//----------------------------------------------------------------------------- // Merlok - June 2011 // Roel - Dec 2009 // Unknown author // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // MIFARE Darkside hack //----------------------------------------------------------------------------- #define __STDC_FORMAT_MACROS #include #define llx PRIx64 #include "nonce2key.h" #include "mifarehost.h" #include "ui.h" int compar_state(const void * a, const void * b) { // didn't work: (the result is truncated to 32 bits) //return (*(int64_t*)b - *(int64_t*)a); // better: if (*(int64_t*)b == *(int64_t*)a) return 0; else if (*(int64_t*)b > *(int64_t*)a) return 1; else return -1; } int nonce2key(uint32_t uid, uint32_t nt, uint32_t nr, uint64_t par_info, uint64_t ks_info, uint64_t * key) { struct Crypto1State *state; uint32_t i, pos, rr, nr_diff, key_count;//, ks1, ks2; byte_t bt, ks3x[8], par[8][8]; uint64_t key_recovered; int64_t *state_s; static uint32_t last_uid; static int64_t *last_keylist; rr = 0; if (last_uid != uid && last_keylist != NULL) { free(last_keylist); last_keylist = NULL; } last_uid = uid; // Reset the last three significant bits of the reader nonce nr &= 0xffffff1f; PrintAndLog("\nuid(%08x) nt(%08x) par(%016"llx") ks(%016"llx") nr(%08"llx")\n\n", uid, nt, par_info, ks_info, nr); for (pos=0; pos<8; pos++) { ks3x[7-pos] = (ks_info >> (pos*8)) & 0x0f; bt = (par_info >> (pos*8)) & 0xff; for (i=0; i<8; i++) { par[7-pos][i] = (bt >> i) & 0x01; } } printf("|diff|{nr} |ks3|ks3^5|parity |\n"); printf("+----+--------+---+-----+---------------+\n"); for (i=0; i<8; i++) { nr_diff = nr | i << 5; printf("| %02x |%08x|", i << 5, nr_diff); printf(" %01x | %01x |", ks3x[i], ks3x[i]^5); for (pos=0; pos<7; pos++) printf("%01x,", par[i][pos]); printf("%01x|\n", par[i][7]); } printf("+----+--------+---+-----+---------------+\n"); if ( par_info == 0 ) PrintAndLog("Parity is all zero, try special attack! Wait for few more seconds..."); state = lfsr_common_prefix(nr, rr, ks3x, par, par_info==0); state_s = (int64_t*)state; //char filename[50] ; //sprintf(filename, "nt_%08x_%d.txt", nt, nr); //printf("name %s\n", filename); //FILE* fp = fopen(filename,"w"); for (i = 0; (state) && ((state + i)->odd != -1); i++) { lfsr_rollback_word(state+i, uid^nt, 0); crypto1_get_lfsr(state + i, &key_recovered); *(state_s + i) = key_recovered; //fprintf(fp, "%012llx\n",key_recovered); } //fclose(fp); if(!state) return 1; qsort(state_s, i, sizeof(*state_s), compar_state); *(state_s + i) = -1; //Create the intersection: if (par_info == 0 ) { if ( last_keylist != NULL) { int64_t *p1, *p2, *p3; p1 = p3 = last_keylist; p2 = state_s; while ( *p1 != -1 && *p2 != -1 ) { if (compar_state(p1, p2) == 0) { printf("p1:%"llx" p2:%"llx" p3:%"llx" key:%012"llx"\n", (uint64_t)(p1-last_keylist), (uint64_t)(p2-state_s), (uint64_t)(p3-last_keylist), *p1); *p3++ = *p1++; p2++; } else { while (compar_state(p1, p2) == -1) ++p1; while (compar_state(p1, p2) == 1) ++p2; } } key_count = p3 - last_keylist; } else { key_count = 0; } } else { last_keylist = state_s; key_count = i; } printf("key candidates count: %d\n", key_count); // The list may still contain several key candidates. Test each of them with mfCheckKeys int res; uint8_t keyBlock[6]; uint64_t key64; for (i = 0; i < key_count; i++) { key64 = *(last_keylist + i); num_to_bytes(key64, 6, keyBlock); key64 = 0; res = mfCheckKeys(0, 0, false, 1, keyBlock, &key64); if (!res) { *key = key64; free(last_keylist); last_keylist = NULL; if (par_info == 0) free(state); return 0; } } free(last_keylist); last_keylist = state_s; return 1; } int tryMfk32(uint64_t myuid, uint8_t *data, uint8_t *outputkey ){ struct Crypto1State *s,*t; uint64_t key; // recovered key uint32_t uid; // serial number uint32_t nt; // tag challenge uint32_t nr0_enc; // first encrypted reader challenge uint32_t ar0_enc; // first encrypted reader response uint32_t nr1_enc; // second encrypted reader challenge uint32_t ar1_enc; // second encrypted reader response bool isSuccess = FALSE; int counter = 0; uid = myuid;//(uint32_t)bytes_to_num(data + 0, 4); nt = *(uint32_t*)(data+8); nr0_enc = *(uint32_t*)(data+12); ar0_enc = *(uint32_t*)(data+16); nr1_enc = *(uint32_t*)(data+32); ar1_enc = *(uint32_t*)(data+36); // PrintAndLog("recovering key for:"); // PrintAndLog(" uid: %08x %08x",uid, myuid); // PrintAndLog(" nt: %08x",nt); // PrintAndLog(" {nr_0}: %08x",nr0_enc); // PrintAndLog(" {ar_0}: %08x",ar0_enc); // PrintAndLog(" {nr_1}: %08x",nr1_enc); // PrintAndLog(" {ar_1}: %08x",ar1_enc); s = lfsr_recovery32(ar0_enc ^ prng_successor(nt, 64), 0); for(t = s; t->odd | t->even; ++t) { lfsr_rollback_word(t, 0, 0); lfsr_rollback_word(t, nr0_enc, 1); lfsr_rollback_word(t, uid ^ nt, 0); crypto1_get_lfsr(t, &key); crypto1_word(t, uid ^ nt, 0); crypto1_word(t, nr1_enc, 1); if (ar1_enc == (crypto1_word(t, 0, 0) ^ prng_successor(nt, 64))) { PrintAndLog("Found Key: [%012"llx"]",key); isSuccess = TRUE; ++counter; if (counter==20) break; } } free(s); return isSuccess; } int tryMfk32_moebius(uint64_t myuid, uint8_t *data, uint8_t *outputkey ){ struct Crypto1State *s,*t; uint64_t key; // recovered key uint32_t uid; // serial number uint32_t nt0; // tag challenge first uint32_t nt1; // tag challenge second uint32_t nr0_enc; // first encrypted reader challenge uint32_t ar0_enc; // first encrypted reader response uint32_t nr1_enc; // second encrypted reader challenge uint32_t ar1_enc; // second encrypted reader response bool isSuccess = FALSE; int counter = 0; uid = myuid;//(uint32_t)bytes_to_num(data + 0, 4); nt0 = *(uint32_t*)(data+8); nr0_enc = *(uint32_t*)(data+12); ar0_enc = *(uint32_t*)(data+16); nt1 = *(uint32_t*)(data+8); nr1_enc = *(uint32_t*)(data+32); ar1_enc = *(uint32_t*)(data+36); s = lfsr_recovery32(ar0_enc ^ prng_successor(nt0, 64), 0); for(t = s; t->odd | t->even; ++t) { lfsr_rollback_word(t, 0, 0); lfsr_rollback_word(t, nr0_enc, 1); lfsr_rollback_word(t, uid ^ nt0, 0); crypto1_get_lfsr(t, &key); crypto1_word(t, uid ^ nt1, 0); crypto1_word(t, nr1_enc, 1); if (ar1_enc == (crypto1_word(t, 0, 0) ^ prng_successor(nt1, 64))) { PrintAndLog("Found Key: [%012"llx"]",key); isSuccess = TRUE; ++counter; if (counter==20) break; } } free(s); return isSuccess; } int tryMfk64(uint64_t myuid, uint8_t *data, uint8_t *outputkey ){ struct Crypto1State *revstate; uint64_t key; // recovered key uint32_t uid; // serial number uint32_t nt; // tag challenge uint32_t nr_enc; // encrypted reader challenge uint32_t ar_enc; // encrypted reader response uint32_t at_enc; // encrypted tag response uint32_t ks2; // keystream used to encrypt reader response uint32_t ks3; // keystream used to encrypt tag response struct Crypto1State mpcs = {0, 0}; struct Crypto1State *pcs; pcs = &mpcs; uid = myuid;//(uint32_t)bytes_to_num(data + 0, 4); nt = *(uint32_t*)(data+8); nr_enc = *(uint32_t*)(data+12); ar_enc = *(uint32_t*)(data+16); crypto1_word(pcs, nr_enc , 1); at_enc = prng_successor(nt, 96) ^ crypto1_word(pcs, 0, 0); // printf("Recovering key for:\n"); // printf(" uid: %08x\n",uid); // printf(" nt: %08x\n",nt); // printf(" {nr}: %08x\n",nr_enc); // printf(" {ar}: %08x\n",ar_enc); // printf(" {at}: %08x\n",at_enc); // Extract the keystream from the messages ks2 = ar_enc ^ prng_successor(nt, 64); ks3 = at_enc ^ prng_successor(nt, 96); revstate = lfsr_recovery64(ks2, ks3); lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, 0, 0); lfsr_rollback_word(revstate, nr_enc, 1); lfsr_rollback_word(revstate, uid ^ nt, 0); crypto1_get_lfsr(revstate, &key); PrintAndLog("Found Key: [%012"llx"]",key); crypto1_destroy(revstate); crypto1_destroy(pcs); return 0; }