) | (uid2 >> 28); uid2 = (uid2 << 4) | (n & 0xf); } PrintAndLog("Cloning 64bit tag with UID %x%08x", uid1, uid2); c.cmd = CMD_INDALA_CLONE_TAG; c.arg[0] = uid1; c.arg[1] = uid2; } clearCommandBuffer(); SendCommand(&c); return 0; } int CmdLFSetConfig(const char *Cmd) { uint8_t divisor = 0;//Frequency divisor uint8_t bps = 0; // Bits per sample uint8_t decimation = 0; //How many to keep bool averaging = 1; // Defaults to true bool errors = FALSE; int trigger_threshold = -1;//Means no change uint8_t unsigned_trigg = 0; uint8_t cmdp = 0; while(param_getchar(Cmd, cmdp) != 0x00) { switch(param_getchar(Cmd, cmdp)) { case 'h': return usage_lf_config(); case 'H': divisor = 88; cmdp++; break; case 'L': divisor = 95; cmdp++; break; case 'q': errors |= param_getdec(Cmd, cmdp+1, &divisor); cmdp+=2; break; case 't': errors |= param_getdec(Cmd, cmdp+1, &unsigned_trigg); cmdp+=2; if(!errors) { trigger_threshold = unsigned_trigg; g_lf_threshold_set = (trigger_threshold > 0); } break; case 'b': errors |= param_getdec(Cmd, cmdp+1, &bps); cmdp+=2; break; case 'd': errors |= param_getdec(Cmd, cmdp+1, &decimation); cmdp+=2; break; case 'a': averaging = param_getchar(Cmd, cmdp+1) == '1'; cmdp+=2; break; default: PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = 1; break; } if(errors) break; } // No args if (cmdp == 0) errors = 1; //Validations if (errors) return usage_lf_config(); //Bps is limited to 8 if (bps >> 4) bps = 8; sample_config config = { decimation, bps, averaging, divisor, trigger_threshold }; UsbCommand c = {CMD_SET_LF_SAMPLING_CONFIG, {0,0,0} }; memcpy(c.d.asBytes, &config, sizeof(sample_config)); clearCommandBuffer(); SendCommand(&c); return 0; } int CmdLFRead(const char *Cmd) { if (offline) return 0; bool errors = FALSE; bool arg1 = FALSE; uint8_t cmdp = 0; while(param_getchar(Cmd, cmdp) != 0x00) { switch(param_getchar(Cmd, cmdp)) { case 'h': case 'H': return usage_lf_read(); case 's': case 'S': arg1 = TRUE; cmdp++; break; default: PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = TRUE; break; } if(errors) break; } //Validations if (errors) return usage_lf_read(); UsbCommand c = {CMD_ACQUIRE_RAW_ADC_SAMPLES_125K, {arg1,0,0}}; clearCommandBuffer(); SendCommand(&c); if ( g_lf_threshold_set ) { WaitForResponse(CMD_ACK,NULL); } else { if ( !WaitForResponseTimeout(CMD_ACK, NULL ,2500) ) { PrintAndLog("command execution time out"); return 1; } } return 0; } int CmdLFSnoop(const char *Cmd) { uint8_t cmdp = param_getchar(Cmd, 0); if(cmdp == 'h' || cmdp == 'H') return usage_lf_snoop(); UsbCommand c = {CMD_LF_SNOOP_RAW_ADC_SAMPLES,{0,0,0}}; clearCommandBuffer(); SendCommand(&c); WaitForResponse(CMD_ACK,NULL); getSamples("", false); return 0; } static void ChkBitstream(const char *str) { // convert to bitstream if necessary for (int i = 0; i < (int)(GraphTraceLen / 2); i++){ if (GraphBuffer[i] > 1 || GraphBuffer[i] < 0) { CmdGetBitStream(""); break; } } } //Attempt to simulate any wave in buffer (one bit per output sample) // converts GraphBuffer to bitstream (based on zero crossings) if needed. int CmdLFSim(const char *Cmd) { int i,j; static int gap; sscanf(Cmd, "%i", &gap); // convert to bitstream if necessary ChkBitstream(Cmd); if (g_debugMode) printf("DEBUG: Sending [%d bytes]\n", GraphTraceLen); //can