#include "pcf7931.h" #define T0_PCF 8 //period for the pcf7931 in us #define ALLOC 16 size_t DemodPCF7931(uint8_t **outBlocks) { uint8_t bits[256] = {0x00}; uint8_t blocks[8][16]; uint8_t *dest = BigBuf_get_addr(); int GraphTraceLen = BigBuf_max_traceLen(); if (GraphTraceLen > 18000) GraphTraceLen = 18000; int i = 2, j, lastval, bitidx, half_switch; int clock = 64; int tolerance = clock / 8; int pmc, block_done; int lc, warnings = 0; size_t num_blocks = 0; int lmin = 64, lmax = 192; uint8_t dir; BigBuf_Clear_keep_EM(); LFSetupFPGAForADC(95, true); DoAcquisition_default(0, true); /* Find first local max/min */ if (dest[1] > dest[0]) { while (i < GraphTraceLen) { if (!(dest[i] > dest[i - 1]) && dest[i] > lmax) break; i++; } dir = 0; } else { while (i < GraphTraceLen) { if (!(dest[i] < dest[i - 1]) && dest[i] < lmin) break; i++; } dir = 1; } lastval = i++; half_switch = 0; pmc = 0; block_done = 0; for (bitidx = 0; i < GraphTraceLen; i++) { if ((dest[i - 1] > dest[i] && dir == 1 && dest[i] > lmax) || (dest[i - 1] < dest[i] && dir == 0 && dest[i] < lmin)) { lc = i - lastval; lastval = i; // Switch depending on lc length: // Tolerance is 1/8 of clock rate (arbitrary) if (ABS(lc - clock / 4) < tolerance) { // 16T0 if ((i - pmc) == lc) { /* 16T0 was previous one */ /* It's a PMC ! */ i += (128 + 127 + 16 + 32 + 33 + 16) - 1; lastval = i; pmc = 0; block_done = 1; } else { pmc = i; } } else if (ABS(lc - clock / 2) < tolerance) { // 32TO if ((i - pmc) == lc) { /* 16T0 was previous one */ /* It's a PMC ! */ i += (128 + 127 + 16 + 32 + 33) - 1; lastval = i; pmc = 0; block_done = 1; } else if (half_switch == 1) { bits[bitidx++] = 0; half_switch = 0; } else half_switch++; } else if (ABS(lc - clock) < tolerance) { // 64TO bits[bitidx++] = 1; } else { // Error if (++warnings > 10) { Dbprintf("Error: too many detection errors, aborting."); return 0; } } if (block_done == 1) { if (bitidx == 128) { for (j = 0; j < 16; ++j) { blocks[num_blocks][j] = 128 * bits[j * 8 + 7] + 64 * bits[j * 8 + 6] + 32 * bits[j * 8 + 5] + 16 * bits[j * 8 + 4] + 8 * bits[j * 8 + 3] + 4 * bits[j * 8 + 2] + 2 * bits[j * 8 + 1] + bits[j * 8] ; } num_blocks++; } bitidx = 0; block_done = 0; half_switch = 0; } if (i < GraphTraceLen) dir = (dest[i - 1] > dest[i]) ? 0 : 1; } if (bitidx == 255) bitidx = 0; warnings = 0; if (num_blocks == 4) break; } memcpy(outBlocks, blocks, 16 * num_blocks); return num_blocks; } bool IsBlock0PCF7931(uint8_t *block) { // assuming all RFU bits are set to 0 // if PAC is enabled password is set to 0 if (block[7] == 0x01) { if (!memcmp(block, "\x00\x00\x00\x00\x00\x00\x00", 7) && !memcmp(block + 9, "\x00\x00\x00\x00\x00\x00\x00", 7)) return true; } else if (block[7] == 0x00) { if (!memcmp(block + 9, "\x00\x00\x00\x00\x00\x00\x00", 7)) return true; } return false; } bool IsBlock1PCF7931(uint8_t *block) { // assuming all RFU bits are set to 0 if (block[10] == 0 && block[11] == 0 && block[12] == 0 && block[13] == 0) { if ((block[14] & 0x7f) <= 9 && block[15] <= 9) { return true; } } return false; } void ReadPCF7931() { int found_blocks = 0; // successfully read blocks int max_blocks = 8; // readable blocks uint8_t memory_blocks[8][17]; // PCF content uint8_t single_blocks[8][17]; // PFC blocks with unknown position int single_blocks_cnt = 0; size_t n = 0; // transmitted blocks uint8_t tmp_blocks[4][16]; // temporary read buffer uint8_t found_0_1 = 0; // flag: blocks 0 and 1 were found int errors = 0; // error counter int tries = 0; // tries counter memset(memory_blocks, 0, 8 * 17 * sizeof(uint8_t)); memset(single_blocks, 0, 8 * 17 * sizeof(uint8_t)); int i = 0, j = 0; do { i = 0; memset(tmp_blocks, 0, 4 * 16 * sizeof(uint8_t)); n = DemodPCF7931((uint8_t **)tmp_blocks); if (!n) ++errors; // exit if no block is received if (errors >= 10 && found_blocks == 0 && single_blocks_cnt == 0) { Dbprintf("Error, no tag or bad tag"); return; } // exit if too many errors during reading if (tries > 50 && (2 * errors > tries)) { Dbprintf("Error reading the tag"); Dbprintf("Here is the partial content"); goto end; } // our logic breaks if we don't get at least two blocks if (n < 2) { if (n == 0 || !memcmp(tmp_blocks[0], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) continue; if (single_blocks_cnt < max_blocks) { for (i = 0; i < single_blocks_cnt; ++i) { if (!memcmp(single_blocks[i], tmp_blocks[0], 16)) { j = 1; break; } } if (j != 1) { memcpy(single_blocks[single_blocks_cnt], tmp_blocks[0], 16); single_blocks_cnt++; } j = 0; } ++tries; continue; } Dbprintf("(dbg) got %d blocks (%d/%d found) (%d tries, %d errors)", n, found_blocks, (max_blocks == 0 ? found_blocks : max_blocks), tries, errors); i = 0; if (!found_0_1) { while (i < n - 1) { if (IsBlock0PCF7931(tmp_blocks[i]) && IsBlock1PCF7931(tmp_blocks[i + 1])) { found_0_1 = 1; memcpy(memory_blocks[0], tmp_blocks[i], 16); memcpy(memory_blocks[1], tmp_blocks[i + 1], 16); memory_blocks[0][ALLOC] = memory_blocks[1][ALLOC] = 1; // block 1 tells how many blocks are going to be sent max_blocks = MAX((memory_blocks[1][14] & 0x7f), memory_blocks[1][15]) + 1; found_blocks = 2; Dbprintf("Found blocks 0 and 1. PCF is transmitting %d blocks.", max_blocks); // handle the following blocks for (j = i + 2; j < n; ++j) { memcpy(memory_blocks[found_blocks], tmp_blocks[j], 16); memory_blocks[found_blocks][ALLOC] = 1; ++found_blocks; } break; } ++i; } } else { // Trying to re-order blocks // Look for identical block in memory blocks while (i < n - 1) { // skip all zeroes blocks if (memcmp(tmp_blocks[i], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { for (j = 1; j < max_blocks - 1; ++j) { if (!memcmp(tmp_blocks[i], memory_blocks[j], 16) && !memory_blocks[j + 1][ALLOC]) { memcpy(memory_blocks[j + 1], tmp_blocks[i + 1], 16); memory_blocks[j + 1][ALLOC] = 1; if (++found_blocks >= max_blocks) goto end; } } } if (memcmp(tmp_blocks[i + 1], "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00", 16)) { for (j = 0; j < max_blocks; ++j) { if (!memcmp(tmp_blocks[i + 1], memory_blocks[j], 16) && !memory_blocks[(j == 0 ? max_blocks : j) - 1][ALLOC]) { if (j == 0) { memcpy(memory_blocks[max_blocks - 1], tmp_blocks[i], 16); memory_blocks[max_blocks - 1][ALLOC] = 1; } else { memcpy(memory_blocks[j - 1], tmp_blocks[i], 16); memory_blocks[j - 1][ALLOC] = 1; } if (++found_blocks >= max_blocks) goto end; } } } ++i; } } ++tries; if (BUTTON_PRESS()) { Dbprintf("Button pressed, stopping."); goto end; } } while (found_blocks != max_blocks); end: Dbprintf("-----------------------------------------"); Dbprintf("Memory content:"); Dbprintf("-----------------------------------------"); for (i = 0; i < max_blocks; ++i) { if (memory_blocks[i][ALLOC]) print_result("Block", memory_blocks[i], 16); else Dbprintf("", i); } Dbprintf("-----------------------------------------"); if (found_blocks < max_blocks) { Dbprintf("-----------------------------------------"); Dbprintf("Blocks with unknown position:"); Dbprintf("-----------------------------------------"); for (i = 0; i < single_blocks_cnt; ++i) print_result("Block", single_blocks[i], 16); Dbprintf("-----------------------------------------"); } reply_old(CMD_ACK, 0, 0, 0, 0, 0); } static void RealWritePCF7931(uint8_t *pass, uint16_t init_delay, int32_t l, int32_t p, uint8_t address, uint8_t byte, uint8_t data) { uint32_t tab[1024] = {0}; // data times frame uint32_t u = 0; uint8_t parity = 0; bool comp = 0; //BUILD OF THE DATA FRAME //alimentation of the tag (time for initializing) AddPatternPCF7931(init_delay, 0, 8192 / 2 * T0_PCF, tab); AddPatternPCF7931(8192 / 2 * T0_PCF + 319 * T0_PCF + 70, 3 * T0_PCF, 29 * T0_PCF, tab); //password indication bit AddBitPCF7931(1, tab, l, p); //password (on 56 bits) AddBytePCF7931(pass[0], tab, l, p); AddBytePCF7931(pass[1], tab, l, p); AddBytePCF7931(pass[2], tab, l, p); AddBytePCF7931(pass[3], tab, l, p); AddBytePCF7931(pass[4], tab, l, p); AddBytePCF7931(pass[5], tab, l, p); AddBytePCF7931(pass[6], tab, l, p); //programming mode (0 or 1) AddBitPCF7931(0, tab, l, p); //block adress on 6 bits for (u = 0; u < 6; ++u) { if (address & (1 << u)) { // bit 1 ++parity; AddBitPCF7931(1, tab, l, p); } else { // bit 0 AddBitPCF7931(0, tab, l, p); } } //byte address on 4 bits for (u = 0; u < 4; ++u) { if (byte & (1 << u)) { // bit 1 parity++; AddBitPCF7931(1, tab, l, p); } else // bit 0 AddBitPCF7931(0, tab, l, p); } //data on 8 bits for (u = 0; u < 8; u++) { if (data & (1 << u)) { // bit 1 parity++; AddBitPCF7931(1, tab, l, p); } else //bit 0 AddBitPCF7931(0, tab, l, p); } //parity bit if ((parity % 2) == 0) AddBitPCF7931(0, tab, l, p); //even parity else AddBitPCF7931(1, tab, l, p);//odd parity //time access memory AddPatternPCF7931(5120 + 2680, 0, 0, tab); //conversion of the scale time for (u = 0; u < 500; ++u) tab[u] = (tab[u] * 3) / 2; //compensation of the counter reload while (!comp) { comp = 1; for (u = 0; tab[u] != 0; ++u) if (tab[u] > 0xFFFF) { tab[u] -= 0xFFFF; comp = 0; } } SendCmdPCF7931(tab); } /* Write on a byte of a PCF7931 tag * @param address : address of the block to write @param byte : address of the byte to write @param data : data to write */ void WritePCF7931(uint8_t pass1, uint8_t pass2, uint8_t pass3, uint8_t pass4, uint8_t pass5, uint8_t pass6, uint8_t pass7, uint16_t init_delay, int32_t l, int32_t p, uint8_t address, uint8_t byte, uint8_t data) { Dbprintf("Initialization delay : %d us", init_delay); Dbprintf("Offsets : %d us on the low pulses width, %d us on the low pulses positions", l, p); Dbprintf("Password (LSB first on each byte): %02x %02x %02x %02x %02x %02x %02x", pass1, pass2, pass3, pass4, pass5, pass6, pass7); Dbprintf("Block address : %02x", address); Dbprintf("Byte address : %02x", byte); Dbprintf("Data : %02x", data); uint8_t password[7] = {pass1, pass2, pass3, pass4, pass5, pass6, pass7}; RealWritePCF7931(password, init_delay, l, p, address, byte, data); } /* Send a trame to a PCF7931 tags * @param tab : array of the data frame */ void SendCmdPCF7931(uint32_t *tab) { uint16_t u = 0, tempo = 0; Dbprintf("Sending data frame..."); FpgaDownloadAndGo(FPGA_BITSTREAM_LF); FpgaSendCommand(FPGA_CMD_SET_DIVISOR, 95); //125Khz FpgaWriteConfWord(FPGA_MAJOR_MODE_LF_PASSTHRU); LED_A_ON(); // steal this pin from the SSP and use it to control the modulation AT91C_BASE_PIOA->PIO_PER = GPIO_SSC_DOUT; AT91C_BASE_PIOA->PIO_OER = GPIO_SSC_DOUT; //initialization of the timer AT91C_BASE_PMC->PMC_PCER |= (0x1 << AT91C_ID_TC0); AT91C_BASE_TCB->TCB_BMR = AT91C_TCB_TC0XC0S_NONE | AT91C_TCB_TC1XC1S_TIOA0 | AT91C_TCB_TC2XC2S_NONE; AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable AT91C_BASE_TC0->TC_CMR = AT91C_TC_CLKS_TIMER_DIV3_CLOCK; //clock at 48/32 MHz AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKEN; AT91C_BASE_TCB->TCB_BCR = 1; tempo = AT91C_BASE_TC0->TC_CV; for (u = 0; tab[u] != 0; u += 3) { // modulate antenna HIGH(GPIO_SSC_DOUT); while (tempo != tab[u]) tempo = AT91C_BASE_TC0->TC_CV; // stop modulating antenna LOW(GPIO_SSC_DOUT); while (tempo != tab[u + 1]) tempo = AT91C_BASE_TC0->TC_CV; // modulate antenna HIGH(GPIO_SSC_DOUT); while (tempo != tab[u + 2]) tempo = AT91C_BASE_TC0->TC_CV; } LED_A_OFF(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(200); AT91C_BASE_TC0->TC_CCR = AT91C_TC_CLKDIS; // timer disable LED(0xFFFF, 1000); } /* Add a byte for building the data frame of PCF7931 tags * @param b : byte to add * @param tab : array of the data frame * @param l : offset on low pulse width * @param p : offset on low pulse positioning */ bool AddBytePCF7931(uint8_t byte, uint32_t *tab, int32_t l, int32_t p) { uint32_t u; for (u = 0; u < 8; ++u) { if (byte & (1 << u)) { //bit is 1 if (AddBitPCF7931(1, tab, l, p) == 1) return 1; } else { //bit is 0 if (AddBitPCF7931(0, tab, l, p) == 1) return 1; } } return 0; } /* Add a bits for building the data frame of PCF7931 tags * @param b : bit to add * @param tab : array of the data frame * @param l : offset on low pulse width * @param p : offset on low pulse positioning */ bool AddBitPCF7931(bool b, uint32_t *tab, int32_t l, int32_t p) { uint8_t u = 0; //we put the cursor at the last value of the array for (u = 0; tab[u] != 0; u += 3) { } if (b == 1) { //add a bit 1 if (u == 0) tab[u] = 34 * T0_PCF + p; else tab[u] = 34 * T0_PCF + tab[u - 1] + p; tab[u + 1] = 6 * T0_PCF + tab[u] + l; tab[u + 2] = 88 * T0_PCF + tab[u + 1] - l - p; return 0; } else { //add a bit 0 if (u == 0) tab[u] = 98 * T0_PCF + p; else tab[u] = 98 * T0_PCF + tab[u - 1] + p; tab[u + 1] = 6 * T0_PCF + tab[u] + l; tab[u + 2] = 24 * T0_PCF + tab[u + 1] - l - p; return 0; } return 1; } /* Add a custom pattern in the data frame * @param a : delay of the first high pulse * @param b : delay of the low pulse * @param c : delay of the last high pulse * @param tab : array of the data frame */ bool AddPatternPCF7931(uint32_t a, uint32_t b, uint32_t c, uint32_t *tab) { uint32_t u = 0; for (u = 0; tab[u] != 0; u += 3) {} //we put the cursor at the last value of the array tab[u] = (u == 0) ? a : a + tab[u - 1]; tab[u + 1] = b + tab[u]; tab[u + 2] = c + tab[u + 1]; return 0; }