//----------------------------------------------------------------------------- // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Low frequency Honeywell NexWatch tag commands // PSK1 RF/16, RF/2, 128 bits long (known) //----------------------------------------------------------------------------- #include "cmdlfnexwatch.h" #include // PRIu #include #include // tolower #include // free, alloc #include "commonutil.h" // ARRAYLEN #include "cmdparser.h" // command_t #include "comms.h" #include "ui.h" #include "cmddata.h" // preamblesearch #include "cmdlf.h" #include "lfdemod.h" #include "protocols.h" // t55xx defines #include "cmdlft55xx.h" // clone.. static int CmdHelp(const char *Cmd); static int usage_lf_nexwatch_clone(void) { PrintAndLogEx(NORMAL, "clone a Nexwatch tag to a T55x7 tag."); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: lf nexwatch clone [h] [b ]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, " r : raw hex data. 16 bytes max"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " lf nexwatch clone r 5600000000213C9F8F150C"); return PM3_SUCCESS; } static int usage_lf_nexwatch_sim(void) { PrintAndLogEx(NORMAL, "Enables simulation of Nexwatch card"); PrintAndLogEx(NORMAL, "Simulation runs until the button is pressed or another USB command is issued."); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: lf nexwatch sim [h] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h : this help"); PrintAndLogEx(NORMAL, " r : raw hex data. 16 bytes max"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " lf nexwatch sim r 5600000000213C9F8F150C"); return PM3_SUCCESS; } /* static inline uint32_t bitcount(uint32_t a) { #if defined __GNUC__ return __builtin_popcountl(a); #else a = a - ((a >> 1) & 0x55555555); a = (a & 0x33333333) + ((a >> 2) & 0x33333333); return (((a + (a >> 4)) & 0x0f0f0f0f) * 0x01010101) >> 24; #endif } */ int demodNexWatch(void) { if (PSKDemod("", false) != PM3_SUCCESS) { PrintAndLogEx(DEBUG, "DEBUG: Error - NexWatch can't demod signal"); return PM3_ESOFT; } bool invert = false; size_t size = DemodBufferLen; int idx = detectNexWatch(DemodBuffer, &size, &invert); if (idx <= 0) { if (idx == -1) PrintAndLogEx(DEBUG, "DEBUG: Error - NexWatch not enough samples"); // else if (idx == -2) // PrintAndLogEx(DEBUG, "DEBUG: Error - NexWatch only noise found"); // else if (idx == -3) // PrintAndLogEx(DEBUG, "DEBUG: Error - NexWatch problem during PSK demod"); else if (idx == -4) PrintAndLogEx(DEBUG, "DEBUG: Error - NexWatch preamble not found"); // else if (idx == -5) // PrintAndLogEx(DEBUG, "DEBUG: Error - NexWatch size not correct: %d", size); else PrintAndLogEx(DEBUG, "DEBUG: Error - NexWatch error %d", idx); return PM3_ESOFT; } // skip the 4 first bits from the nexwatch preamble identification (we use 4 extra zeros..) idx += 4; setDemodBuff(DemodBuffer, size, idx); setClockGrid(g_DemodClock, g_DemodStartIdx + (idx * g_DemodClock)); if (invert) { PrintAndLogEx(INFO, "Had to Invert - probably NexKey"); for (size_t i = 0; i < size; i++) DemodBuffer[i] ^= 1; } // get rawid uint32_t rawid = 0; for (uint8_t k = 0; k < 4; k++) { for (uint8_t m = 0; m < 8; m++) { rawid = (rawid << 1) | DemodBuffer[m + k + (m * 4)]; } } /* Descrambled id ref:: http://www.proxmark.org/forum/viewtopic.php?pid=14662#p14662 32bit UID: 00100100011001000011111100010010 bits numbered from left (MSB): 1234 5678 9012 34567 8901234567890 12 0010 0100 0110 0100 00111111000100 10 descramble: b1 b5 b9 b13 b17 b21 b25 b29 b2 b6 b10 b14 b18 b22 b26 b30 b3 b7 b11 b15 b19 b23 b27 b31 b4 b8 b12 b16 b20 b24 b28 b32 gives: 0000 0100 0111 0100 1010 1101 0000 1110 = 74755342 */ // Since the description is not zero indexed we adjust. #define DOFFSET 8 + 32 - 1 // descrambled id uint32_t d_id = 0; // b1 b5 b9 b13 d_id |= DemodBuffer[DOFFSET + 1] << 31; d_id |= DemodBuffer[DOFFSET + 5] << 30; d_id |= DemodBuffer[DOFFSET + 9] << 29; d_id |= DemodBuffer[DOFFSET + 13] << 28; // b17 b21 b25 b29 d_id |= DemodBuffer[DOFFSET + 17] << 27; d_id |= DemodBuffer[DOFFSET + 21] << 26; d_id |= DemodBuffer[DOFFSET + 25] << 25; d_id |= DemodBuffer[DOFFSET + 29] << 24; // b2 b6 b10 b14 d_id |= DemodBuffer[DOFFSET + 2] << 23; d_id |= DemodBuffer[DOFFSET + 6] << 22; d_id |= DemodBuffer[DOFFSET + 10] << 21; d_id |= DemodBuffer[DOFFSET + 14] << 20; // b18 b22 b26 b30 d_id |= DemodBuffer[DOFFSET + 18] << 19; d_id |= DemodBuffer[DOFFSET + 22] << 18; d_id |= DemodBuffer[DOFFSET + 26] << 17; d_id |= DemodBuffer[DOFFSET + 30] << 16; // b3 b7 b11 b15 d_id |= DemodBuffer[DOFFSET + 3] << 15; d_id |= DemodBuffer[DOFFSET + 7] << 14; d_id |= DemodBuffer[DOFFSET + 11] << 13; d_id |= DemodBuffer[DOFFSET + 15] << 12; // b19 b23 b27 b31 d_id |= DemodBuffer[DOFFSET + 19] << 11; d_id |= DemodBuffer[DOFFSET + 23] << 10; d_id |= DemodBuffer[DOFFSET + 27] << 9; d_id |= DemodBuffer[DOFFSET + 31] << 8; // b4 b8 b12 b16 d_id |= DemodBuffer[DOFFSET + 4] << 7; d_id |= DemodBuffer[DOFFSET + 8] << 6; d_id |= DemodBuffer[DOFFSET + 12] << 5; d_id |= DemodBuffer[DOFFSET + 16] << 4; // b20 b24 b28 b32 d_id |= DemodBuffer[DOFFSET + 20] << 3; d_id |= DemodBuffer[DOFFSET + 24] << 2; d_id |= DemodBuffer[DOFFSET + 28] << 1; d_id |= DemodBuffer[DOFFSET + 32]; uint8_t mode = bytebits_to_byte(DemodBuffer + 72, 4); uint8_t parity = bytebits_to_byte(DemodBuffer + 76, 4); uint8_t chk = bytebits_to_byte(DemodBuffer + 80, 8); // parity check // from 32 hex id, 4 mode, descramble par (1234) -> (4231) uint8_t xor_par = 0; for (uint8_t i = 40; i < 76; i +=4) { xor_par ^= bytebits_to_byte(DemodBuffer + i, 4); } uint8_t calc_parity ; calc_parity = (((xor_par >> 3 ) & 1) ); calc_parity |= (((xor_par >> 1 ) & 1) << 1); calc_parity |= (((xor_par >> 2 ) & 1) << 2); calc_parity |= ((xor_par & 1) << 3); // Checksum uint8_t calc; calc = ((d_id >> 24) & 0xFF); calc -= ((d_id >> 16) & 0xFF); calc -= ((d_id >> 8) & 0xFF); calc -= (d_id & 0xFF); uint8_t revpar = (reflect8(calc_parity) >> 4); typedef struct { uint8_t magic; char desc[10]; uint8_t chk; } nexwatch_magic_t; nexwatch_magic_t items[] = { {0xBE, "Quadrakey", 0}, {0x88, "Nexkey", 0} }; uint8_t m_idx; for ( m_idx = 0; m_idx < ARRAYLEN(items); m_idx++) { uint8_t foo = calc; foo -= items[m_idx].magic; foo -= revpar; foo = reflect8(foo); items[m_idx].chk = foo; if (foo == chk) { break; } } // detect keytype // output PrintAndLogEx(SUCCESS, " NexWatch raw id : " _YELLOW_("0x%"PRIx32) , rawid); PrintAndLogEx(SUCCESS, " 88bit id : " _YELLOW_("%"PRIu32) " " _YELLOW_("0x%"PRIx32), d_id, d_id); PrintAndLogEx(SUCCESS, " mode : %x", mode); PrintAndLogEx(SUCCESS, " parity : %s [%X == %X]", (parity == calc_parity) ? _GREEN_("ok") : _RED_("fail"), parity, calc_parity); if (m_idx < 3) { PrintAndLogEx(SUCCESS, " checksum : %s [%X]", _GREEN_("ok"), chk); PrintAndLogEx(SUCCESS, " Keytype : " _GREEN_("%s"), items[m_idx].desc); } else { PrintAndLogEx(WARNING, " checksum : %s [%X == %X]", _RED_("fail"), chk, items[m_idx].chk); } // bits to hex (output used for SIM/CLONE cmd) CmdPrintDemodBuff("x"); // PrintAndLogEx(INFO, "Raw: %s", sprint_hex_inrow(DemodBuffer, size)); return PM3_SUCCESS; } static int CmdNexWatchDemod(const char *Cmd) { (void)Cmd; return demodNexWatch(); } //by marshmellow //see ASKDemod for what args are accepted static int CmdNexWatchRead(const char *Cmd) { lf_read(false, 20000); return CmdNexWatchDemod(Cmd); } static int CmdNexWatchClone(const char *Cmd) { // 56000000 00213C9F 8F150C00 00000000 uint32_t blocks[5]; bool errors = false; uint8_t cmdp = 0; int datalen = 0; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_lf_nexwatch_clone(); case 'r': { // skip first block, 4*4 = 16 bytes left uint8_t rawhex[16] = {0}; int res = param_gethex_to_eol(Cmd, cmdp + 1, rawhex, sizeof(rawhex), &datalen); if (res != 0) errors = true; for (uint8_t i = 1; i < ARRAYLEN(blocks); i++) { blocks[i] = bytes_to_num(rawhex + ((i - 1) * 4), sizeof(uint32_t)); } cmdp += 2; break; } default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } if (errors || cmdp == 0) return usage_lf_nexwatch_clone(); //Nexwatch - compat mode, PSK, data rate 40, 3 data blocks blocks[0] = T55x7_MODULATION_PSK1 | T55x7_BITRATE_RF_32 | 4 << T55x7_MAXBLOCK_SHIFT; PrintAndLogEx(INFO, "Preparing to clone NexWatch to T55x7 with raw hex"); print_blocks(blocks, ARRAYLEN(blocks)); int res = clone_t55xx_tag(blocks, ARRAYLEN(blocks)); PrintAndLogEx(SUCCESS, "Done"); PrintAndLogEx(HINT, "Hint: try " _YELLOW_("`lf nexwatch read`") " to verify"); return res; } static int CmdNexWatchSim(const char *Cmd) { uint8_t cmdp = 0; bool errors = false; int rawlen = 0; uint8_t rawhex[16] = {0}; uint32_t rawblocks[4]; uint8_t bs[128]; memset(bs, 0, sizeof(bs)); while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_lf_nexwatch_clone(); case 'r': { int res = param_gethex_to_eol(Cmd, cmdp + 1, rawhex, sizeof(rawhex), &rawlen); if (res != 0) errors = true; cmdp += 2; break; } default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } if (errors || cmdp == 0) return usage_lf_nexwatch_sim(); // hex to bits. for (size_t i = 0; i < ARRAYLEN(rawblocks); i++) { rawblocks[i] = bytes_to_num(rawhex + (i * sizeof(uint32_t)), sizeof(uint32_t)); num_to_bytebits(rawblocks[i], sizeof(uint32_t) * 8, bs + (i * sizeof(uint32_t) * 8)); } PrintAndLogEx(SUCCESS, "Simulating NexWatch - raw: %s", sprint_hex_inrow(rawhex, rawlen)); lf_psksim_t *payload = calloc(1, sizeof(lf_psksim_t) + sizeof(bs)); payload->carrier = 2; payload->invert = 0; payload->clock = 32; memcpy(payload->data, bs, sizeof(bs)); clearCommandBuffer(); SendCommandNG(CMD_LF_PSK_SIMULATE, (uint8_t *)payload, sizeof(lf_psksim_t) + sizeof(bs)); free(payload); PacketResponseNG resp; WaitForResponse(CMD_LF_PSK_SIMULATE, &resp); PrintAndLogEx(INFO, "Done"); if (resp.status != PM3_EOPABORTED) return resp.status; return PM3_SUCCESS; } static command_t CommandTable[] = { {"help", CmdHelp, AlwaysAvailable, "This help"}, {"demod", CmdNexWatchDemod, AlwaysAvailable, "Demodulate a NexWatch tag (nexkey, quadrakey) from the GraphBuffer"}, {"read", CmdNexWatchRead, IfPm3Lf, "Attempt to Read and Extract tag data from the antenna"}, {"clone", CmdNexWatchClone, IfPm3Lf, "clone NexWatch tag to T55x7"}, {"sim", CmdNexWatchSim, IfPm3Lf, "simulate NexWatch tag"}, {NULL, NULL, NULL, NULL} }; static int CmdHelp(const char *Cmd) { (void)Cmd; // Cmd is not used so far CmdsHelp(CommandTable); return PM3_SUCCESS; } int CmdLFNEXWATCH(const char *Cmd) { clearCommandBuffer(); return CmdsParse(CommandTable, Cmd); } int detectNexWatch(uint8_t *dest, size_t *size, bool *invert) { uint8_t preamble[28] = {0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; // sanity check. if (*size < sizeof(preamble) + 100) return -1; size_t startIdx = 0; if (!preambleSearch(DemodBuffer, preamble, sizeof(preamble), size, &startIdx)) { // if didn't find preamble try again inverting uint8_t preamble_i[28] = {1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; if (!preambleSearch(DemodBuffer, preamble_i, sizeof(preamble_i), size, &startIdx)) return -4; *invert ^= 1; } // size tests? return (int) startIdx; }