send only 512 bits at a time (1 byte sent per bit...) for (i = 0; i < GraphTraceLen; i += USB_CMD_DATA_SIZE) { UsbCommand c = {CMD_DOWNLOADED_SIM_SAMPLES_125K, {i, 0, 0}}; for (j = 0; j < USB_CMD_DATA_SIZE; j++) c.d.asBytes[j] = GraphBuffer[i+j]; clearCommandBuffer(); SendCommand(&c); WaitForResponse(CMD_ACK, NULL); printf("."); } PrintAndLog("Simulating"); UsbCommand c = {CMD_SIMULATE_TAG_125K, {GraphTraceLen, gap, 0}}; clearCommandBuffer(); SendCommand(&c); return 0; } // by marshmellow - sim fsk data given clock, fcHigh, fcLow, invert // - allow pull data from DemodBuffer int CmdLFfskSim(const char *Cmd) { //might be able to autodetect FCs and clock from Graphbuffer if using demod buffer // otherwise will need FChigh, FClow, Clock, and bitstream uint8_t fcHigh = 0, fcLow = 0, clk = 0; uint8_t invert = 0; bool errors = FALSE; char hexData[32] = {0x00}; // store entered hex data uint8_t data[255] = {0x00}; int dataLen = 0; uint8_t cmdp = 0; while(param_getchar(Cmd, cmdp) != 0x00) { switch(param_getchar(Cmd, cmdp)){ case 'h': return usage_lf_simfsk(); case 'i': invert = 1; cmdp++; break; case 'c': errors |= param_getdec(Cmd, cmdp+1, &clk); cmdp += 2; break; case 'H': errors |= param_getdec(Cmd, cmdp+1, &fcHigh); cmdp += 2; break; case 'L': errors |= param_getdec(Cmd, cmdp+1, &fcLow); cmdp += 2; break; //case 's': // separator = 1; // cmdp++; // break; case 'd': dataLen = param_getstr(Cmd, cmdp+1, hexData); if (dataLen == 0) errors = TRUE; else dataLen = hextobinarray((char *)data, hexData); if (dataLen == 0) errors = TRUE; if (errors) PrintAndLog ("Error getting hex data"); cmdp+=2; break; default: PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = TRUE; break; } if(errors) break; } // No args if(cmdp == 0 && DemodBufferLen == 0) errors = TRUE; //Validations if(errors) return usage_lf_simfsk(); if (dataLen == 0){ //using DemodBuffer if (clk == 0 || fcHigh == 0 || fcLow == 0){ //manual settings must set them all uint8_t ans = fskClocks(&fcHigh, &fcLow, &clk, 0); if (ans==0){ if (!fcHigh) fcHigh = 10; if (!fcLow) fcLow = 8; if (!clk) clk = 50; } } } else { setDemodBuf(data, dataLen, 0); } //default if not found if (clk == 0) clk = 50; if (fcHigh == 0) fcHigh = 10; if (fcLow == 0) fcLow = 8; uint16_t arg1, arg2; arg1 = fcHigh << 8 | fcLow; arg2 = invert << 8 | clk; size_t size = DemodBufferLen; if (size > USB_CMD_DATA_SIZE) { PrintAndLog("DemodBuffer too long for current implementation - length: %d - max: %d", size, USB_CMD_DATA_SIZE); size = USB_CMD_DATA_SIZE; } UsbCommand c = {CMD_FSK_SIM_TAG, {arg1, arg2, size}}; memcpy(c.d.asBytes, DemodBuffer, size); clearCommandBuffer(); SendCommand(&c); return 0; } // by marshmellow - sim ask data given clock, invert, manchester or raw, separator // - allow pull data from DemodBuffer int CmdLFaskSim(const char *Cmd) { // autodetect clock from Graphbuffer if using demod buffer // needs clock, invert, manchester/raw as m or r, separator as s, and bitstream uint8_t encoding = 1, separator = 0, clk = 0, invert = 0; bool errors = FALSE; char hexData[32] = {0x00}; uint8_t data[255]= {0x00}; // store entered hex data int dataLen = 0; uint8_t cmdp = 0; while(param_getchar(Cmd, cmdp) != 0x00) { switch(param_getchar(Cmd, cmdp)) { case 'H': case 'h': return usage_lf_simask(); case 'i': invert = 1; cmdp++; break; case 'c': errors |= param_getdec(Cmd, cmdp+1, &clk); cmdp += 2; break; case 'b': encoding = 2; //biphase cmdp++; break; case 'm': encoding = 1; //manchester cmdp++; break; case 'r': encoding = 0; //raw cmdp++; break; case 's': separator = 1; cmdp++; break; case 'd': dataLen = param_getstr(Cmd, cmdp+1, hexData); if (dataLen == 0) errors = TRUE; else dataLen = hextobinarray((char *)data, hexData); if (dataLen == 0) errors = TRUE; if (errors) PrintAndLog ("Error getting hex data, datalen: %d", dataLen); cmdp += 2; break; default: PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = TRUE; break; } if(errors) break; } // No args if(cmdp == 0 && DemodBufferLen == 0) errors = TRUE; //Validations if(errors) return usage_lf_simask(); if (dataLen == 0){ //using DemodBuffer if (clk == 0) clk = GetAskClock("0", false, false); } else { setDemodBuf(data, dataLen, 0); } if (clk == 0) clk = 64; if (encoding == 0) clk >>= 2; //askraw needs to double the clock speed size_t size = DemodBufferLen; if (size > USB_CMD_DATA_SIZE) { PrintAndLog("DemodBuffer too long for current implementation - length: %d - max: %d", size, USB_CMD_DATA_SIZE); size = USB_CMD_DATA_SIZE; } PrintAndLog("preparing to sim ask data: %d bits", size); uint16_t arg1, arg2; arg1 = clk << 8 | encoding; arg2 = invert << 8 | separator; UsbCommand c = {CMD_ASK_SIM_TAG, {arg1, arg2, size}}; memcpy(c.d.asBytes, DemodBuffer, size); clearCommandBuffer(); SendCommand(&c); return 0; } // by marshmellow - sim psk data given carrier, clock, invert // - allow pull data from DemodBuffer or parameters int CmdLFpskSim(const char *Cmd) { //might be able to autodetect FC and clock from Graphbuffer if using demod buffer //will need carrier, Clock, and bitstream uint8_t carrier=0, clk=0; uint8_t invert=0; bool errors = FALSE; char hexData[32] = {0x00}; // store entered hex data uint8_t data[255] = {0x00}; int dataLen = 0; uint8_t cmdp = 0; uint8_t pskType = 1; while(param_getchar(Cmd, cmdp) != 0x00) { switch(param_getchar(Cmd, cmdp)) { case 'h': return usage_lf_simpsk(); case 'i': invert = 1; cmdp++; break; case 'c': errors |= param_getdec(Cmd,cmdp+1,&clk); cmdp +=2; break; case 'r': errors |= param_getdec(Cmd,cmdp+1,&carrier); cmdp += 2; break; case '1': pskType = 1; cmdp++; break; case '2': pskType = 2; cmdp++; break; case '3': pskType = 3; cmdp++; break; case 'd': dataLen = param_getstr(Cmd, cmdp+1, hexData); if (dataLen == 0) errors = TRUE; else dataLen = hextobinarray((char *)data, hexData); if (dataLen == 0) errors = TRUE; if (errors) PrintAndLog ("Error getting hex data"); cmdp+=2; break; default: PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = TRUE; break; } if (errors) break; } // No args if (cmdp == 0 && DemodBufferLen == 0) errors = TRUE; //Validations if (errors) return usage_lf_simpsk(); if (dataLen == 0){ //using DemodBuffer PrintAndLog("Getting Clocks"); if (clk==0) clk = GetPskClock("", FALSE, FALSE); PrintAndLog("clk: %d",clk); if (!carrier) carrier = GetPskCarrier("", FALSE, FALSE); PrintAndLog("carrier: %d", carrier); } else { setDemodBuf(data, dataLen, 0); } if (clk <= 0) clk = 32; if (carrier == 0) carrier = 2; if (pskType != 1){ if (pskType == 2){ //need to convert psk2 to psk1 data before sim psk2TOpsk1(DemodBuffer, DemodBufferLen); } else { PrintAndLog("Sorry, PSK3 not yet available"); } } uint16_t arg1, arg2; arg1 = clk << 8 | carrier; arg2 = invert; size_t size = DemodBufferLen; if (size > USB_CMD_DATA_SIZE) { PrintAndLog("DemodBuffer too long for current implementation - length: %d - max: %d", size, USB_CMD_DATA_SIZE); size = USB_CMD_DATA_SIZE; } UsbCommand c = {CMD_PSK_SIM_TAG, {arg1, arg2, size}}; PrintAndLog("DEBUG: Sending DemodBuffer Length: %d", size); memcpy(c.d.asBytes, DemodBuffer, size); clearCommandBuffer(); SendCommand(&c); return 0; } int CmdLFSimBidir(const char *Cmd) { // Set ADC to twice the carrier for a slight supersampling // HACK: not implemented in ARMSRC. PrintAndLog("Not implemented yet."); UsbCommand c = {CMD_LF_SIMULATE_BIDIR, {47, 384, 0}}; SendCommand(&c); return 0; } int CmdVchDemod(const char *Cmd) { // Is this the entire sync pattern, or does this also include some // data bits that happen to be the same everywhere? That would be // lovely to know. static const int SyncPattern[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, }; // So first, we correlate for the sync pattern, and mark that. int bestCorrel = 0, bestPos = 0; int i, j, sum = 0; // It does us no good to find the sync pattern, with fewer than 2048 samples after it. for (i = 0; i < (GraphTraceLen - 2048); i++) { for (j = 0; j < ARRAYLEN(SyncPattern); j++) { sum += GraphBuffer[i+j] * SyncPattern[j]; } if (sum > bestCorrel) { bestCorrel = sum; bestPos = i; } } PrintAndLog("best sync at %d [metric %d]", bestPos, bestCorrel); char bits[257]; bits[256] = '\0'; int worst = INT_MAX, worstPos = 0; for (i = 0; i < 2048; i += 8) { sum = 0; for (j = 0; j < 8; j++) sum += GraphBuffer[bestPos+i+j]; if (sum < 0) bits[i/8] = '.'; else bits[i/8] = '1'; if(abs(sum) < worst) { worst = abs(sum); worstPos = i; } } PrintAndLog("bits:"); PrintAndLog("%s", bits); PrintAndLog("worst metric: %d at pos %d", worst, worstPos); // clone if (strcmp(Cmd, "clone")==0) { GraphTraceLen = 0; char *s; for(s = bits; *s; s++) { for(j = 0; j < 16; j++) { GraphBuffer[GraphTraceLen++] = (*s == '1') ? 1 : 0; } } RepaintGraphWindow(); } return 0; } //by marshmellow int CheckChipset(bool getDeviceData) { if (!getDeviceData) return 0; uint32_t word = 0; save_restoreGB(1); //check for em4x05/em4x69 chips first if (EM4x05IsBlock0(&word)) { save_restoreGB(0); PrintAndLog("\nValid EM4x05/EM4x69 Chipset found\nTry `lf em 4x05` commands\n"); return 1; } //TODO check for t55xx chip... // if ( t55xxIsBlock0(() { // save_restoreGB(0); // PrintAndLog("\nValid T55xx Chipset found\nTry `lf t55xx` commands\n"); // return 1; // } save_restoreGB(0); return 0; } //by marshmellow int CmdLFfind(const char *Cmd) { int ans = 0; size_t minLength = 1000; char cmdp = param_getchar(Cmd, 0); char testRaw = param_getchar(Cmd, 1); if (strlen(Cmd) > 3 || cmdp == 'h' || cmdp == 'H') return usage_lf_find(); bool getDeviceData = (!offline && (cmdp != '1') ); if (getDeviceData) { CmdLFRead("s"); getSamples("30000", false); } else if (GraphTraceLen < minLength) { PrintAndLog("Data in Graphbuffer was too small."); return 0; } if (cmdp == 'u' || cmdp == 'U') testRaw = 'u'; PrintAndLog("NOTE: some demods output possible binary\n if it finds something that looks like a tag"); PrintAndLog("False Positives ARE possible\n"); PrintAndLog("\nChecking for known tags:\n"); size_t testLen = minLength; // only run these tests if device is online if (getDeviceData) { // only run if graphbuffer is just noise as it should be for hitag/cotag if (graphJustNoise(GraphBuffer, testLen)) { if (CheckChipset(getDeviceData) ) return 1; ans=CmdLFHitagReader("26"); if (ans==0) return 1; ans=CmdCOTAGRead(""); if (ans>0){ PrintAndLog("\nValid COTAG ID Found!"); return 1; } PrintAndLog("Signal looks just like noise. Quitting."); return 0; } } // identify chipset CheckChipset(getDeviceData); ans=CmdFSKdemodIO(""); if (ans>0) { PrintAndLog("\nValid IO Prox ID Found!"); return 1; } ans=CmdFSKdemodPyramid(""); if (ans>0) { PrintAndLog("\nValid Pyramid ID Found!"); return 1; } ans=CmdFSKdemodParadox(""); if (ans>0) { PrintAndLog("\nValid Paradox ID Found!"); return 1; } ans=CmdFSKdemodAWID(""); if (ans>0) { PrintAndLog("\nValid AWID ID Found!"); return 1; } ans=CmdFSKdemodHID(""); if (ans>0) { PrintAndLog("\nValid HID Prox ID Found!"); return 1; } ans=CmdAskEM410xDemod(""); if (ans>0) { PrintAndLog("\nValid EM410x ID Found!"); return 1; } ans=CmdG_Prox_II_Demod(""); if (ans>0) { PrintAndLog("\nValid Guardall G-Prox II ID Found!"); return 1; } ans=CmdFDXBdemodBI(""); if (ans>0) { PrintAndLog("\nValid FDX-B ID Found!"); return 1; } ans=EM4x50Read("", false); if (ans>0) { PrintAndLog("\nValid EM4x50 ID Found!"); return 1; } ans=CmdVikingDemod(""); if (ans>0) { PrintAndLog("\nValid Viking ID Found!"); return 1; } ans=CmdIndalaDecode(""); if (ans>0) { PrintAndLog("\nValid Indala ID Found!"); return 1; } ans=CmdPSKNexWatch(""); if (ans>0) { PrintAndLog("\nValid NexWatch ID Found!"); return 1; } ans=CmdPSKIdteck(""); if (ans>0) { PrintAndLog("\nValid Idteck ID Found!"); return 1; } ans=CmdJablotronDemod(""); if (ans>0) { PrintAndLog("\nValid Jablotron ID Found!"); return 1; } ans=CmdLFNedapDemod(""); if (ans>0) { PrintAndLog("\nValid NEDAP ID Found!"); return 1; } ans=CmdVisa2kDemod(""); if (ans>0) { PrintAndLog("\nValid Visa2000 ID Found!"); return 1; } ans=CmdNoralsyDemod(""); if (ans>0) { PrintAndLog("\nValid Noralsy ID Found!"); return 1; } ans=CmdPrescoDemod(""); if (ans>0) { PrintAndLog("\nValid Presco ID Found!"); return 1; } // TIdemod? PrintAndLog("\nNo Known Tags Found!\n"); if (testRaw=='u' || testRaw=='U'){ //test unknown tag formats (raw mode) PrintAndLog("\nChecking for Unknown tags:\n"); ans=AutoCorrelate(4000, FALSE, FALSE); if (ans > 0) { PrintAndLog("Possible Auto Correlation of %d repeating samples",ans); if ( ans % 8 == 0) { int bytes = (ans / 8); PrintAndLog("Possible %d bytes", bytes); int blocks = 0; if ( bytes % 2 == 0) { blocks = (bytes / 2); PrintAndLog("Possible 2 blocks, width %d", blocks); } if ( bytes % 4 == 0) { blocks = (bytes / 4); PrintAndLog("Possible 4 blocks, width %d", blocks); } if ( bytes % 8 == 0) { blocks = (bytes / 8); PrintAndLog("Possible 8 blocks, width %d", blocks); } if ( bytes % 16 == 0) { blocks = (bytes / 16); PrintAndLog("Possible 16 blocks, width %d", blocks); } } } ans=GetFskClock("",FALSE,FALSE); if (ans != 0){ //fsk ans=FSKrawDemod("",TRUE); if (ans>0) { PrintAndLog("\nUnknown FSK Modulated Tag Found!"); return 1; } } bool st = TRUE; ans=ASKDemod_ext("0 0 0",TRUE,FALSE,1,&st); if (ans>0) { PrintAndLog("\nUnknown ASK Modulated and Manchester encoded Tag Found!"); PrintAndLog("\nif it does not look right it could instead be ASK/Biphase - try 'data rawdemod ab'"); return 1; } ans=CmdPSK1rawDemod(""); if (ans>0) { PrintAndLog("Possible unknown PSK1 Modulated Tag Found above!\n\nCould also be PSK2 - try 'data rawdemod p2'"); PrintAndLog("\nCould also be PSK3 - [currently not supported]"); PrintAndLog("\nCould also be NRZ - try 'data nrzrawdemod"); return 1; } PrintAndLog("\nNo Data Found!\n"); } return 0; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"animal", CmdLFFdx, 1, "{ Animal RFIDs... }"}, {"awid", CmdLFAWID, 1, "{ AWID RFIDs... }"}, {"cotag", CmdLFCOTAG, 1, "{ COTAG RFIDs... }"}, {"em", CmdLFEM4X, 1, "{ EM4X RFIDs... }"}, {"guard", CmdLFGuard, 1, "{ Guardall RFIDs... }"}, {"hid", CmdLFHID, 1, "{ HID RFIDs... }"}, {"hitag", CmdLFHitag, 1, "{ HITAG RFIDs... }"}, // {"indala", CmdLFIndala, 1, "{ Indala RFIDs... }"}, {"io", CmdLFIO, 1, "{ IOPROX RFIDs... }"}, {"jablotron", CmdLFJablotron, 1, "{ Jablotron RFIDs... }"}, {"nedap", CmdLFNedap, 1, "{ Nedap RFIDs... }"}, {"noralsy", CmdLFNoralsy, 1, "{ Noralsy RFIDs... }"}, {"pcf7931", CmdLFPCF7931, 1, "{ PCF7931 RFIDs... }"}, {"presco", CmdLFPresco, 1, "{ Presco RFIDs... }"}, {"pyramid", CmdLFPyramid, 1, "{ Farpointe/Pyramid RFIDs... }"}, {"ti", CmdLFTI, 1, "{ TI RFIDs... }"}, {"t55xx", CmdLFT55XX, 1, "{ T55xx RFIDs... }"}, {"viking", CmdLFViking, 1, "{ Viking RFIDs... }"}, {"visa2000", CmdLFVisa2k, 1, "{ Visa2000 RFIDs... }"}, {"config", CmdLFSetConfig, 0, "Set config for LF sampling, bit/sample, decimation, frequency"}, {"cmdread", CmdLFCommandRead, 0, " <'0' period> <'1' period> ['h' 134] \n\t\t-- Modulate LF reader field to send command before read (all periods in microseconds)"}, {"flexdemod", CmdFlexdemod, 1, "Demodulate samples for FlexPass"}, {"indalademod", CmdIndalaDemod, 1, "['224'] -- Demodulate samples for Indala 64 bit UID (option '224' for 224 bit)"}, {"indalaclone", CmdIndalaClone, 0, " ['l']-- Clone Indala to T55x7 (tag must be in antenna)(UID in HEX)(option 'l' for 224 UID"}, {"read", CmdLFRead, 0, "['s' silent] Read 125/134 kHz LF ID-only tag. Do 'lf read h' for help"}, {"search", CmdLFfind, 1, "[offline] ['u'] Read and Search for valid known tag (in offline mode it you can load first then search) \n\t\t-- 'u' to search for unknown tags"}, {"sim", CmdLFSim, 0, "[GAP] -- Simulate LF tag from buffer with optional GAP (in microseconds)"}, {"simask", CmdLFaskSim, 0, "[clock] [invert <1|0>] [biphase/manchester/raw <'b'|'m'|'r'>] [msg separator 's'] [d ] \n\t\t-- Simulate LF ASK tag from demodbuffer or input"}, {"simfsk", CmdLFfskSim, 0, "[c ] [i] [H ] [L ] [d ] \n\t\t-- Simulate LF FSK tag from demodbuffer or input"}, {"simpsk", CmdLFpskSim, 0, "[1|2|3] [c ] [i] [r ] [d ] \n\t\t-- Simulate LF PSK tag from demodbuffer or input"}, {"simbidir", CmdLFSimBidir, 0, "Simulate LF tag (with bidirectional data transmission between reader and tag)"}, {"snoop", CmdLFSnoop, 0, "Snoop LF"}, {"vchdemod", CmdVchDemod, 1, "['clone'] -- Demodulate samples for VeriChip"}, {NULL, NULL, 0, NULL} }; int CmdLF(const char *Cmd) { clearCommandBuffer(); CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }