//----------------------------------------------------------------------------- // Copyright (C) 2018 Merlok // Copyright (C) 2018 drHatson // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // crypto commands //----------------------------------------------------------------------------- #include "crypto/libpcrypto.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include // NIST Special Publication 800-38A — Recommendation for block cipher modes of operation: methods and techniques, 2001. int aes_encode(uint8_t *iv, uint8_t *key, uint8_t *input, uint8_t *output, int length) { uint8_t iiv[16] = {0}; if (iv) memcpy(iiv, iv, 16); mbedtls_aes_context aes; mbedtls_aes_init(&aes); if (mbedtls_aes_setkey_enc(&aes, key, 128)) return 1; if (mbedtls_aes_crypt_cbc(&aes, MBEDTLS_AES_ENCRYPT, length, iiv, input, output)) return 2; mbedtls_aes_free(&aes); return 0; } int aes_decode(uint8_t *iv, uint8_t *key, uint8_t *input, uint8_t *output, int length) { uint8_t iiv[16] = {0}; if (iv) memcpy(iiv, iv, 16); mbedtls_aes_context aes; mbedtls_aes_init(&aes); if (mbedtls_aes_setkey_dec(&aes, key, 128)) return 1; if (mbedtls_aes_crypt_cbc(&aes, MBEDTLS_AES_DECRYPT, length, iiv, input, output)) return 2; mbedtls_aes_free(&aes); return 0; } // NIST Special Publication 800-38B — Recommendation for block cipher modes of operation: The CMAC mode for authentication. // https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Standards-and-Guidelines/documents/examples/AES_CMAC.pdf int aes_cmac(uint8_t *iv, uint8_t *key, uint8_t *input, uint8_t *mac, int length) { memset(mac, 0x00, 16); // NIST 800-38B return mbedtls_aes_cmac_prf_128(key, MBEDTLS_AES_BLOCK_SIZE, input, length, mac); } int aes_cmac8(uint8_t *iv, uint8_t *key, uint8_t *input, uint8_t *mac, int length) { uint8_t cmac[16] = {0}; memset(mac, 0x00, 8); int res = aes_cmac(iv, key, input, cmac, length); if (res) return res; for (int i = 0; i < 8; i++) mac[i] = cmac[i * 2 + 1]; return 0; } static uint8_t fixed_rand_value[250] = {0}; static int fixed_rand(void *rng_state, unsigned char *output, size_t len) { if (len <= 250) { memcpy(output, fixed_rand_value, len); } else { memset(output, 0x00, len); } return 0; } int sha256hash(uint8_t *input, int length, uint8_t *hash) { if (!hash || !input) return 1; mbedtls_sha256_context sctx; mbedtls_sha256_init(&sctx); mbedtls_sha256_starts(&sctx, 0); // SHA-256, not 224 mbedtls_sha256_update(&sctx, input, length); mbedtls_sha256_finish(&sctx, hash); mbedtls_sha256_free(&sctx); return 0; } int ecdsa_init_str(mbedtls_ecdsa_context *ctx, char *key_d, char *key_x, char *key_y) { if (!ctx) return 1; int res; mbedtls_ecdsa_init(ctx); res = mbedtls_ecp_group_load(&ctx->grp, MBEDTLS_ECP_DP_SECP256R1); // secp256r1 if (res) return res; if (key_d) { res = mbedtls_mpi_read_string(&ctx->d, 16, key_d); if (res) return res; } if (key_x && key_y) { res = mbedtls_ecp_point_read_string(&ctx->Q, 16, key_x, key_y); if (res) return res; } return 0; } int ecdsa_init(mbedtls_ecdsa_context *ctx, uint8_t *key_d, uint8_t *key_xy) { if (!ctx) return 1; int res; mbedtls_ecdsa_init(ctx); res = mbedtls_ecp_group_load(&ctx->grp, MBEDTLS_ECP_DP_SECP256R1); // secp256r1 if (res) return res; if (key_d) { res = mbedtls_mpi_read_binary(&ctx->d, key_d, 32); if (res) return res; } if (key_xy) { res = mbedtls_ecp_point_read_binary(&ctx->grp, &ctx->Q, key_xy, 32 * 2 + 1); if (res) return res; } return 0; } int ecdsa_key_create(uint8_t *key_d, uint8_t *key_xy) { int res; mbedtls_ecdsa_context ctx; ecdsa_init(&ctx, NULL, NULL); mbedtls_entropy_context entropy; mbedtls_ctr_drbg_context ctr_drbg; const char *pers = "ecdsaproxmark"; mbedtls_entropy_init(&entropy); mbedtls_ctr_drbg_init(&ctr_drbg); res = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy, (const unsigned char *)pers, strlen(pers)); if (res) goto exit; res = mbedtls_ecdsa_genkey(&ctx, MBEDTLS_ECP_DP_SECP256R1, mbedtls_ctr_drbg_random, &ctr_drbg); if (res) goto exit; res = mbedtls_mpi_write_binary(&ctx.d, key_d, 32); if (res) goto exit; size_t keylen = 0; uint8_t public_key[200] = {0}; res = mbedtls_ecp_point_write_binary(&ctx.grp, &ctx.Q, MBEDTLS_ECP_PF_UNCOMPRESSED, &keylen, public_key, sizeof(public_key)); if (res) goto exit; if (keylen != 65) { // 0x04 res = 1; goto exit; } memcpy(key_xy, public_key, 65); exit: mbedtls_entropy_free(&entropy); mbedtls_ctr_drbg_free(&ctr_drbg); mbedtls_ecdsa_free(&ctx); return res; } char *ecdsa_get_error(int ret) { static char retstr[300]; memset(retstr, 0x00, sizeof(retstr)); mbedtls_strerror(ret, retstr, sizeof(retstr)); return retstr; } int ecdsa_public_key_from_pk(mbedtls_pk_context *pk, uint8_t *key, size_t keylen) { int res = 0; size_t realkeylen = 0; if (keylen < 65) return 1; mbedtls_ecdsa_context ctx; mbedtls_ecdsa_init(&ctx); res = mbedtls_ecp_group_load(&ctx.grp, MBEDTLS_ECP_DP_SECP256R1); // secp256r1 if (res) goto exit; res = mbedtls_ecdsa_from_keypair(&ctx, mbedtls_pk_ec(*pk)); if (res) goto exit; res = mbedtls_ecp_point_write_binary(&ctx.grp, &ctx.Q, MBEDTLS_ECP_PF_UNCOMPRESSED, &realkeylen, key, keylen); if (realkeylen != 65) res = 2; exit: mbedtls_ecdsa_free(&ctx); return res; } int ecdsa_signature_create(uint8_t *key_d, uint8_t *key_xy, uint8_t *input, int length, uint8_t *signature, size_t *signaturelen) { int res; *signaturelen = 0; uint8_t shahash[32] = {0}; res = sha256hash(input, length, shahash); if (res) return res; mbedtls_entropy_context entropy; mbedtls_ctr_drbg_context ctr_drbg; const char *pers = "ecdsaproxmark"; mbedtls_entropy_init(&entropy); mbedtls_ctr_drbg_init(&ctr_drbg); res = mbedtls_ctr_drbg_seed(&ctr_drbg, mbedtls_entropy_func, &entropy, (const unsigned char *)pers, strlen(pers)); if (res) goto exit; mbedtls_ecdsa_context ctx; ecdsa_init(&ctx, key_d, key_xy); res = mbedtls_ecdsa_write_signature(&ctx, MBEDTLS_MD_SHA256, shahash, sizeof(shahash), signature, signaturelen, mbedtls_ctr_drbg_random, &ctr_drbg); exit: mbedtls_ctr_drbg_free(&ctr_drbg); mbedtls_ecdsa_free(&ctx); return res; } int ecdsa_signature_create_test(char *key_d, char *key_x, char *key_y, char *random, uint8_t *input, int length, uint8_t *signature, size_t *signaturelen) { int res; *signaturelen = 0; uint8_t shahash[32] = {0}; res = sha256hash(input, length, shahash); if (res) return res; int rndlen = 0; param_gethex_to_eol(random, 0, fixed_rand_value, sizeof(fixed_rand_value), &rndlen); mbedtls_ecdsa_context ctx; ecdsa_init_str(&ctx, key_d, key_x, key_y); res = mbedtls_ecdsa_write_signature(&ctx, MBEDTLS_MD_SHA256, shahash, sizeof(shahash), signature, signaturelen, fixed_rand, NULL); mbedtls_ecdsa_free(&ctx); return res; } int ecdsa_signature_verify_keystr(char *key_x, char *key_y, uint8_t *input, int length, uint8_t *signature, size_t signaturelen) { int res; uint8_t shahash[32] = {0}; res = sha256hash(input, length, shahash); if (res) return res; mbedtls_ecdsa_context ctx; ecdsa_init_str(&ctx, NULL, key_x, key_y); res = mbedtls_ecdsa_read_signature(&ctx, shahash, sizeof(shahash), signature, signaturelen); mbedtls_ecdsa_free(&ctx); return res; } int ecdsa_signature_verify(uint8_t *key_xy, uint8_t *input, int length, uint8_t *signature, size_t signaturelen) { int res; uint8_t shahash[32] = {0}; res = sha256hash(input, length, shahash); if (res) return res; mbedtls_ecdsa_context ctx; ecdsa_init(&ctx, NULL, key_xy); res = mbedtls_ecdsa_read_signature(&ctx, shahash, sizeof(shahash), signature, signaturelen); mbedtls_ecdsa_free(&ctx); return res; } #define T_PRIVATE_KEY "C477F9F65C22CCE20657FAA5B2D1D8122336F851A508A1ED04E479C34985BF96" #define T_Q_X "B7E08AFDFE94BAD3F1DC8C734798BA1C62B3A0AD1E9EA2A38201CD0889BC7A19" #define T_Q_Y "3603F747959DBF7A4BB226E41928729063ADC7AE43529E61B563BBC606CC5E09" #define T_K "7A1A7E52797FC8CAAA435D2A4DACE39158504BF204FBE19F14DBB427FAEE50AE" #define T_R "2B42F576D07F4165FF65D1F3B1500F81E44C316F1F0B3EF57325B69ACA46104F" #define T_S "DC42C2122D6392CD3E3A993A89502A8198C1886FE69D262C4B329BDB6B63FAF1" int ecdsa_nist_test(bool verbose) { int res; uint8_t input[] = "Example of ECDSA with P-256"; int length = strlen((char *)input); uint8_t signature[300] = {0}; size_t siglen = 0; // NIST ecdsa test if (verbose) printf(" ECDSA NIST test: "); // make signature res = ecdsa_signature_create_test(T_PRIVATE_KEY, T_Q_X, T_Q_Y, T_K, input, length, signature, &siglen); // printf("res: %x signature[%x]: %s\n", (res<0)?-res:res, siglen, sprint_hex(signature, siglen)); if (res) goto exit; // check vectors uint8_t rval[300] = {0}; uint8_t sval[300] = {0}; res = ecdsa_asn1_get_signature(signature, siglen, rval, sval); if (res) goto exit; int slen = 0; uint8_t rval_s[33] = {0}; param_gethex_to_eol(T_R, 0, rval_s, sizeof(rval_s), &slen); uint8_t sval_s[33] = {0}; param_gethex_to_eol(T_S, 0, sval_s, sizeof(sval_s), &slen); if (strncmp((char *)rval, (char *)rval_s, 32) || strncmp((char *)sval, (char *)sval_s, 32)) { printf("R or S check error\n"); res = 100; goto exit; } // verify signature res = ecdsa_signature_verify_keystr(T_Q_X, T_Q_Y, input, length, signature, siglen); if (res) goto exit; // verify wrong signature input[0] ^= 0xFF; res = ecdsa_signature_verify_keystr(T_Q_X, T_Q_Y, input, length, signature, siglen); if (!res) { res = 1; goto exit; } if (verbose) printf("passed\n"); // random ecdsa test if (verbose) printf(" ECDSA binary signature create/check test: "); uint8_t key_d[32] = {0}; uint8_t key_xy[32 * 2 + 2] = {0}; memset(signature, 0x00, sizeof(signature)); siglen = 0; res = ecdsa_key_create(key_d, key_xy); if (res) goto exit; res = ecdsa_signature_create(key_d, key_xy, input, length, signature, &siglen); if (res) goto exit; res = ecdsa_signature_verify(key_xy, input, length, signature, siglen); if (res) goto exit; input[0] ^= 0xFF; res = ecdsa_signature_verify(key_xy, input, length, signature, siglen); if (!res) goto exit; if (verbose) printf("passed\n\n"); return 0; exit: if (verbose) printf("failed\n\n"); return res; }