//----------------------------------------------------------------------------- // Copyright (C) 2014 // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Low frequency demod/decode commands //----------------------------------------------------------------------------- #include #include #include "lfdemod.h" uint8_t justNoise(uint8_t *BitStream, size_t size) { static const uint8_t THRESHOLD = 123; //test samples are not just noise uint8_t justNoise1 = 1; for(size_t idx=0; idx < size && justNoise1 ;idx++){ justNoise1 = BitStream[idx] < THRESHOLD; } return justNoise1; } //by marshmellow //get high and low values of a wave with passed in fuzz factor. also return noise test = 1 for passed or 0 for only noise int getHiLo(uint8_t *BitStream, size_t size, int *high, int *low, uint8_t fuzzHi, uint8_t fuzzLo) { *high=0; *low=255; // get high and low thresholds for (size_t i=0; i < size; i++){ if (BitStream[i] > *high) *high = BitStream[i]; if (BitStream[i] < *low) *low = BitStream[i]; } if (*high < 123) return -1; // just noise *high = ((*high-128)*fuzzHi + 12800)/100; *low = ((*low-128)*fuzzLo + 12800)/100; return 1; } // by marshmellow // pass bits to be tested in bits, length bits passed in bitLen, and parity type (even=0 | odd=1) in pType // returns 1 if passed uint8_t parityTest(uint32_t bits, uint8_t bitLen, uint8_t pType) { uint8_t ans = 0; for (uint8_t i = 0; i < bitLen; i++){ ans ^= ((bits >> i) & 1); } //PrintAndLog("DEBUG: ans: %d, ptype: %d",ans,pType); return (ans == pType); } //by marshmellow //search for given preamble in given BitStream and return success=1 or fail=0 and startIndex and length uint8_t preambleSearch(uint8_t *BitStream, uint8_t *preamble, size_t pLen, size_t *size, size_t *startIdx) { uint8_t foundCnt=0; for (int idx=0; idx < *size - pLen; idx++){ if (memcmp(BitStream+idx, preamble, pLen) == 0){ //first index found foundCnt++; if (foundCnt == 1){ *startIdx = idx; } if (foundCnt == 2){ *size = idx - *startIdx; return 1; } } } return 0; } //by marshmellow //takes 1s and 0s and searches for EM410x format - output EM ID uint8_t Em410xDecode(uint8_t *BitStream, size_t *size, size_t *startIdx, uint32_t *hi, uint64_t *lo) { //no arguments needed - built this way in case we want this to be a direct call from "data " cmds in the future // otherwise could be a void with no arguments //set defaults uint32_t i = 0; if (BitStream[1]>1) return 0; //allow only 1s and 0s // 111111111 bit pattern represent start of frame // include 0 in front to help get start pos uint8_t preamble[] = {0,1,1,1,1,1,1,1,1,1}; uint32_t idx = 0; uint32_t parityBits = 0; uint8_t errChk = 0; uint8_t FmtLen = 10; *startIdx = 0; errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, startIdx); if (errChk == 0 || *size < 64) return 0; if (*size > 64) FmtLen = 22; *startIdx += 1; //get rid of 0 from preamble idx = *startIdx + 9; for (i=0; i> 63); *lo = (*lo << 1) | (BitStream[(i*5)+ii+idx]); } } if (errChk != 0) return 1; //skip last 5 bit parity test for simplicity. // *size = 64 | 128; return 0; } //by marshmellow //demodulates strong heavily clipped samples int cleanAskRawDemod(uint8_t *BinStream, size_t *size, int clk, int invert, int high, int low) { size_t bitCnt=0, smplCnt=0, errCnt=0; uint8_t waveHigh = 0; for (size_t i=0; i < *size; i++){ if (BinStream[i] >= high && waveHigh){ smplCnt++; } else if (BinStream[i] <= low && !waveHigh){ smplCnt++; } else { //transition if ((BinStream[i] >= high && !waveHigh) || (BinStream[i] <= low && waveHigh)){ if (smplCnt > clk-(clk/4)-1) { //full clock if (smplCnt > clk + (clk/4)+1) { //too many samples errCnt++; BinStream[bitCnt++]=7; } else if (waveHigh) { BinStream[bitCnt++] = invert; BinStream[bitCnt++] = invert; } else if (!waveHigh) { BinStream[bitCnt++] = invert ^ 1; BinStream[bitCnt++] = invert ^ 1; } waveHigh ^= 1; smplCnt = 0; } else if (smplCnt > (clk/2) - (clk/4)-1) { if (waveHigh) { BinStream[bitCnt++] = invert; } else if (!waveHigh) { BinStream[bitCnt++] = invert ^ 1; } waveHigh ^= 1; smplCnt = 0; } else if (!bitCnt) { //first bit waveHigh = (BinStream[i] >= high); smplCnt = 1; } else { smplCnt++; //transition bit oops } } else { //haven't hit new high or new low yet smplCnt++; } } } *size = bitCnt; return errCnt; } //by marshmellow void askAmp(uint8_t *BitStream, size_t size) { for(size_t i = 1; i=30) //large jump up BitStream[i]=127; else if(BitStream[i]-BitStream[i-1]<=-20) //large jump down BitStream[i]=-127; } return; } //by marshmellow //attempts to demodulate ask modulations, askType == 0 for ask/raw, askType==1 for ask/manchester int askdemod(uint8_t *BinStream, size_t *size, int *clk, int *invert, int maxErr, uint8_t amp, uint8_t askType) { if (*size==0) return -1; int start = DetectASKClock(BinStream, *size, clk, maxErr); //clock default if (*clk==0 || start < 0) return -3; if (*invert != 1) *invert = 0; if (amp==1) askAmp(BinStream, *size); uint8_t initLoopMax = 255; if (initLoopMax > *size) initLoopMax = *size; // Detect high and lows //25% clip in case highs and lows aren't clipped [marshmellow] int high, low; if (getHiLo(BinStream, initLoopMax, &high, &low, 75, 75) < 1) return -2; //just noise size_t errCnt = 0; // if clean clipped waves detected run alternate demod if (DetectCleanAskWave(BinStream, *size, high, low)) { errCnt = cleanAskRawDemod(BinStream, size, *clk, *invert, high, low); if (askType) //askman return manrawdecode(BinStream, size, 0); else //askraw return errCnt; } int lastBit; //set first clock check - can go negative size_t i, bitnum = 0; //output counter uint8_t midBit = 0; uint8_t tol = 0; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave if (*clk <= 32) tol = 1; //clock tolerance may not be needed anymore currently set to + or - 1 but could be increased for poor waves or removed entirely size_t MaxBits = 1024; lastBit = start - *clk; for (i = start; i < *size; ++i) { if (i-lastBit >= *clk-tol){ if (BinStream[i] >= high) { BinStream[bitnum++] = *invert; } else if (BinStream[i] <= low) { BinStream[bitnum++] = *invert ^ 1; } else if (i-lastBit >= *clk+tol) { if (bitnum > 0) { BinStream[bitnum++]=7; errCnt++; } } else { //in tolerance - looking for peak continue; } midBit = 0; lastBit += *clk; } else if (i-lastBit >= (*clk/2-tol) && !midBit && !askType){ if (BinStream[i] >= high) { BinStream[bitnum++] = *invert; } else if (BinStream[i] <= low) { BinStream[bitnum++] = *invert ^ 1; } else if (i-lastBit >= *clk/2+tol) { BinStream[bitnum] = BinStream[bitnum-1]; bitnum++; } else { //in tolerance - looking for peak continue; } midBit = 1; } if (bitnum >= MaxBits) break; } *size = bitnum; return errCnt; } //by marshmellow //take 10 and 01 and manchester decode //run through 2 times and take least errCnt int manrawdecode(uint8_t * BitStream, size_t *size, uint8_t invert) { uint16_t bitnum=0, MaxBits = 512, errCnt = 0; size_t i, ii; uint16_t bestErr = 1000, bestRun = 0; if (*size < 16) return -1; //find correct start position [alignment] for (ii=0;ii<2;++ii){ for (i=ii; i<*size-3; i+=2) if (BitStream[i]==BitStream[i+1]) errCnt++; if (bestErr>errCnt){ bestErr=errCnt; bestRun=ii; } errCnt=0; } //decode for (i=bestRun; i < *size-3; i+=2){ if(BitStream[i] == 1 && (BitStream[i+1] == 0)){ BitStream[bitnum++]=invert; } else if((BitStream[i] == 0) && BitStream[i+1] == 1){ BitStream[bitnum++]=invert^1; } else { BitStream[bitnum++]=7; } if(bitnum>MaxBits) break; } *size=bitnum; return bestErr; } //by marshmellow //encode binary data into binary manchester int ManchesterEncode(uint8_t *BitStream, size_t size) { size_t modIdx=20000, i=0; if (size>modIdx) return -1; for (size_t idx=0; idx < size; idx++){ BitStream[idx+modIdx++] = BitStream[idx]; BitStream[idx+modIdx++] = BitStream[idx]^1; } for (; i<(size*2); i++){ BitStream[i] = BitStream[i+20000]; } return i; } //by marshmellow //take 01 or 10 = 1 and 11 or 00 = 0 //check for phase errors - should never have 111 or 000 should be 01001011 or 10110100 for 1010 //decodes biphase or if inverted it is AKA conditional dephase encoding AKA differential manchester encoding int BiphaseRawDecode(uint8_t *BitStream, size_t *size, int offset, int invert) { uint16_t bitnum = 0; uint16_t errCnt = 0; size_t i = offset; uint16_t MaxBits=512; //if not enough samples - error if (*size < 51) return -1; //check for phase change faults - skip one sample if faulty uint8_t offsetA = 1, offsetB = 1; for (; i<48; i+=2){ if (BitStream[i+1]==BitStream[i+2]) offsetA=0; if (BitStream[i+2]==BitStream[i+3]) offsetB=0; } if (!offsetA && offsetB) offset++; for (i=offset; i<*size-3; i+=2){ //check for phase error if (BitStream[i+1]==BitStream[i+2]) { BitStream[bitnum++]=7; errCnt++; } if((BitStream[i]==1 && BitStream[i+1]==0) || (BitStream[i]==0 && BitStream[i+1]==1)){ BitStream[bitnum++]=1^invert; } else if((BitStream[i]==0 && BitStream[i+1]==0) || (BitStream[i]==1 && BitStream[i+1]==1)){ BitStream[bitnum++]=invert; } else { BitStream[bitnum++]=7; errCnt++; } if(bitnum>MaxBits) break; } *size=bitnum; return errCnt; } // by marshmellow // demod gProxIIDemod // error returns as -x // success returns start position in BitStream // BitStream must contain previously askrawdemod and biphasedemoded data int gProxII_Demod(uint8_t BitStream[], size_t *size) { size_t startIdx=0; uint8_t preamble[] = {1,1,1,1,1,0}; uint8_t errChk = preambleSearch(BitStream, preamble, sizeof(preamble), size, &startIdx); if (errChk == 0) return -3; //preamble not found if (*size != 96) return -2; //should have found 96 bits //check first 6 spacer bits to verify format if (!BitStream[startIdx+5] && !BitStream[startIdx+10] && !BitStream[startIdx+15] && !BitStream[startIdx+20] && !BitStream[startIdx+25] && !BitStream[startIdx+30]){ //confirmed proper separator bits found //return start position return (int) startIdx; } return -5; } //translate wave to 11111100000 (1 for each short wave 0 for each long wave) size_t fsk_wave_demod(uint8_t * dest, size_t size, uint8_t fchigh, uint8_t fclow) { size_t last_transition = 0; size_t idx = 1; //uint32_t maxVal=0; if (fchigh==0) fchigh=10; if (fclow==0) fclow=8; //set the threshold close to 0 (graph) or 128 std to avoid static uint8_t threshold_value = 123; // sync to first lo-hi transition, and threshold // Need to threshold first sample if(dest[0] < threshold_value) dest[0] = 0; else dest[0] = 1; size_t numBits = 0; // count cycles between consecutive lo-hi transitions, there should be either 8 (fc/8) // or 10 (fc/10) cycles but in practice due to noise etc we may end up with with anywhere // between 7 to 11 cycles so fuzz it by treat anything <9 as 8 and anything else as 10 for(idx = 1; idx < size; idx++) { // threshold current value if (dest[idx] < threshold_value) dest[idx] = 0; else dest[idx] = 1; // Check for 0->1 transition if (dest[idx-1] < dest[idx]) { // 0 -> 1 transition if ((idx-last_transition)<(fclow-2)){ //0-5 = garbage noise //do nothing with extra garbage } else if ((idx-last_transition) < (fchigh-1)) { //6-8 = 8 waves dest[numBits++]=1; } else if ((idx-last_transition) > (fchigh+1) && !numBits) { //12 + and first bit = garbage //do nothing with beginning garbage } else { //9+ = 10 waves dest[numBits++]=0; } last_transition = idx; } } return numBits; //Actually, it returns the number of bytes, but each byte represents a bit: 1 or 0 } //translate 11111100000 to 10 size_t aggregate_bits(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow) { uint8_t lastval=dest[0]; size_t idx=0; size_t numBits=0; uint32_t n=1; for( idx=1; idx < size; idx++) { n++; if (dest[idx]==lastval) continue; //if lastval was 1, we have a 1->0 crossing if (dest[idx-1]==1) { if (!numBits && n < rfLen/fclow) { n=0; lastval = dest[idx]; continue; } n = (n * fclow + rfLen/2) / rfLen; } else {// 0->1 crossing //test first bitsample too small if (!numBits && n < rfLen/fchigh) { n=0; lastval = dest[idx]; continue; } n = (n * fchigh + rfLen/2) / rfLen; } if (n == 0) n = 1; memset(dest+numBits, dest[idx-1]^invert , n); numBits += n; n=0; lastval=dest[idx]; }//end for // if valid extra bits at the end were all the same frequency - add them in if (n > rfLen/fchigh) { if (dest[idx-2]==1) { n = (n * fclow + rfLen/2) / rfLen; } else { n = (n * fchigh + rfLen/2) / rfLen; } memset(dest+numBits, dest[idx-1]^invert , n); numBits += n; } return numBits; } //by marshmellow (from holiman's base) // full fsk demod from GraphBuffer wave to decoded 1s and 0s (no mandemod) int fskdemod(uint8_t *dest, size_t size, uint8_t rfLen, uint8_t invert, uint8_t fchigh, uint8_t fclow) { // FSK demodulator size = fsk_wave_demod(dest, size, fchigh, fclow); size = aggregate_bits(dest, size, rfLen, invert, fchigh, fclow); return size; } // loop to get raw HID waveform then FSK demodulate the TAG ID from it int HIDdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) { if (justNoise(dest, *size)) return -1; size_t numStart=0, size2=*size, startIdx=0; // FSK demodulator *size = fskdemod(dest, size2,50,1,10,8); //fsk2a if (*size < 96*2) return -2; // 00011101 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 uint8_t preamble[] = {0,0,0,1,1,1,0,1}; // find bitstring in array uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); if (errChk == 0) return -3; //preamble not found numStart = startIdx + sizeof(preamble); // final loop, go over previously decoded FSK data and manchester decode into usable tag ID for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ if (dest[idx] == dest[idx+1]){ return -4; //not manchester data } *hi2 = (*hi2<<1)|(*hi>>31); *hi = (*hi<<1)|(*lo>>31); //Then, shift in a 0 or one into low if (dest[idx] && !dest[idx+1]) // 1 0 *lo=(*lo<<1)|1; else // 0 1 *lo=(*lo<<1)|0; } return (int)startIdx; } // loop to get raw paradox waveform then FSK demodulate the TAG ID from it int ParadoxdemodFSK(uint8_t *dest, size_t *size, uint32_t *hi2, uint32_t *hi, uint32_t *lo) { if (justNoise(dest, *size)) return -1; size_t numStart=0, size2=*size, startIdx=0; // FSK demodulator *size = fskdemod(dest, size2,50,1,10,8); //fsk2a if (*size < 96) return -2; // 00001111 bit pattern represent start of frame, 01 pattern represents a 0 and 10 represents a 1 uint8_t preamble[] = {0,0,0,0,1,1,1,1}; uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); if (errChk == 0) return -3; //preamble not found numStart = startIdx + sizeof(preamble); // final loop, go over previously decoded FSK data and manchester decode into usable tag ID for (size_t idx = numStart; (idx-numStart) < *size - sizeof(preamble); idx+=2){ if (dest[idx] == dest[idx+1]) return -4; //not manchester data *hi2 = (*hi2<<1)|(*hi>>31); *hi = (*hi<<1)|(*lo>>31); //Then, shift in a 0 or one into low if (dest[idx] && !dest[idx+1]) // 1 0 *lo=(*lo<<1)|1; else // 0 1 *lo=(*lo<<1)|0; } return (int)startIdx; } uint32_t bytebits_to_byte(uint8_t* src, size_t numbits) { uint32_t num = 0; for(int i = 0 ; i < numbits ; i++) { num = (num << 1) | (*src); src++; } return num; } //least significant bit first uint32_t bytebits_to_byteLSBF(uint8_t *src, size_t numbits) { uint32_t num = 0; for(int i = 0 ; i < numbits ; i++) { num = (num << 1) | *(src + (numbits-(i+1))); } return num; } int IOdemodFSK(uint8_t *dest, size_t size) { if (justNoise(dest, size)) return -1; //make sure buffer has data if (size < 66*64) return -2; // FSK demodulator size = fskdemod(dest, size, 64, 1, 10, 8); // FSK2a RF/64 if (size < 65) return -3; //did we get a good demod? //Index map //0 10 20 30 40 50 60 //| | | | | | | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 //----------------------------------------------------------------------------- //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 // //XSF(version)facility:codeone+codetwo //Handle the data size_t startIdx = 0; uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,1}; uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), &size, &startIdx); if (errChk == 0) return -4; //preamble not found if (!dest[startIdx+8] && dest[startIdx+17]==1 && dest[startIdx+26]==1 && dest[startIdx+35]==1 && dest[startIdx+44]==1 && dest[startIdx+53]==1){ //confirmed proper separator bits found //return start position return (int) startIdx; } return -5; } // by marshmellow // takes a array of binary values, start position, length of bits per parity (includes parity bit), // Parity Type (1 for odd; 0 for even; 2 for just drop it), and binary Length (length to run) size_t removeParity(uint8_t *BitStream, size_t startIdx, uint8_t pLen, uint8_t pType, size_t bLen) { uint32_t parityWd = 0; size_t j = 0, bitCnt = 0; for (int word = 0; word < (bLen); word+=pLen){ for (int bit=0; bit < pLen; bit++){ parityWd = (parityWd << 1) | BitStream[startIdx+word+bit]; BitStream[j++] = (BitStream[startIdx+word+bit]); } j--; // if parity fails then return 0 if (pType != 2) { if (parityTest(parityWd, pLen, pType) == 0) return -1; } bitCnt+=(pLen-1); parityWd = 0; } // if we got here then all the parities passed //return ID start index and size return bitCnt; } // Ask/Biphase Demod then try to locate an ISO 11784/85 ID // BitStream must contain previously askrawdemod and biphasedemoded data int FDXBdemodBI(uint8_t *dest, size_t *size) { //make sure buffer has enough data if (*size < 128) return -1; size_t startIdx = 0; uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,1}; uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); if (errChk == 0) return -2; //preamble not found return (int)startIdx; } // by marshmellow // FSK Demod then try to locate an AWID ID int AWIDdemodFSK(uint8_t *dest, size_t *size) { //make sure buffer has enough data if (*size < 96*50) return -1; if (justNoise(dest, *size)) return -2; // FSK demodulator *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50 if (*size < 96) return -3; //did we get a good demod? uint8_t preamble[] = {0,0,0,0,0,0,0,1}; size_t startIdx = 0; uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); if (errChk == 0) return -4; //preamble not found if (*size != 96) return -5; return (int)startIdx; } // by marshmellow // FSK Demod then try to locate an Farpointe Data (pyramid) ID int PyramiddemodFSK(uint8_t *dest, size_t *size) { //make sure buffer has data if (*size < 128*50) return -5; //test samples are not just noise if (justNoise(dest, *size)) return -1; // FSK demodulator *size = fskdemod(dest, *size, 50, 1, 10, 8); // fsk2a RF/50 if (*size < 128) return -2; //did we get a good demod? uint8_t preamble[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1}; size_t startIdx = 0; uint8_t errChk = preambleSearch(dest, preamble, sizeof(preamble), size, &startIdx); if (errChk == 0) return -4; //preamble not found if (*size != 128) return -3; return (int)startIdx; } // by marshmellow // to detect a wave that has heavily clipped (clean) samples uint8_t DetectCleanAskWave(uint8_t dest[], size_t size, uint8_t high, uint8_t low) { uint16_t allPeaks=1; uint16_t cntPeaks=0; size_t loopEnd = 512+60; if (loopEnd > size) loopEnd = size; for (size_t i=60; ilow && dest[i] 300) return 1; } return allPeaks; } // by marshmellow // to help detect clocks on heavily clipped samples // based on count of low to low int DetectStrongAskClock(uint8_t dest[], size_t size, uint8_t high, uint8_t low) { uint8_t fndClk[] = {8,16,32,40,50,64,128}; size_t startwave; size_t i = 0; size_t minClk = 255; // get to first full low to prime loop and skip incomplete first pulse while ((dest[i] < high) && (i < size)) ++i; while ((dest[i] > low) && (i < size)) ++i; // loop through all samples while (i < size) { // measure from low to low while ((dest[i] > low) && (i < size)) ++i; startwave= i; while ((dest[i] < high) && (i < size)) ++i; while ((dest[i] > low) && (i < size)) ++i; //get minimum measured distance if (i-startwave < minClk && i < size) minClk = i - startwave; } // set clock for (uint8_t clkCnt = 0; clkCnt<7; clkCnt++) { if (minClk >= fndClk[clkCnt]-(fndClk[clkCnt]/8) && minClk <= fndClk[clkCnt]+1) return fndClk[clkCnt]; } return 0; } // by marshmellow // not perfect especially with lower clocks or VERY good antennas (heavy wave clipping) // maybe somehow adjust peak trimming value based on samples to fix? // return start index of best starting position for that clock and return clock (by reference) int DetectASKClock(uint8_t dest[], size_t size, int *clock, int maxErr) { size_t i=1; uint8_t clk[] = {255,8,16,32,40,50,64,100,128,255}; uint8_t clkEnd = 9; uint8_t loopCnt = 255; //don't need to loop through entire array... if (size <= loopCnt) return -1; //not enough samples //if we already have a valid clock uint8_t clockFnd=0; for (;i0; i--){ if (clk[i] == ans) { *clock = ans; //clockFnd = i; return 0; // for strong waves i don't use the 'best start position' yet... //break; //clock found but continue to find best startpos [not yet] } } } } uint8_t ii; uint8_t clkCnt, tol = 0; uint16_t bestErr[]={1000,1000,1000,1000,1000,1000,1000,1000,1000}; uint8_t bestStart[]={0,0,0,0,0,0,0,0,0}; size_t errCnt = 0; size_t arrLoc, loopEnd; if (clockFnd>0) { clkCnt = clockFnd; clkEnd = clockFnd+1; } else clkCnt=1; //test each valid clock from smallest to greatest to see which lines up for(; clkCnt < clkEnd; clkCnt++){ if (clk[clkCnt] <= 32){ tol=1; }else{ tol=0; } //if no errors allowed - keep start within the first clock if (!maxErr && size > clk[clkCnt]*2 + tol && clk[clkCnt]<128) loopCnt=clk[clkCnt]*2; bestErr[clkCnt]=1000; //try lining up the peaks by moving starting point (try first few clocks) for (ii=0; ii < loopCnt; ii++){ if (dest[ii] < peak && dest[ii] > low) continue; errCnt=0; // now that we have the first one lined up test rest of wave array loopEnd = ((size-ii-tol) / clk[clkCnt]) - 1; for (i=0; i < loopEnd; ++i){ arrLoc = ii + (i * clk[clkCnt]); if (dest[arrLoc] >= peak || dest[arrLoc] <= low){ }else if (dest[arrLoc-tol] >= peak || dest[arrLoc-tol] <= low){ }else if (dest[arrLoc+tol] >= peak || dest[arrLoc+tol] <= low){ }else{ //error no peak detected errCnt++; } } //if we found no errors then we can stop here and a low clock (common clocks) // this is correct one - return this clock //PrintAndLog("DEBUG: clk %d, err %d, ii %d, i %d",clk[clkCnt],errCnt,ii,i); if(errCnt==0 && clkCnt<7) { if (!clockFnd) *clock = clk[clkCnt]; return ii; } //if we found errors see if it is lowest so far and save it as best run if(errCnt maxErr) return -1; if (!clockFnd) *clock = clk[best]; return bestStart[best]; } //by marshmellow //detect psk clock by reading each phase shift // a phase shift is determined by measuring the sample length of each wave int DetectPSKClock(uint8_t dest[], size_t size, int clock) { uint8_t clk[]={255,16,32,40,50,64,100,128,255}; //255 is not a valid clock uint16_t loopCnt = 4096; //don't need to loop through entire array... if (size == 0) return 0; if (size= dest[i+2]){ if (waveStart == 0) { waveStart = i+1; //PrintAndLog("DEBUG: waveStart: %d",waveStart); } else { waveEnd = i+1; //PrintAndLog("DEBUG: waveEnd: %d",waveEnd); waveLenCnt = waveEnd-waveStart; if (waveLenCnt > fc){ firstFullWave = waveStart; fullWaveLen=waveLenCnt; break; } waveStart=0; } } } //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen); //test each valid clock from greatest to smallest to see which lines up for(clkCnt=7; clkCnt >= 1 ; clkCnt--){ lastClkBit = firstFullWave; //set end of wave as clock align waveStart = 0; errCnt=0; peakcnt=0; //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d",clk[clkCnt],lastClkBit); for (i = firstFullWave+fullWaveLen-1; i < loopCnt-2; i++){ //top edge of wave = start of new wave if (dest[i] < dest[i+1] && dest[i+1] >= dest[i+2]){ if (waveStart == 0) { waveStart = i+1; waveLenCnt=0; } else { //waveEnd waveEnd = i+1; waveLenCnt = waveEnd-waveStart; if (waveLenCnt > fc){ //if this wave is a phase shift //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, ii: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+clk[clkCnt]-tol,ii+1,fc); if (i+1 >= lastClkBit + clk[clkCnt] - tol){ //should be a clock bit peakcnt++; lastClkBit+=clk[clkCnt]; } else if (i lastClkBit + clk[clkCnt] + tol + fc){ lastClkBit+=clk[clkCnt]; //no phase shift but clock bit } waveStart=i+1; } } } if (errCnt == 0){ return clk[clkCnt]; } if (errCnt <= bestErr[clkCnt]) bestErr[clkCnt]=errCnt; if (peakcnt > peaksdet[clkCnt]) peaksdet[clkCnt]=peakcnt; } //all tested with errors //return the highest clk with the most peaks found uint8_t best=7; for (i=7; i>=1; i--){ if (peaksdet[i] > peaksdet[best]) { best = i; } //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]); } return clk[best]; } //by marshmellow //detect nrz clock by reading #peaks vs no peaks(or errors) int DetectNRZClock(uint8_t dest[], size_t size, int clock) { size_t i=0; uint8_t clk[]={8,16,32,40,50,64,100,128,255}; size_t loopCnt = 4096; //don't need to loop through entire array... if (size == 0) return 0; if (size= peak || dest[i] <= low){ peakcnt++; } else { if (peakcnt>0 && maxPeak < peakcnt){ maxPeak = peakcnt; } peakcnt=0; } } peakcnt=0; //test each valid clock from smallest to greatest to see which lines up for(clkCnt=0; clkCnt < 8; ++clkCnt){ //ignore clocks smaller than largest peak if (clk[clkCnt]= peak) || (dest[ii] <= low)){ peakcnt=0; // now that we have the first one lined up test rest of wave array for (i=0; i < ((int)((size-ii-tol)/clk[clkCnt])-1); ++i){ if (dest[ii+(i*clk[clkCnt])]>=peak || dest[ii+(i*clk[clkCnt])]<=low){ peakcnt++; } } if(peakcnt>peaksdet[clkCnt]) { peaksdet[clkCnt]=peakcnt; } } } } int iii=7; uint8_t best=0; for (iii=7; iii > 0; iii--){ if (peaksdet[iii] > peaksdet[best]){ best = iii; } //PrintAndLog("DEBUG: Clk: %d, peaks: %d, errs: %d, bestClk: %d",clk[iii],peaksdet[iii],bestErr[iii],clk[best]); } return clk[best]; } // by marshmellow // convert psk1 demod to psk2 demod // only transition waves are 1s void psk1TOpsk2(uint8_t *BitStream, size_t size) { size_t i=1; uint8_t lastBit=BitStream[0]; for (; i*size) gLen = *size; int high, low; if (getHiLo(dest, gLen, &high, &low, 75, 75) < 1) return -3; //25% fuzz on high 25% fuzz on low int lastBit = 0; //set first clock check size_t iii = 0, bitnum = 0; //bitnum counter uint16_t errCnt = 0, MaxBits = 1000; size_t bestErrCnt = maxErr+1; size_t bestPeakCnt = 0, bestPeakStart = 0; uint8_t bestFirstPeakHigh=0, firstPeakHigh=0, curBit=0, bitHigh=0, errBitHigh=0; uint8_t tol = 1; //clock tolerance adjust - waves will be accepted as within the clock if they fall + or - this value + clock from last valid wave uint16_t peakCnt=0; uint8_t ignoreWindow=4; uint8_t ignoreCnt=ignoreWindow; //in case of noise near peak //loop to find first wave that works - align to clock for (iii=0; iii < gLen; ++iii){ if ((dest[iii]>=high) || (dest[iii]<=low)){ if (dest[iii]>=high) firstPeakHigh=1; else firstPeakHigh=0; lastBit=iii-*clk; peakCnt=0; errCnt=0; //loop through to see if this start location works for (i = iii; i < *size; ++i) { // if we are at a clock bit if ((i >= lastBit + *clk - tol) && (i <= lastBit + *clk + tol)) { //test high/low if (dest[i] >= high || dest[i] <= low) { bitHigh = 1; peakCnt++; errBitHigh = 0; ignoreCnt = ignoreWindow; lastBit += *clk; } else if (i == lastBit + *clk + tol) { lastBit += *clk; } //else if no bars found } else if (dest[i] < high && dest[i] > low){ if (ignoreCnt==0){ bitHigh=0; if (errBitHigh==1) errCnt++; errBitHigh=0; } else { ignoreCnt--; } } else if ((dest[i]>=high || dest[i]<=low) && (bitHigh==0)) { //error bar found no clock... errBitHigh=1; } if (((i-iii) / *clk)>=MaxBits) break; } //we got more than 64 good bits and not all errors if (((i-iii) / *clk) > 64 && (errCnt <= (maxErr))) { //possible good read if (!errCnt || peakCnt > bestPeakCnt){ bestFirstPeakHigh=firstPeakHigh; bestErrCnt = errCnt; bestPeakCnt = peakCnt; bestPeakStart = iii; if (!errCnt) break; //great read - finish } } } } //PrintAndLog("DEBUG: bestErrCnt: %d, maxErr: %d, bestStart: %d, bestPeakCnt: %d, bestPeakStart: %d",bestErrCnt,maxErr,bestStart,bestPeakCnt,bestPeakStart); if (bestErrCnt > maxErr) return bestErrCnt; //best run is good enough set to best run and set overwrite BinStream lastBit = bestPeakStart - *clk; memset(dest, bestFirstPeakHigh^1, bestPeakStart / *clk); bitnum += (bestPeakStart / *clk); for (i = bestPeakStart; i < *size; ++i) { // if expecting a clock bit if ((i >= lastBit + *clk - tol) && (i <= lastBit + *clk + tol)) { // test high/low if (dest[i] >= high || dest[i] <= low) { peakCnt++; bitHigh = 1; errBitHigh = 0; ignoreCnt = ignoreWindow; curBit = *invert; if (dest[i] >= high) curBit ^= 1; dest[bitnum++] = curBit; lastBit += *clk; //else no bars found in clock area } else if (i == lastBit + *clk + tol) { dest[bitnum++] = curBit; lastBit += *clk; } //else if no bars found } else if (dest[i] < high && dest[i] > low){ if (ignoreCnt == 0){ bitHigh = 0; if (errBitHigh == 1){ dest[bitnum++] = 7; errCnt++; } errBitHigh=0; } else { ignoreCnt--; } } else if ((dest[i] >= high || dest[i] <= low) && (bitHigh == 0)) { //error bar found no clock... errBitHigh=1; } if (bitnum >= MaxBits) break; } *size = bitnum; return bestErrCnt; } //by marshmellow //detects the bit clock for FSK given the high and low Field Clocks uint8_t detectFSKClk(uint8_t *BitStream, size_t size, uint8_t fcHigh, uint8_t fcLow) { uint8_t clk[] = {8,16,32,40,50,64,100,128,0}; uint16_t rfLens[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; uint8_t rfCnts[] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; uint8_t rfLensFnd = 0; uint8_t lastFCcnt = 0; uint16_t fcCounter = 0; uint16_t rfCounter = 0; uint8_t firstBitFnd = 0; size_t i; if (size == 0) return 0; uint8_t fcTol = (uint8_t)(0.5+(float)(fcHigh-fcLow)/2); rfLensFnd=0; fcCounter=0; rfCounter=0; firstBitFnd=0; //PrintAndLog("DEBUG: fcTol: %d",fcTol); // prime i to first up transition for (i = 1; i < size-1; i++) if (BitStream[i] > BitStream[i-1] && BitStream[i]>=BitStream[i+1]) break; for (; i < size-1; i++){ fcCounter++; rfCounter++; if (BitStream[i] <= BitStream[i-1] || BitStream[i] < BitStream[i+1]) continue; // else new peak // if we got less than the small fc + tolerance then set it to the small fc if (fcCounter < fcLow+fcTol) fcCounter = fcLow; else //set it to the large fc fcCounter = fcHigh; //look for bit clock (rf/xx) if ((fcCounter < lastFCcnt || fcCounter > lastFCcnt)){ //not the same size as the last wave - start of new bit sequence if (firstBitFnd > 1){ //skip first wave change - probably not a complete bit for (int ii=0; ii<15; ii++){ if (rfLens[ii] == rfCounter){ rfCnts[ii]++; rfCounter = 0; break; } } if (rfCounter > 0 && rfLensFnd < 15){ //PrintAndLog("DEBUG: rfCntr %d, fcCntr %d",rfCounter,fcCounter); rfCnts[rfLensFnd]++; rfLens[rfLensFnd++] = rfCounter; } } else { firstBitFnd++; } rfCounter=0; lastFCcnt=fcCounter; } fcCounter=0; } uint8_t rfHighest=15, rfHighest2=15, rfHighest3=15; for (i=0; i<15; i++){ //PrintAndLog("DEBUG: RF %d, cnts %d",rfLens[i], rfCnts[i]); //get highest 2 RF values (might need to get more values to compare or compare all?) if (rfCnts[i]>rfCnts[rfHighest]){ rfHighest3=rfHighest2; rfHighest2=rfHighest; rfHighest=i; } else if(rfCnts[i]>rfCnts[rfHighest2]){ rfHighest3=rfHighest2; rfHighest2=i; } else if(rfCnts[i]>rfCnts[rfHighest3]){ rfHighest3=i; } } // set allowed clock remainder tolerance to be 1 large field clock length+1 // we could have mistakenly made a 9 a 10 instead of an 8 or visa versa so rfLens could be 1 FC off uint8_t tol1 = fcHigh+1; //PrintAndLog("DEBUG: hightest: 1 %d, 2 %d, 3 %d",rfLens[rfHighest],rfLens[rfHighest2],rfLens[rfHighest3]); // loop to find the highest clock that has a remainder less than the tolerance // compare samples counted divided by int ii=7; for (; ii>=0; ii--){ if (rfLens[rfHighest] % clk[ii] < tol1 || rfLens[rfHighest] % clk[ii] > clk[ii]-tol1){ if (rfLens[rfHighest2] % clk[ii] < tol1 || rfLens[rfHighest2] % clk[ii] > clk[ii]-tol1){ if (rfLens[rfHighest3] % clk[ii] < tol1 || rfLens[rfHighest3] % clk[ii] > clk[ii]-tol1){ break; } } } } if (ii<0) return 0; // oops we went too far return clk[ii]; } //by marshmellow //countFC is to detect the field clock lengths. //counts and returns the 2 most common wave lengths //mainly used for FSK field clock detection uint16_t countFC(uint8_t *BitStream, size_t size, uint8_t fskAdj) { uint8_t fcLens[] = {0,0,0,0,0,0,0,0,0,0}; uint16_t fcCnts[] = {0,0,0,0,0,0,0,0,0,0}; uint8_t fcLensFnd = 0; uint8_t lastFCcnt=0; uint8_t fcCounter = 0; size_t i; if (size == 0) return 0; // prime i to first up transition for (i = 1; i < size-1; i++) if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]) break; for (; i < size-1; i++){ if (BitStream[i] > BitStream[i-1] && BitStream[i] >= BitStream[i+1]){ // new up transition fcCounter++; if (fskAdj){ //if we had 5 and now have 9 then go back to 8 (for when we get a fc 9 instead of an 8) if (lastFCcnt==5 && fcCounter==9) fcCounter--; //if fc=9 or 4 add one (for when we get a fc 9 instead of 10 or a 4 instead of a 5) if ((fcCounter==9) || fcCounter==4) fcCounter++; // save last field clock count (fc/xx) lastFCcnt = fcCounter; } // find which fcLens to save it to: for (int ii=0; ii<10; ii++){ if (fcLens[ii]==fcCounter){ fcCnts[ii]++; fcCounter=0; break; } } if (fcCounter>0 && fcLensFnd<10){ //add new fc length fcCnts[fcLensFnd]++; fcLens[fcLensFnd++]=fcCounter; } fcCounter=0; } else { // count sample fcCounter++; } } uint8_t best1=9, best2=9, best3=9; uint16_t maxCnt1=0; // go through fclens and find which ones are bigest 2 for (i=0; i<10; i++){ // PrintAndLog("DEBUG: FC %d, Cnt %d, Errs %d",fcLens[i],fcCnts[i],errCnt); // get the 3 best FC values if (fcCnts[i]>maxCnt1) { best3=best2; best2=best1; maxCnt1=fcCnts[i]; best1=i; } else if(fcCnts[i]>fcCnts[best2]){ best3=best2; best2=i; } else if(fcCnts[i]>fcCnts[best3]){ best3=i; } } uint8_t fcH=0, fcL=0; if (fcLens[best1]>fcLens[best2]){ fcH=fcLens[best1]; fcL=fcLens[best2]; } else{ fcH=fcLens[best2]; fcL=fcLens[best1]; } // TODO: take top 3 answers and compare to known Field clocks to get top 2 uint16_t fcs = (((uint16_t)fcH)<<8) | fcL; // PrintAndLog("DEBUG: Best %d best2 %d best3 %d",fcLens[best1],fcLens[best2],fcLens[best3]); if (fskAdj) return fcs; return fcLens[best1]; } //by marshmellow - demodulate PSK1 wave //uses wave lengths (# Samples) int pskRawDemod(uint8_t dest[], size_t *size, int *clock, int *invert) { if (size == 0) return -1; uint16_t loopCnt = 4096; //don't need to loop through entire array... if (*size= dest[i+2]){ waveEnd = i+1; //PrintAndLog("DEBUG: waveEnd: %d",waveEnd); waveLenCnt = waveEnd-waveStart; if (waveLenCnt > fc && waveStart > fc){ //not first peak and is a large wave lastAvgWaveVal = avgWaveVal/(waveLenCnt); firstFullWave = waveStart; fullWaveLen=waveLenCnt; //if average wave value is > graph 0 then it is an up wave or a 1 if (lastAvgWaveVal > 123) curPhase ^= 1; //fudge graph 0 a little 123 vs 128 break; } waveStart = i+1; avgWaveVal = 0; } avgWaveVal += dest[i+2]; } //PrintAndLog("DEBUG: firstFullWave: %d, waveLen: %d",firstFullWave,fullWaveLen); lastClkBit = firstFullWave; //set start of wave as clock align //PrintAndLog("DEBUG: clk: %d, lastClkBit: %d", *clock, lastClkBit); waveStart = 0; size_t numBits=0; //set skipped bits memset(dest, curPhase^1, firstFullWave / *clock); numBits += (firstFullWave / *clock); dest[numBits++] = curPhase; //set first read bit for (i = firstFullWave + fullWaveLen - 1; i < *size-3; i++){ //top edge of wave = start of new wave if (dest[i]+fc < dest[i+1] && dest[i+1] >= dest[i+2]){ if (waveStart == 0) { waveStart = i+1; waveLenCnt = 0; avgWaveVal = dest[i+1]; } else { //waveEnd waveEnd = i+1; waveLenCnt = waveEnd-waveStart; lastAvgWaveVal = avgWaveVal/waveLenCnt; if (waveLenCnt > fc){ //PrintAndLog("DEBUG: avgWaveVal: %d, waveSum: %d",lastAvgWaveVal,avgWaveVal); //this wave is a phase shift //PrintAndLog("DEBUG: phase shift at: %d, len: %d, nextClk: %d, i: %d, fc: %d",waveStart,waveLenCnt,lastClkBit+*clock-tol,i+1,fc); if (i+1 >= lastClkBit + *clock - tol){ //should be a clock bit curPhase ^= 1; dest[numBits++] = curPhase; lastClkBit += *clock; } else if (i < lastClkBit+10+fc){ //noise after a phase shift - ignore } else { //phase shift before supposed to based on clock errCnt++; dest[numBits++] = 7; } } else if (i+1 > lastClkBit + *clock + tol + fc){ lastClkBit += *clock; //no phase shift but clock bit dest[numBits++] = curPhase; } avgWaveVal = 0; waveStart = i+1; } } avgWaveVal += dest[i+1]; } *size = numBits; return errCnt; }