//----------------------------------------------------------------------------- // Copyright (C) 2011,2012 Merlok // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // High frequency MIFARE commands //----------------------------------------------------------------------------- #include "cmdhfmf.h" #include #include "cmdparser.h" // command_t #include "commonutil.h" // ARRAYLEN #include "comms.h" // clearCommandBuffer #include "fileutils.h" #include "cmdtrace.h" #include "emv/dump.h" #include "mifare/mifaredefault.h" // mifare default key array #include "cliparser.h" // argtable #include "hardnested_bf_core.h" // SetSIMDInstr #include "mifare/mad.h" #include "mifare/ndef.h" #include "protocols.h" #include "util_posix.h" // msclock #include "cmdhfmfhard.h" #define MFBLOCK_SIZE 16 #define MIFARE_4K_MAXBLOCK 256 #define MIFARE_2K_MAXBLOCK 128 #define MIFARE_1K_MAXBLOCK 64 #define MIFARE_MINI_MAXBLOCK 20 #define MIFARE_MINI_MAXSECTOR 5 #define MIFARE_1K_MAXSECTOR 16 #define MIFARE_2K_MAXSECTOR 32 #define MIFARE_4K_MAXSECTOR 40 static int CmdHelp(const char *Cmd); static int usage_hf14_ice(void) { PrintAndLogEx(NORMAL, "Usage: hf mf ice [l ] [f ]"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " l nonces to be collected"); PrintAndLogEx(NORMAL, " f save nonces to instead of hf-mf--nonces.bin"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf ice")); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf ice f nonces.bin")); return PM3_SUCCESS; } static int usage_hf14_dump(void) { PrintAndLogEx(NORMAL, "Usage: hf mf dump [card memory] [k ] [f ]"); PrintAndLogEx(NORMAL, " [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLogEx(NORMAL, " k : key filename, if no given, UID will be used as filename"); PrintAndLogEx(NORMAL, " f : data filename, if no given, UID will be used as filename"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf dump")); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf dump 4")); return PM3_SUCCESS; } static int usage_hf14_mifare(void) { PrintAndLogEx(NORMAL, "Usage: hf mf darkside "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " (Optional) target other block"); PrintAndLogEx(NORMAL, " (optional) target key type"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf darkside")); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf darkside 16")); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf darkside 16 B")); return PM3_SUCCESS; } static int usage_hf14_mfsim(void) { PrintAndLogEx(NORMAL, "Usage: hf mf sim [u ] [n ] [t] [a ] [s ] [i] [x] [e] [v]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " u (Optional) UID 4,7 or 10bytes. If not specified, the UID 4b/7b from emulator memory will be used"); PrintAndLogEx(NORMAL, " t (Optional) Enforce ATQA/SAK:"); PrintAndLogEx(NORMAL, " 0 = MIFARE Mini"); PrintAndLogEx(NORMAL, " 1 = MIFARE Classic 1k (Default)"); PrintAndLogEx(NORMAL, " 2 = MIFARE Classic 2k plus in SL0 mode"); PrintAndLogEx(NORMAL, " 4 = MIFARE Classic 4k"); PrintAndLogEx(NORMAL, " a (Optional) Provide explicitly ATQA (2 bytes, override option t)"); PrintAndLogEx(NORMAL, " s (Optional) Provide explicitly SAK (1 byte, override option t)"); PrintAndLogEx(NORMAL, " n (Optional) Automatically exit simulation after blocks have been read by reader. 0 = infinite"); PrintAndLogEx(NORMAL, " i (Optional) Interactive, means that console will not be returned until simulation finishes or is aborted"); PrintAndLogEx(NORMAL, " x (Optional) Crack, performs the 'reader attack', nr/ar attack against a reader"); PrintAndLogEx(NORMAL, " e (Optional) Fill simulator keys from found keys"); PrintAndLogEx(NORMAL, " v (Optional) