//----------------------------------------------------------------------------- // Ultralight Code (c) 2013,2014 Midnitesnake & Andy Davies of Pentura // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // High frequency MIFARE ULTRALIGHT (C) commands //----------------------------------------------------------------------------- #include "loclass/des.h" #include "cmdhfmfu.h" #include "cmdhfmf.h" #include "cmdhf14a.h" #include "mifare.h" #include "util.h" #include "../common/protocols.h" #define MAX_UL_BLOCKS 0x0f #define MAX_ULC_BLOCKS 0x2f #define MAX_ULEV1a_BLOCKS 0x12 #define MAX_ULEV1b_BLOCKS 0x20 #define MAX_NTAG_213 0x2c #define MAX_NTAG_215 0x86 #define MAX_NTAG_216 0xe6 #define KEYS_3DES_COUNT 7 uint8_t default_3des_keys[KEYS_3DES_COUNT][16] = { { 0x42,0x52,0x45,0x41,0x4b,0x4d,0x45,0x49,0x46,0x59,0x4f,0x55,0x43,0x41,0x4e,0x21 },// 3des std key { 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00 },// all zeroes { 0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f },// 0x00-0x0F { 0x49,0x45,0x4D,0x4B,0x41,0x45,0x52,0x42,0x21,0x4E,0x41,0x43,0x55,0x4F,0x59,0x46 },// NFC-key { 0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01,0x01 },// all ones { 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF },// all FF { 0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xAA,0xBB,0xCC,0xDD,0xEE,0xFF }, // 11 22 33 }; #define KEYS_PWD_COUNT 10 uint8_t default_pwd_pack[KEYS_PWD_COUNT][4] = { {0xFF,0xFF,0xFF,0xFF}, // PACK 0x00,0x00 -- factory default {0x4A,0xF8,0x4B,0x19}, // PACK 0xE5,0xBE -- italian bus (sniffed) {0x33,0x6B,0xA1,0x19}, // PACK 0x9c,0x2d -- italian bus (sniffed) {0xFF,0x90,0x6C,0xB2}, // PACK 0x12,0x9e -- italian bus (sniffed) {0x46,0x1c,0xA3,0x19}, // PACK 0xE9,0x5A -- italian bus (sniffed) {0x35,0x1C,0xD0,0x19}, // PACK 0x9A,0x5a -- italian bus (sniffed) {0x05,0x22,0xE6,0xB4}, // PACK 0x80,0x80 -- Amiiboo (sniffed) pikachu-b UID: {0x7E,0x22,0xE6,0xB4}, // PACK 0x80,0x80 -- AMiiboo (sniffed) {0x02,0xE1,0xEE,0x36}, // PACK 0x80,0x80 -- AMiiboo (sniffed) sonic UID: 04d257 7ae33e8027 {0x32,0x0C,0x16,0x17}, // PACK 0x80,0x80 -- AMiiboo (sniffed) }; #define MAX_UL_TYPES 13 uint16_t UL_TYPES_ARRAY[MAX_UL_TYPES] = {UNKNOWN, UL, UL_C, UL_EV1_48, UL_EV1_128, NTAG, NTAG_213, NTAG_215, NTAG_216, MY_D, MY_D_NFC, MY_D_MOVE, MY_D_MOVE_NFC}; uint8_t UL_MEMORY_ARRAY[MAX_UL_TYPES] = {MAX_UL_BLOCKS, MAX_UL_BLOCKS, MAX_ULC_BLOCKS, MAX_ULEV1a_BLOCKS, MAX_ULEV1b_BLOCKS, MAX_NTAG_213, MAX_NTAG_213, MAX_NTAG_215, MAX_NTAG_216, MAX_UL_BLOCKS, MAX_UL_BLOCKS, MAX_UL_BLOCKS, MAX_UL_BLOCKS}; static int CmdHelp(const char *Cmd); char* getProductTypeStr( uint8_t id){ static char buf[20]; char *retStr = buf; switch(id) { case 3: sprintf(retStr, "%02X, %s", id, "Ultralight"); break; case 4: sprintf(retStr, "%02X, %s", id, "NTAG"); break; default: sprintf(retStr, "%02X, %s", id, "unknown"); break; } return buf; } /* The 7 MSBits (=n) code the storage size itself based on 2^n, the LSBit is set to '0' if the size is exactly 2^n and set to '1' if the storage size is between 2^n and 2^(n+1). */ char* getUlev1CardSizeStr( uint8_t fsize ){ static char buf[40]; char *retStr = buf; memset(buf, 0, sizeof(buf)); uint16_t usize = 1 << ((fsize >>1) + 1); uint16_t lsize = 1 << (fsize >>1); // is LSB set? if ( fsize & 1 ) sprintf(retStr, "%02X (%u <-> %u bytes)", fsize, usize, lsize); else sprintf(retStr, "%02X (%u bytes)", fsize, lsize); return buf; } static void ul_switch_on_field(void) { UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_CONNECT | ISO14A_NO_DISCONNECT, 0, 0}}; SendCommand(&c); } void ul_switch_off_field(void) { UsbCommand c = {CMD_READER_ISO_14443a, {0, 0, 0}}; SendCommand(&c); } static int ul_send_cmd_raw( uint8_t *cmd, uint8_t cmdlen, uint8_t *response, uint16_t responseLength ) { UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_RAW | ISO14A_NO_DISCONNECT | ISO14A_APPEND_CRC, cmdlen, 0}}; memcpy(c.d.asBytes, cmd, cmdlen); SendCommand(&c); UsbCommand resp; if ( !WaitForResponseTimeout(CMD_ACK, &resp, 1500) ) return -1; if ( !resp.arg[0] && responseLength) return -1; uint16_t resplen = (resp.arg[0] < responseLength) ? resp.arg[0] : responseLength; memcpy(response, resp.d.asBytes, resplen); return resplen; } /* static int ul_send_cmd_raw_crc( uint8_t *cmd, uint8_t cmdlen, uint8_t *response, uint16_t responseLength, bool append_crc ) { UsbCommand c = {CMD_READER_ISO_14443a, {ISO14A_RAW | ISO14A_NO_DISCONNECT , cmdlen, 0}}; if (append_crc) c.arg[0] |= ISO14A_APPEND_CRC; memcpy(c.d.asBytes, cmd, cmdlen); SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) return -1; if (!resp.arg[0] && responseLength) return -1; uint16_t resplen = (resp.arg[0] < responseLength) ? resp.arg[0] : responseLength; memcpy(response, resp.d.asBytes, resplen ); return resplen; } */ static int ul_select( iso14a_card_select_t *card ){ ul_switch_on_field(); UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) return -1; if (resp.arg[0] < 1) return -1; memcpy(card, resp.d.asBytes, sizeof(iso14a_card_select_t)); return resp.arg[0]; } // This read command will at least return 16bytes. static int ul_read( uint8_t page, uint8_t *response, uint16_t responseLength ){ uint8_t cmd[] = {ISO14443A_CMD_READBLOCK, page}; int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength); if ( len == -1 ) ul_switch_off_field(); return len; } static int ul_comp_write( uint8_t page, uint8_t *data, uint8_t datalen ){ uint8_t cmd[18]; memset(cmd, 0x00, sizeof(cmd)); datalen = ( datalen > 16) ? 16 : datalen; cmd[0] = ISO14443A_CMD_WRITEBLOCK; cmd[1] = page; memcpy(cmd+2, data, datalen); uint8_t response[1] = {0xff}; int len = ul_send_cmd_raw(cmd, 2+datalen, response, sizeof(response)); if ( len == -1 ) ul_switch_off_field(); // ACK if ( response[0] == 0x0a ) return 0; // NACK return -1; } static int ulc_requestAuthentication( uint8_t *nonce, uint16_t nonceLength ){ uint8_t cmd[] = {MIFARE_ULC_AUTH_1, 0x00}; int len = ul_send_cmd_raw(cmd, sizeof(cmd), nonce, nonceLength); if ( len == -1 ) ul_switch_off_field(); return len; } static int ulc_authentication( uint8_t *key, bool switch_off_field ){ UsbCommand c = {CMD_MIFAREUC_AUTH, {switch_off_field}}; memcpy(c.d.asBytes, key, 16); SendCommand(&c); UsbCommand resp; if ( !WaitForResponseTimeout(CMD_ACK, &resp, 1500) ) return -1; if ( resp.arg[0] == 1 ) return 0; return -2; } static int ulev1_requestAuthentication( uint8_t *pwd, uint8_t *pack, uint16_t packLength ){ uint8_t cmd[] = {MIFARE_ULEV1_AUTH, pwd[0], pwd[1], pwd[2], pwd[3]}; int len = ul_send_cmd_raw(cmd, sizeof(cmd), pack, packLength); if ( len == -1) ul_switch_off_field(); return len; } static int ulev1_getVersion( uint8_t *response, uint16_t responseLength ){ uint8_t cmd[] = {MIFARE_ULEV1_VERSION}; int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength); if ( len == -1 ) ul_switch_off_field(); return len; } // static int ulev1_fastRead( uint8_t startblock, uint8_t endblock, uint8_t *response ){ // uint8_t cmd[] = {MIFARE_ULEV1_FASTREAD, startblock, endblock}; // if ( !ul_send_cmd_raw(cmd, sizeof(cmd), response)){ // ul_switch_off_field(); // return -1; // } // return 0; // } static int ulev1_readCounter( uint8_t counter, uint8_t *response, uint16_t responseLength ){ uint8_t cmd[] = {MIFARE_ULEV1_READ_CNT, counter}; int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength); if (len == -1) ul_switch_off_field(); return len; } static int ulev1_readTearing( uint8_t counter, uint8_t *response, uint16_t responseLength ){ uint8_t cmd[] = {MIFARE_ULEV1_CHECKTEAR, counter}; int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength); if (len == -1) ul_switch_off_field(); return len; } static int ulev1_readSignature( uint8_t *response, uint16_t responseLength ){ uint8_t cmd[] = {MIFARE_ULEV1_READSIG, 0x00}; int len = ul_send_cmd_raw(cmd, sizeof(cmd), response, responseLength); if (len == -1) ul_switch_off_field(); return len; } static int ul_print_default( uint8_t *data){ uint8_t uid[7]; uid[0] = data[0]; uid[1] = data[1]; uid[2] = data[2]; uid[3] = data[4]; uid[4] = data[5]; uid[5] = data[6]; uid[6] = data[7]; PrintAndLog(" UID : %s ", sprint_hex(uid, 7)); PrintAndLog(" UID[0] : %02X, Manufacturer: %s", uid[0], getTagInfo(uid[0]) ); if ( uid[0] == 0x05 ) { uint8_t chip = (data[8] & 0xC7); // 11000111 mask, bit 3,4,5 RFU switch (chip){ case 0xc2: PrintAndLog(" IC type : SLE 66R04P"); break; case 0xc4: PrintAndLog(" IC type : SLE 66R16P"); break; case 0xc6: PrintAndLog(" IC type : SLE 66R32P"); break; } } // CT (cascade tag byte) 0x88 xor SN0 xor SN1 xor SN2 int crc0 = 0x88 ^ data[0] ^ data[1] ^data[2]; if ( data[3] == crc0 ) PrintAndLog(" BCC0 : %02X, Ok", data[3]); else PrintAndLog(" BCC0 : %02X, crc should be %02X", data[3], crc0); int crc1 = data[4] ^ data[5] ^ data[6] ^data[7]; if ( data[8] == crc1 ) PrintAndLog(" BCC1 : %02X, Ok", data[8]); else PrintAndLog(" BCC1 : %02X, crc should be %02X", data[8], crc1 ); PrintAndLog(" Internal : %02X, %sdefault", data[9], (data[9]==0x48)?"":"not " ); PrintAndLog(" Lock : %s - %s", sprint_hex(data+10, 2), printBits(2, data+10) ); PrintAndLog("OneTimePad : %s - %s\n", sprint_hex(data + 12, 4), printBits(4, data+12) ); return 0; } static int ntag_print_CC(uint8_t *data) { PrintAndLog("\n--- NTAG NDEF Message"); if(data[0] != 0xe1) { PrintAndLog("no NDEF message"); return -1; // no NDEF message } PrintAndLog("Capability Container: %s", sprint_hex(data,4) ); PrintAndLog(" %02X: NDEF Magic Number", data[0]); PrintAndLog(" %02X: version %d.%d supported by tag", data[1], (data[1] & 0xF0) >> 4, data[1] & 0x0f); PrintAndLog(" %02X: Physical Memory Size: %d bytes", data[2], (data[2] + 1) * 8); if ( data[2] == 0x12 ) PrintAndLog(" %02X: NDEF Memory Size: %d bytes", data[2], 144); else if ( data[2] == 0x3e ) PrintAndLog(" %02X: NDEF Memory Size: %d bytes", data[2], 496); else if ( data[2] == 0x6d ) PrintAndLog(" %02X: NDEF Memory Size: %d bytes", data[2], 872); PrintAndLog(" %02X: %s / %s", data[3], (data[3] & 0xF0) ? "(RFU)" : "Read access granted without any security", (data[3] & 0x0F)==0 ? "Write access granted without any security" : (data[3] & 0x0F)==0x0F ? "No write access granted at all" : "(RFU)"); return 0; } int ul_print_type(uint16_t tagtype, uint8_t spaces){ char spc[11] = " "; spc[10]=0x00; char *spacer = spc + (10-spaces); if ( tagtype & UL ) PrintAndLog("%sTYPE : MIFARE Ultralight (MF0ICU1) %s", spacer, (tagtype & MAGIC) ? "" : "" ); else if ( tagtype & UL_C) PrintAndLog("%sTYPE : MIFARE Ultralight C (MF0ULC) %s", spacer, (tagtype & MAGIC) ? "" : "" ); else if ( tagtype & UL_EV1_48) PrintAndLog("%sTYPE : MIFARE Ultralight EV1 48bytes (MF0UL1101)", spacer); else if ( tagtype & UL_EV1_128) PrintAndLog("%sTYPE : MIFARE Ultralight EV1 128bytes (MF0UL2101)", spacer); else if ( tagtype & NTAG_213 ) PrintAndLog("%sTYPE : MIFARE NTAG 213 144bytes (NT2H1311G0DU)", spacer); else if ( tagtype & NTAG_215 ) PrintAndLog("%sTYPE : MIFARE NTAG 215 504bytes (NT2H1511G0DU)", spacer); else if ( tagtype & NTAG_216 ) PrintAndLog("%sTYPE : MIFARE NTAG 216 888bytes (NT2H1611G0DU)", spacer); else if ( tagtype & MY_D ) PrintAndLog("%sTYPE : INFINEON my-d\x99", spacer); else if ( tagtype & MY_D_NFC ) PrintAndLog("%sTYPE : INFINEON my-d\x99 NFC", spacer); else if ( tagtype & MY_D_MOVE ) PrintAndLog("%sTYPE : INFINEON my-d\x99 move", spacer); else if ( tagtype & MY_D_MOVE_NFC ) PrintAndLog("%sTYPE : INFINEON my-d\x99 move NFC", spacer); else PrintAndLog("%sTYPE : Unknown %04x", spacer, tagtype); return 0; } static int ulc_print_3deskey( uint8_t *data){ PrintAndLog(" deskey1 [44/0x2C]: %s [%.4s]", sprint_hex(data ,4),data); PrintAndLog(" deskey1 [45/0x2D]: %s [%.4s]", sprint_hex(data+4 ,4),data+4); PrintAndLog(" deskey2 [46/0x2E]: %s [%.4s]", sprint_hex(data+8 ,4),data+8); PrintAndLog(" deskey2 [47/0x2F]: %s [%.4s]", sprint_hex(data+12,4),data+12); PrintAndLog("\n 3des key : %s", sprint_hex(SwapEndian64(data, 16, 8), 16)); return 0; } static int ulc_print_configuration( uint8_t *data){ PrintAndLog("--- UL-C Configuration"); PrintAndLog(" Higher Lockbits [40/0x28]: %s - %s", sprint_hex(data, 4), printBits(2, data)); PrintAndLog(" Counter [41/0x29]: %s - %s", sprint_hex(data+4, 4), printBits(2, data+4)); bool validAuth = (data[8] >= 0x03 && data[8] <= 0x30); if ( validAuth ) PrintAndLog(" Auth0 [42/0x2A]: %s page %d/0x%02X and above need authentication", sprint_hex(data+8, 4), data[8],data[8] ); else{ if ( data[8] == 0){ PrintAndLog(" Auth0 [42/0x2A]: %s default", sprint_hex(data+8, 4) ); } else { PrintAndLog(" Auth0 [42/0x2A]: %s auth byte is out-of-range", sprint_hex(data+8, 4) ); } } PrintAndLog(" Auth1 [43/0x2B]: %s %s", sprint_hex(data+12, 4), (data[12] & 1) ? "write access restricted": "read and write access restricted" ); return 0; } static int ulev1_print_configuration( uint8_t *data){ PrintAndLog("\n--- UL-EV1 Configuration"); bool strg_mod_en = (data[0] & 2); uint8_t authlim = (data[4] & 0x07); bool cfglck = (data[4] & 0x40); bool prot = (data[4] & 0x80); uint8_t vctid = data[5]; PrintAndLog(" cfg0 [16/0x10]: %s", sprint_hex(data, 4)); if ( data[3] < 0xff ) PrintAndLog(" - page %d and above need authentication",data[3]); else PrintAndLog(" - pages don't need authentication"); PrintAndLog(" - strong modulation mode %s", (strg_mod_en) ? "enabled":"disabled"); PrintAndLog(" cfg1 [17/0x11]: %s", sprint_hex(data+4, 4) ); if ( authlim == 0) PrintAndLog(" - Unlimited password attempts"); else PrintAndLog(" - Max number of password attempts is %d", authlim); PrintAndLog(" - user configuration %s", cfglck ? "permanently locked":"writeable"); PrintAndLog(" - %s access is protected with password", prot ? "read and write":"write"); PrintAndLog(" %02X - Virtual Card Type Identifier is %s default", vctid, (vctid==0x05)? "":"not"); PrintAndLog(" PWD [18/0x12]: %s", sprint_hex(data+8, 4)); PrintAndLog(" PACK [19/0x13]: %s", sprint_hex(data+12, 4)); return 0; } static int ulev1_print_counters(){ PrintAndLog("--- UL-EV1 Counters"); uint8_t tear[1] = {0}; uint8_t counter[3] = {0,0,0}; for ( uint8_t i = 0; i<3; ++i) { ulev1_readTearing(i,tear,sizeof(tear)); ulev1_readCounter(i,counter, sizeof(counter) ); PrintAndLog(" [%0d] : %s", i, sprint_hex(counter,3)); PrintAndLog(" - %02X tearing %s", tear[0], ( tear[0]==0xBD)?"Ok":"failure"); } return 0; } static int ulev1_print_signature( uint8_t *data, uint8_t len){ PrintAndLog("\n--- UL-EV1 Signature"); PrintAndLog("IC signature public key name : NXP NTAG21x 2013"); PrintAndLog("IC signature public key value : 04494e1a386d3d3cfe3dc10e5de68a499b1c202db5b132393e89ed19fe5be8bc61"); PrintAndLog(" Elliptic curve parameters : secp128r1"); PrintAndLog(" Tag ECC Signature : %s", sprint_hex(data, len)); //to do: verify if signature is valid //PrintAndLog("IC signature status: %s valid", (iseccvalid() )?"":"not"); return 0; } static int ulev1_print_version(uint8_t *data){ PrintAndLog("\n--- UL-EV1 / NTAG Version"); PrintAndLog(" Raw bytes : %s", sprint_hex(data, 8) ); PrintAndLog(" Vendor ID : %02X, Manufacturer: %s", data[1], getTagInfo(data[1])); PrintAndLog(" Product type : %s" , getProductTypeStr(data[2])); PrintAndLog(" Product subtype : %02X, %s" , data[3], (data[3]==1) ?"17 pF":"50pF"); PrintAndLog(" Major version : %02X" , data[4]); PrintAndLog(" Minor version : %02X" , data[5]); PrintAndLog(" Size : %s", getUlev1CardSizeStr(data[6])); PrintAndLog(" Protocol type : %02X" , data[7]); return 0; } /* static int ulc_magic_test(){ // Magic Ultralight test // Magic UL-C, by observation, // 1) it seems to have a static nonce response to 0x1A command. // 2) the deskey bytes is not-zero:d out on as datasheet states. // 3) UID - changeable, not only, but pages 0-1-2-3. // 4) use the ul_magic_test ! magic tags answers specially! int returnValue = UL_ERROR; iso14a_card_select_t card; uint8_t nonce1[11] = {0x00}; uint8_t nonce2[11] = {0x00}; int status = ul_select(&card); if ( status < 1 ){ PrintAndLog("Error: couldn't select ulc_magic_test"); ul_switch_off_field(); return UL_ERROR; } status = ulc_requestAuthentication(nonce1, sizeof(nonce1)); if ( status > 0 ) { status = ulc_requestAuthentication(nonce2, sizeof(nonce2)); returnValue = ( !memcmp(nonce1, nonce2, 11) ) ? UL_C_MAGIC : UL_C; } else { returnValue = UL; } ul_switch_off_field(); return returnValue; } */ static int ul_magic_test(){ // Magic Ultralight tests // 1) take present UID, and try to write it back. OBSOLETE // 2) make a wrong length write to page0, and see if tag answers with ACK/NACK: iso14a_card_select_t card; int status = ul_select(&card); if ( status < 1 ){ PrintAndLog("iso14443a card select failed"); ul_switch_off_field(); return UL_ERROR; } status = ul_comp_write(0, NULL, 0); ul_switch_off_field(); if ( status == 0 ) return UL_MAGIC; return UL; } uint16_t GetHF14AMfU_Type(void){ TagTypeUL_t tagtype = UNKNOWN; iso14a_card_select_t card; uint8_t version[10] = {0x00}; int status = 0; int len; status = ul_select(&card); if ( status < 1 ){ PrintAndLog("iso14443a card select failed"); ul_switch_off_field(); return UL_ERROR; } // Ultralight - ATQA / SAK if ( card.atqa[1] != 0x00 || card.atqa[0] != 0x44 || card.sak != 0x00 ) { PrintAndLog("Tag is not Ultralight | NTAG | MY-D [ATQA: %02X %02X SAK: %02X]\n", card.atqa[1], card.atqa[0], card.sak); ul_switch_off_field(); return UL_ERROR; } if ( card.uid[0] != 0x05) { len = ulev1_getVersion(version, sizeof(version)); if (len > -1) ul_switch_off_field(); //if -1 it is already off switch (len) { case 0x0A: { if ( version[2] == 0x03 && version[6] == 0x0B ) tagtype = UL_EV1_48; else if ( version[2] == 0x03 && version[6] != 0x0B ) tagtype = UL_EV1_128; else if ( version[2] == 0x04 && version[6] == 0x0F ) tagtype = NTAG_213; else if ( version[2] == 0x04 && version[6] == 0x11 ) tagtype = NTAG_215; else if ( version[2] == 0x04 && version[6] == 0x13 ) tagtype = NTAG_216; else if ( version[2] == 0x04 ) tagtype = NTAG; break; } case 0x01: tagtype = UL_C; break; case 0x00: tagtype = UL; break; case -1 : tagtype = (UL | UL_C); break; //when does this happen? -- if getversion fails, it assumes it is either UL/ULC default : tagtype = UNKNOWN; break; } // UL-C test if (tagtype == (UL | UL_C)) { status = ul_select(&card); if ( status < 1 ){ PrintAndLog("iso14443a card select failed (UL-C)"); ul_switch_off_field(); return UL_ERROR; } uint8_t nonce[11] = {0x00}; status = ulc_requestAuthentication(nonce, sizeof(nonce)); tagtype = ( status > 0 ) ? UL_C : UL; if (status != -1) ul_switch_off_field(); } } else { // Infinition MY-D tests Exam high nibble uint8_t nib = (card.uid[1] & 0xf0) >> 4; switch ( nib ){ case 1: tagtype = MY_D; break; case 2: tagtype = (MY_D | MY_D_NFC); break; case 3: tagtype = (MY_D_MOVE | MY_D_MOVE_NFC); break; } } tagtype = (ul_magic_test() == UL_MAGIC) ? (tagtype | MAGIC) : tagtype; //if ((tagtype & UL)) tagtype = ul_magic_test(); return tagtype; } int CmdHF14AMfUInfo(const char *Cmd){ uint8_t authlim = 0xff; uint8_t data[16] = {0x00}; iso14a_card_select_t card; uint8_t *key; int status; bool errors = false; bool hasAuthKey = false; uint8_t cmdp = 0; uint8_t datalen = 0; uint8_t authenticationkey[16] = {0x00}; uint8_t pack[4] = {0,0,0,0}; int len=0; while(param_getchar(Cmd, cmdp) != 0x00) { switch(param_getchar(Cmd, cmdp)) { case 'h': case 'H': return usage_hf_mfu_info(); case 'k': case 'K': // EV1/NTAG size key datalen = param_gethex(Cmd, cmdp+1, data, 8); if ( !datalen ) { memcpy(authenticationkey, data, 4); cmdp += 2; hasAuthKey = true; break; } // UL-C size key datalen = param_gethex(Cmd, cmdp+1, data, 32); if (!datalen){ memcpy(authenticationkey, data, 16); cmdp += 2; hasAuthKey = true; break; } errors = true; break; default: PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } if(errors) break; } //Validations if(errors) return usage_hf_mfu_info(); TagTypeUL_t tagtype = GetHF14AMfU_Type(); if (tagtype == UL_ERROR) return -1; PrintAndLog("\n--- Tag Information ---------"); PrintAndLog("-------------------------------------------------------------"); ul_print_type(tagtype, 6); status = ul_select(&card); if ( status < 1 ){ PrintAndLog("iso14443a card select failed"); ul_switch_off_field(); return status; } if ( hasAuthKey ) { if ((tagtype & UL_C)) { ul_switch_off_field(); //will select card automatically if (ulc_authentication(authenticationkey, false) != 1) { ul_switch_off_field(); PrintAndLog("Error: Authentication Failed UL-C"); return 0; } } else { len = ulev1_requestAuthentication(authenticationkey, pack, sizeof(pack)); if (len < 1) { if (!len) ul_switch_off_field(); PrintAndLog("Error: Authentication Failed UL-EV1/NTAG"); return 0; } } } // read pages 0,1,2,4 (should read 4pages) status = ul_read(0, data, sizeof(data)); if ( status == -1 ){ PrintAndLog("Error: tag didn't answer to READ A"); return status; } ul_print_default(data); if ((tagtype & UL_C)){ // read pages 0x28, 0x29, 0x2A, 0x2B uint8_t ulc_conf[16] = {0x00}; status = ul_read(0x28, ulc_conf, sizeof(ulc_conf)); if ( status == -1 ){ PrintAndLog("Error: tag didn't answer to READ UL-C"); return status; } ulc_print_configuration(ulc_conf); if ((tagtype & MAGIC)){ uint8_t ulc_deskey[16] = {0x00}; status = ul_read(0x2C, ulc_deskey, sizeof(ulc_deskey)); if ( status == -1 ){ PrintAndLog("Error: tag didn't answer to READ magic"); return status; } ulc_print_3deskey(ulc_deskey); } else { // if we called info with key, just return if ( hasAuthKey ) return 1; // also try to diversify default keys.. look into CmdHF14AMfuGenDiverseKeys PrintAndLog("Trying some default 3des keys"); ul_switch_off_field(); //will select again in try3DesAuth... for (uint8_t i = 0; i < KEYS_3DES_COUNT; ++i ){ key = default_3des_keys[i]; if (ulc_authentication(key, true) == 0){ PrintAndLog("Found default 3des key: "); //%s", sprint_hex(key,16)); uint8_t keySwap[16]; memcpy(keySwap, SwapEndian64(key,16,8), 16); ulc_print_3deskey(keySwap); return 1; } } return 1; //return even if key not found (UL_C is done) } } if ((tagtype & (UL_EV1_48 | UL_EV1_128))) { ulev1_print_counters(); uint8_t ulev1_signature[32] = {0x00}; status = ulev1_readSignature( ulev1_signature, sizeof(ulev1_signature)); if ( status == -1 ){ PrintAndLog("Error: tag didn't answer to READ SIGNATURE"); return status; } ulev1_print_signature( ulev1_signature, sizeof(ulev1_signature)); uint8_t startconfigblock = (tagtype & UL_EV1_48) ? 0x10 : 0x25; uint8_t ulev1_conf[16] = {0x00}; status = ul_read(startconfigblock, ulev1_conf, sizeof(ulev1_conf)); if ( status == -1 ){ PrintAndLog("Error: tag didn't answer to READ EV1"); return status; } // save AUTHENTICATION LIMITS for later: authlim = (ulev1_conf[4] & 0x07); bool allZeros = true; for (uint8_t idx=0; idx<8; idx++) if (ulev1_conf[idx]) allZeros = false; if (allZeros) authlim=7; ulev1_print_configuration(ulev1_conf); } if ((tagtype & (UL_EV1_48 | UL_EV1_128 | NTAG_213 | NTAG_215 | NTAG_216))) { uint8_t version[10] = {0x00}; status = ulev1_getVersion(version, sizeof(version)); if ( status == -1 ){ PrintAndLog("Error: tag didn't answer to GET_VERSION"); return status; } ulev1_print_version(version); // if we called info with key, just return if ( hasAuthKey ) return 1; // AUTHLIMIT, (number of failed authentications) // 0 = limitless. // 1-7 = ... should we even try then? if ( authlim == 0 ){ PrintAndLog("\n--- Known EV1/NTAG passwords."); int len=0; //if len goes to -1 the connection will be turned off. for (uint8_t i = 0; i < KEYS_PWD_COUNT; ++i ){ key = default_pwd_pack[i]; if ( len > -1 ){ len = ulev1_requestAuthentication(key, pack, sizeof(pack)); PrintAndLog("Found a default password: %s || Pack: %02X %02X",sprint_hex(key, 4), pack[0], pack[1]); break; } } if (len > -1) ul_switch_off_field(); } } if ((tagtype & (NTAG_213 | NTAG_215 | NTAG_216))){ uint8_t cc[16] = {0x00}; status = ul_read(3, cc, sizeof(cc)); if ( status == -1 ){ PrintAndLog("Error: tag didn't answer to READ ntag"); return status; } ntag_print_CC(cc); } ul_switch_off_field(); PrintAndLog(""); return 1; } // // Mifare Ultralight Write Single Block // int CmdHF14AMfUWrBl(const char *Cmd){ uint8_t blockNo = -1; bool chinese_card = FALSE; uint8_t bldata[16] = {0x00}; UsbCommand resp; char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) < 3 || cmdp == 'h' || cmdp == 'H') { PrintAndLog("Usage: hf mfu wrbl [w]"); PrintAndLog(" [block number]"); PrintAndLog(" [block data] - (8 hex symbols)"); PrintAndLog(" [w] - Chinese magic ultralight tag"); PrintAndLog(""); PrintAndLog(" sample: hf mfu wrbl 0 01020304"); PrintAndLog(""); return 0; } blockNo = param_get8(Cmd, 0); if (blockNo > MAX_UL_BLOCKS){ PrintAndLog("Error: Maximum number of blocks is 15 for Ultralight Cards!"); return 1; } if (param_gethex(Cmd, 1, bldata, 8)) { PrintAndLog("Block data must include 8 HEX symbols"); return 1; } if (strchr(Cmd,'w') != 0 || strchr(Cmd,'W') != 0 ) { chinese_card = TRUE; } if ( blockNo <= 3) { if (!chinese_card){ PrintAndLog("Access Denied"); } else { PrintAndLog("--specialblock no:%02x", blockNo); PrintAndLog("--data: %s", sprint_hex(bldata, 4)); UsbCommand d = {CMD_MIFAREU_WRITEBL, {blockNo}}; memcpy(d.d.asBytes,bldata, 4); SendCommand(&d); if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { uint8_t isOK = resp.arg[0] & 0xff; PrintAndLog("isOk:%02x", isOK); } else { PrintAndLog("Command execute timeout"); } } } else { PrintAndLog("--block no:%02x", blockNo); PrintAndLog("--data: %s", sprint_hex(bldata, 4)); UsbCommand e = {CMD_MIFAREU_WRITEBL, {blockNo}}; memcpy(e.d.asBytes,bldata, 4); SendCommand(&e); if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { uint8_t isOK = resp.arg[0] & 0xff; PrintAndLog("isOk:%02x", isOK); } else { PrintAndLog("Command execute timeout"); } } return 0; } // // Mifare Ultralight Read Single Block // int CmdHF14AMfURdBl(const char *Cmd){ UsbCommand resp; uint8_t blockNo = -1; char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) < 1 || cmdp == 'h' || cmdp == 'H') { PrintAndLog("Usage: hf mfu rdbl "); PrintAndLog(" sample: hfu mfu rdbl 0"); return 0; } blockNo = param_get8(Cmd, 0); if (blockNo > MAX_UL_BLOCKS){ PrintAndLog("Error: Maximum number of blocks is 15 for Ultralight"); return 1; } UsbCommand c = {CMD_MIFAREU_READBL, {blockNo}}; SendCommand(&c); if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { uint8_t isOK = resp.arg[0] & 0xff; if (isOK) { uint8_t *data = resp.d.asBytes; PrintAndLog("Block: %0d (0x%02X) [ %s]", (int)blockNo, blockNo, sprint_hex(data, 4)); } else { PrintAndLog("Failed reading block: (%02x)", isOK); } } else { PrintAndLog("Command execute time-out"); } return 0; } int usage_hf_mfu_info(void) { PrintAndLog("It gathers information about the tag and tries to detect what kind it is."); PrintAndLog("Sometimes the tags are locked down, and you may need a key to be able to read the information"); PrintAndLog("The following tags can be identified:\n"); PrintAndLog("Ultralight, Ultralight-C, Ultralight EV1"); PrintAndLog("NTAG 213, NTAG 215, NTAG 216"); PrintAndLog("my-d, my-d NFC, my-d move, my-d move NFC\n"); PrintAndLog("Usage: hf mfu info k "); PrintAndLog(" Options : "); PrintAndLog(" k : key for authentication [UL-C 16bytes, EV1/NTAG 4bytes]"); PrintAndLog(""); PrintAndLog(" sample : hf mfu info"); PrintAndLog(" : hf mfu info k 11223344"); return 0; } int usage_hf_mfu_dump(void) { PrintAndLog("Reads all pages from Ultralight, Ultralight-C, Ultralight EV1"); PrintAndLog("and saves binary dump into the file `filename.bin` or `cardUID.bin`"); PrintAndLog("It autodetects card type.\n"); PrintAndLog("Usage: hf mfu dump l k n p <> q <>"); PrintAndLog(" Options : "); PrintAndLog(" k : key for authentication [UL-C 16bytes, EV1/NTAG 4bytes]"); PrintAndLog(" l : swap entered key's endianness for auth"); PrintAndLog(" n : filename w/o .bin to save the dump as"); PrintAndLog(" p : starting Page number to manually set a page to start the dump at"); PrintAndLog(" q : number of Pages to manually set how many pages to dump"); PrintAndLog(""); PrintAndLog(" sample : hf mfu dump"); PrintAndLog(" : hf mfu dump n myfile"); PrintAndLog(" : hf mfu dump k 00112233445566778899AABBCCDDEEFF"); return 0; } // // Mifare Ultralight / Ultralight-C / Ultralight-EV1 // Read and Dump Card Contents, using auto detection of tag size. // // TODO: take a password to read UL-C / UL-EV1 tags. int CmdHF14AMfUDump(const char *Cmd){ FILE *fout; char filename[FILE_PATH_SIZE] = {0x00}; char * fnameptr = filename; uint8_t *lockbytes_t = NULL; uint8_t lockbytes[2] = {0x00}; uint8_t *lockbytes_t2 = NULL; uint8_t lockbytes2[2] = {0x00}; bool bit[16] = {0x00}; bool bit2[16] = {0x00}; uint8_t data[1024] = {0x00}; bool hasPwd = false; bool hasKey = false; int i = 0; int Pages = 16; bool tmplockbit = false; uint8_t dataLen=0; uint8_t cmdp =0; uint8_t key[16] = {0x00}; uint8_t *keyPtr = key; size_t fileNlen = 0; bool errors = false; bool swapEndian = false; bool manualPages = false; uint8_t startPage = 0; char tempStr[50]; while(param_getchar(Cmd, cmdp) != 0x00) { switch(param_getchar(Cmd, cmdp)) { case 'h': case 'H': return usage_hf_mfu_dump(); case 'k': case 'K': dataLen = param_getstr(Cmd, cmdp+1, tempStr); if (dataLen == 32) { errors = param_gethex(tempStr, 0, key, dataLen); hasKey = true; } else if (dataLen == 8) { errors = param_gethex(tempStr, 0, key, dataLen); hasPwd = true; } else errors = true; cmdp += 2; break; case 'l': case 'L': swapEndian = true; cmdp++; break; case 'n': case 'N': fileNlen = param_getstr(Cmd, cmdp+1, filename); if (!fileNlen) errors = true; if (fileNlen > FILE_PATH_SIZE-5) fileNlen = FILE_PATH_SIZE-5; cmdp += 2; break; case 'p': case 'P': startPage = param_get8(Cmd, cmdp+1); manualPages = true; cmdp += 2; break; case 'q': case 'Q': Pages = param_get8(Cmd, cmdp+1); cmdp += 2; manualPages = true; break; default: PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } if(errors) break; } //Validations if(errors) return usage_hf_mfu_dump(); //if (swapEndian && hasKey ) // keyPtr = SwapEndian64(data, 16, 8); TagTypeUL_t tagtype = GetHF14AMfU_Type(); if (tagtype == UL_ERROR) return -1; if (!manualPages) for (uint8_t idx = 0; idx < MAX_UL_TYPES; idx++) if (tagtype & UL_TYPES_ARRAY[idx]) Pages = UL_MEMORY_ARRAY[idx]+1; ul_print_type(tagtype, 0); PrintAndLog("Reading tag memory..."); UsbCommand c = {CMD_MIFAREUC_READCARD, {startPage, Pages}}; if ( hasKey ) { c.arg[2] = 1; memcpy(c.d.asBytes, key, 16); } if ( hasPwd ) { c.arg[2] = 2; memcpy(c.d.asBytes, key, 4); } SendCommand(&c); UsbCommand resp; if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) { PrintAndLog("Command execute time-out"); return 1; } PrintAndLog ("%u,%u",resp.arg[0],resp.arg[1]); uint8_t isOK = resp.arg[0] & 0xff; if (isOK) { memcpy(data, resp.d.asBytes, resp.arg[1]); } else { PrintAndLog("Failed reading block: (%02x)", i); return 1; } // Load lock bytes. int j = 0; lockbytes_t = data + 8; lockbytes[0] = lockbytes_t[2]; lockbytes[1] = lockbytes_t[3]; for(j = 0; j < 16; j++){ bit[j] = lockbytes[j/8] & ( 1 <<(7-j%8)); } // Load bottom lockbytes if available // HOW DOES THIS APPLY TO EV1 and/or NTAG??? if ( Pages == 44 ) { lockbytes_t2 = data + (40*4); lockbytes2[0] = lockbytes_t2[2]; lockbytes2[1] = lockbytes_t2[3]; for (j = 0; j < 16; j++) { bit2[j] = lockbytes2[j/8] & ( 1 <<(7-j%8)); } } // add keys UL_C if (hasKey ){ memcpy(data + Pages*4, key, 16); Pages += 4; } // add keys ULEV1 / NTAG if (hasPwd ){ memcpy(data + Pages*4, key, 4); Pages += 1; } //TODO add key MEM location for other tags for (i = 0; i < Pages; ++i) { if ( i < 3 ) { PrintAndLog("Block %02x:%s ", i,sprint_hex(data + i * 4, 4)); continue; } switch(i){ case 3: tmplockbit = bit[4]; break; case 4: tmplockbit = bit[3]; break; case 5: tmplockbit = bit[2]; break; case 6: tmplockbit = bit[1]; break; case 7: tmplockbit = bit[0]; break; case 8: tmplockbit = bit[15]; break; case 9: tmplockbit = bit[14]; break; case 10: tmplockbit = bit[13]; break; case 11: tmplockbit = bit[12]; break; case 12: tmplockbit = bit[11]; break; case 13: tmplockbit = bit[10]; break; case 14: tmplockbit = bit[9]; break; case 15: tmplockbit = bit[8]; break; case 16: case 17: case 18: case 19: tmplockbit = bit2[6]; break; case 20: case 21: case 22: case 23: tmplockbit = bit2[5]; break; case 24: case 25: case 26: case 27: tmplockbit = bit2[4]; break; case 28: case 29: case 30: case 31: tmplockbit = bit2[2]; break; case 32: case 33: case 34: case 35: tmplockbit = bit2[1]; break; case 36: case 37: case 38: case 39: tmplockbit = bit2[0]; break; case 40: tmplockbit = bit2[12]; break; case 41: tmplockbit = bit2[11]; break; case 42: tmplockbit = bit2[10]; break; //auth0 case 43: tmplockbit = bit2[9]; break; //auth1 default: break; } PrintAndLog("Block %02x:%s [%d]", i,sprint_hex(data + i * 4, 4),tmplockbit); } // user supplied filename? if (fileNlen < 1) { // UID = data 0-1-2 4-5-6-7 (skips a beat) sprintf(fnameptr,"%02X%02X%02X%02X%02X%02X%02X.bin", data[0], data[1], data[2], data[4], data[5], data[6], data[7]); } else { sprintf(fnameptr + fileNlen,".bin"); } if ((fout = fopen(filename,"wb")) == NULL) { PrintAndLog("Could not create file name %s", filename); return 1; } fwrite( data, 1, Pages*4, fout ); fclose(fout); PrintAndLog("Dumped %d pages, wrote %d bytes to %s", Pages, Pages*4, filename); return 0; } // // Needed to Authenticate to Ultralight C tags // void rol (uint8_t *data, const size_t len){ // uint8_t first = data[0]; // for (size_t i = 0; i < len-1; i++) { // data[i] = data[i+1]; // } // data[len-1] = first; // } //------------------------------------------------------------------------------- // Ultralight C Methods //------------------------------------------------------------------------------- // // Ultralight C Authentication Demo {currently uses hard-coded key} // int CmdHF14AMfucAuth(const char *Cmd){ uint8_t keyNo = 0; bool errors = false; char cmdp = param_getchar(Cmd, 0); //Change key to user defined one if (cmdp == 'k' || cmdp == 'K'){ keyNo = param_get8(Cmd, 1); if(keyNo > KEYS_3DES_COUNT) errors = true; } if (cmdp == 'h' || cmdp == 'H') errors = true; if (errors) { PrintAndLog("Usage: hf mfu cauth k "); PrintAndLog(" 0 (default): 3DES standard key"); PrintAndLog(" 1 : all 0x00 key"); PrintAndLog(" 2 : 0x00-0x0F key"); PrintAndLog(" 3 : nfc key"); PrintAndLog(" 4 : all 0x01 key"); PrintAndLog(" 5 : all 0xff key"); PrintAndLog(" 6 : 0x00-0xFF key"); PrintAndLog("\n sample : hf mfu cauth k"); PrintAndLog(" : hf mfu cauth k 3"); return 0; } uint8_t *key = default_3des_keys[keyNo]; if (ulc_authentication(key, true) == 0) PrintAndLog("Authentication successful. 3des key: %s",sprint_hex(key, 16)); else PrintAndLog("Authentication failed"); return 0; } /** A test function to validate that the polarssl-function works the same was as the openssl-implementation. Commented out, since it requires openssl int CmdTestDES(const char * cmd) { uint8_t key[16] = {0x00}; memcpy(key,key3_3des_data,16); DES_cblock RndA, RndB; PrintAndLog("----------OpenSSL DES implementation----------"); { uint8_t e_RndB[8] = {0x00}; unsigned char RndARndB[16] = {0x00}; DES_cblock iv = { 0 }; DES_key_schedule ks1,ks2; DES_cblock key1,key2; memcpy(key,key3_3des_data,16); memcpy(key1,key,8); memcpy(key2,key+8,8); DES_set_key((DES_cblock *)key1,&ks1); DES_set_key((DES_cblock *)key2,&ks2); DES_random_key(&RndA); PrintAndLog(" RndA:%s",sprint_hex(RndA, 8)); PrintAndLog(" e_RndB:%s",sprint_hex(e_RndB, 8)); //void DES_ede2_cbc_encrypt(const unsigned char *input, // unsigned char *output, long length, DES_key_schedule *ks1, // DES_key_schedule *ks2, DES_cblock *ivec, int enc); DES_ede2_cbc_encrypt(e_RndB,RndB,sizeof(e_RndB),&ks1,&ks2,&iv,0); PrintAndLog(" RndB:%s",sprint_hex(RndB, 8)); rol(RndB,8); memcpy(RndARndB,RndA,8); memcpy(RndARndB+8,RndB,8); PrintAndLog(" RA+B:%s",sprint_hex(RndARndB, 16)); DES_ede2_cbc_encrypt(RndARndB,RndARndB,sizeof(RndARndB),&ks1,&ks2,&e_RndB,1); PrintAndLog("enc(RA+B):%s",sprint_hex(RndARndB, 16)); } PrintAndLog("----------PolarSSL implementation----------"); { uint8_t random_a[8] = { 0 }; uint8_t enc_random_a[8] = { 0 }; uint8_t random_b[8] = { 0 }; uint8_t enc_random_b[8] = { 0 }; uint8_t random_a_and_b[16] = { 0 }; des3_context ctx = { 0 }; memcpy(random_a, RndA,8); uint8_t output[8] = { 0 }; uint8_t iv[8] = { 0 }; PrintAndLog(" RndA :%s",sprint_hex(random_a, 8)); PrintAndLog(" e_RndB:%s",sprint_hex(enc_random_b, 8)); des3_set2key_dec(&ctx, key); des3_crypt_cbc(&ctx // des3_context *ctx , DES_DECRYPT // int mode , sizeof(random_b) // size_t length , iv // unsigned char iv[8] , enc_random_b // const unsigned char *input , random_b // unsigned char *output ); PrintAndLog(" RndB:%s",sprint_hex(random_b, 8)); rol(random_b,8); memcpy(random_a_and_b ,random_a,8); memcpy(random_a_and_b+8,random_b,8); PrintAndLog(" RA+B:%s",sprint_hex(random_a_and_b, 16)); des3_set2key_enc(&ctx, key); des3_crypt_cbc(&ctx // des3_context *ctx , DES_ENCRYPT // int mode , sizeof(random_a_and_b) // size_t length , enc_random_b // unsigned char iv[8] , random_a_and_b // const unsigned char *input , random_a_and_b // unsigned char *output ); PrintAndLog("enc(RA+B):%s",sprint_hex(random_a_and_b, 16)); } return 0; } **/ // // Ultralight C Read Single Block // int CmdHF14AMfUCRdBl(const char *Cmd) { UsbCommand resp; bool hasPwd = FALSE; uint8_t blockNo = -1; uint8_t key[16]; char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) < 1 || cmdp == 'h' || cmdp == 'H') { PrintAndLog("Usage: hf mfu crdbl "); PrintAndLog(""); PrintAndLog("sample: hf mfu crdbl 0"); PrintAndLog(" hf mfu crdbl 0 00112233445566778899AABBCCDDEEFF"); return 0; } blockNo = param_get8(Cmd, 0); if (blockNo < 0) { PrintAndLog("Wrong block number"); return 1; } if (blockNo > MAX_ULC_BLOCKS ){ PrintAndLog("Error: Maximum number of blocks is 47 for Ultralight-C"); return 1; } // key if ( strlen(Cmd) > 3){ if (param_gethex(Cmd, 1, key, 32)) { PrintAndLog("Key must include %d HEX symbols", 32); return 1; } else { hasPwd = TRUE; } } //Read Block UsbCommand c = {CMD_MIFAREU_READBL, {blockNo}}; if ( hasPwd ) { c.arg[1] = 1; memcpy(c.d.asBytes,key,16); } SendCommand(&c); if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { uint8_t isOK = resp.arg[0] & 0xff; if (isOK) { uint8_t *data = resp.d.asBytes; PrintAndLog("Block: %0d (0x%02X) [ %s]", (int)blockNo, blockNo, sprint_hex(data, 4)); } else { PrintAndLog("Failed reading block: (%02x)", isOK); } } else { PrintAndLog("Command execute time-out"); } return 0; } // // Mifare Ultralight C Write Single Block // int CmdHF14AMfUCWrBl(const char *Cmd){ uint8_t blockNo = -1; bool chinese_card = FALSE; uint8_t bldata[16] = {0x00}; UsbCommand resp; char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) < 3 || cmdp == 'h' || cmdp == 'H') { PrintAndLog("Usage: hf mfu cwrbl [w]"); PrintAndLog(" [block number]"); PrintAndLog(" [block data] - (8 hex symbols)"); PrintAndLog(" [w] - Chinese magic ultralight tag"); PrintAndLog(""); PrintAndLog(" sample: hf mfu cwrbl 0 01020304"); PrintAndLog(""); return 0; } blockNo = param_get8(Cmd, 0); if (blockNo > MAX_ULC_BLOCKS ){ PrintAndLog("Error: Maximum number of blocks is 47 for Ultralight-C Cards!"); return 1; } if (param_gethex(Cmd, 1, bldata, 8)) { PrintAndLog("Block data must include 8 HEX symbols"); return 1; } if (strchr(Cmd,'w') != 0 || strchr(Cmd,'W') != 0 ) { chinese_card = TRUE; } if ( blockNo <= 3 ) { if (!chinese_card){ PrintAndLog("Access Denied"); return 1; } else { PrintAndLog("--Special block no: 0x%02x", blockNo); PrintAndLog("--Data: %s", sprint_hex(bldata, 4)); UsbCommand d = {CMD_MIFAREU_WRITEBL, {blockNo}}; memcpy(d.d.asBytes,bldata, 4); SendCommand(&d); if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { uint8_t isOK = resp.arg[0] & 0xff; PrintAndLog("isOk:%02x", isOK); } else { PrintAndLog("Command execute timeout"); return 1; } } } else { PrintAndLog("--Block no : 0x%02x", blockNo); PrintAndLog("--Data: %s", sprint_hex(bldata, 4)); UsbCommand e = {CMD_MIFAREU_WRITEBL, {blockNo}}; memcpy(e.d.asBytes,bldata, 4); SendCommand(&e); if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { uint8_t isOK = resp.arg[0] & 0xff; PrintAndLog("isOk : %02x", isOK); } else { PrintAndLog("Command execute timeout"); return 1; } } return 0; } // // Mifare Ultralight C - Set password // int CmdHF14AMfucSetPwd(const char *Cmd){ uint8_t pwd[16] = {0x00}; char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) == 0 || cmdp == 'h' || cmdp == 'H') { PrintAndLog("Usage: hf mfu setpwd "); PrintAndLog(" [password] - (32 hex symbols)"); PrintAndLog(""); PrintAndLog("sample: hf mfu setpwd 000102030405060708090a0b0c0d0e0f"); PrintAndLog(""); return 0; } if (param_gethex(Cmd, 0, pwd, 32)) { PrintAndLog("Password must include 32 HEX symbols"); return 1; } UsbCommand c = {CMD_MIFAREUC_SETPWD}; memcpy( c.d.asBytes, pwd, 16); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1500) ) { if ( (resp.arg[0] & 0xff) == 1) PrintAndLog("Ultralight-C new password: %s", sprint_hex(pwd,16)); else{ PrintAndLog("Failed writing at block %d", resp.arg[1] & 0xff); return 1; } } else { PrintAndLog("command execution time out"); return 1; } return 0; } // // Magic UL / UL-C tags - Set UID // int CmdHF14AMfucSetUid(const char *Cmd){ UsbCommand c; UsbCommand resp; uint8_t uid[7] = {0x00}; char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) == 0 || cmdp == 'h' || cmdp == 'H') { PrintAndLog("Usage: hf mfu setuid "); PrintAndLog(" [uid] - (14 hex symbols)"); PrintAndLog("\nThis only works for Magic Ultralight tags."); PrintAndLog(""); PrintAndLog("sample: hf mfu setuid 11223344556677"); PrintAndLog(""); return 0; } if (param_gethex(Cmd, 0, uid, 14)) { PrintAndLog("UID must include 14 HEX symbols"); return 1; } // read block2. c.cmd = CMD_MIFAREU_READBL; c.arg[0] = 2; SendCommand(&c); if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) { PrintAndLog("Command execute timeout"); return 2; } // save old block2. uint8_t oldblock2[4] = {0x00}; memcpy(resp.d.asBytes, oldblock2, 4); // block 0. c.cmd = CMD_MIFAREU_WRITEBL; c.arg[0] = 0; c.d.asBytes[0] = uid[0]; c.d.asBytes[1] = uid[1]; c.d.asBytes[2] = uid[2]; c.d.asBytes[3] = 0x88 ^ uid[0] ^ uid[1] ^ uid[2]; SendCommand(&c); if (!WaitForResponseTimeout(CMD_ACK,&resp,1500)) { PrintAndLog("Command execute timeout"); return 3; } // block 1. c.arg[0] = 1; c.d.asBytes[0] = uid[3]; c.d.asBytes[1] = uid[4]; c.d.asBytes[2] = uid[5]; c.d.asBytes[3] = uid[6]; SendCommand(&c); if (!WaitForResponseTimeout(CMD_ACK,&resp,1500) ) { PrintAndLog("Command execute timeout"); return 4; } // block 2. c.arg[0] = 2; c.d.asBytes[0] = uid[3] ^ uid[4] ^ uid[5] ^ uid[6]; c.d.asBytes[1] = oldblock2[1]; c.d.asBytes[2] = oldblock2[2]; c.d.asBytes[3] = oldblock2[3]; SendCommand(&c); if (!WaitForResponseTimeout(CMD_ACK,&resp,1500) ) { PrintAndLog("Command execute timeout"); return 5; } return 0; } int CmdHF14AMfuGenDiverseKeys(const char *Cmd){ uint8_t iv[8] = { 0x00 }; uint8_t block = 0x07; // UL-EV1 //04 57 b6 e2 05 3f 80 UID //4a f8 4b 19 PWD uint8_t uid[] = { 0xF4,0xEA, 0x54, 0x8E }; uint8_t mifarekeyA[] = { 0xA0,0xA1,0xA2,0xA3,0xA4,0xA5 }; uint8_t mifarekeyB[] = { 0xB0,0xB1,0xB2,0xB3,0xB4,0xB5 }; uint8_t dkeyA[8] = { 0x00 }; uint8_t dkeyB[8] = { 0x00 }; uint8_t masterkey[] = { 0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xaa,0xbb,0xcc,0xdd,0xee,0xff }; uint8_t mix[8] = { 0x00 }; uint8_t divkey[8] = { 0x00 }; memcpy(mix, mifarekeyA, 4); mix[4] = mifarekeyA[4] ^ uid[0]; mix[5] = mifarekeyA[5] ^ uid[1]; mix[6] = block ^ uid[2]; mix[7] = uid[3]; des3_context ctx = { 0x00 }; des3_set2key_enc(&ctx, masterkey); des3_crypt_cbc(&ctx // des3_context , DES_ENCRYPT // int mode , sizeof(mix) // length , iv // iv[8] , mix // input , divkey // output ); PrintAndLog("3DES version"); PrintAndLog("Masterkey :\t %s", sprint_hex(masterkey,sizeof(masterkey))); PrintAndLog("UID :\t %s", sprint_hex(uid, sizeof(uid))); PrintAndLog("Sector :\t %0d", block); PrintAndLog("Mifare key :\t %s", sprint_hex(mifarekeyA, sizeof(mifarekeyA))); PrintAndLog("Message :\t %s", sprint_hex(mix, sizeof(mix))); PrintAndLog("Diversified key: %s", sprint_hex(divkey+1, 6)); PrintAndLog("\n DES version"); for (int i=0; i < sizeof(mifarekeyA); ++i){ dkeyA[i] = (mifarekeyA[i] << 1) & 0xff; dkeyA[6] |= ((mifarekeyA[i] >> 7) & 1) << (i+1); } for (int i=0; i < sizeof(mifarekeyB); ++i){ dkeyB[1] |= ((mifarekeyB[i] >> 7) & 1) << (i+1); dkeyB[2+i] = (mifarekeyB[i] << 1) & 0xff; } uint8_t zeros[8] = {0x00}; uint8_t newpwd[8] = {0x00}; uint8_t dmkey[24] = {0x00}; memcpy(dmkey, dkeyA, 8); memcpy(dmkey+8, dkeyB, 8); memcpy(dmkey+16, dkeyA, 8); memset(iv, 0x00, 8); des3_set3key_enc(&ctx, dmkey); des3_crypt_cbc(&ctx // des3_context , DES_ENCRYPT // int mode , sizeof(newpwd) // length , iv // iv[8] , zeros // input , newpwd // output ); PrintAndLog("Mifare dkeyA :\t %s", sprint_hex(dkeyA, sizeof(dkeyA))); PrintAndLog("Mifare dkeyB :\t %s", sprint_hex(dkeyB, sizeof(dkeyB))); PrintAndLog("Mifare ABA :\t %s", sprint_hex(dmkey, sizeof(dmkey))); PrintAndLog("Mifare Pwd :\t %s", sprint_hex(newpwd, sizeof(newpwd))); return 0; } // static uint8_t * diversify_key(uint8_t * key){ // for(int i=0; i<16; i++){ // if(i<=6) key[i]^=cuid[i]; // if(i>6) key[i]^=cuid[i%7]; // } // return key; // } // static void GenerateUIDe( uint8_t *uid, uint8_t len){ // for (int i=0; i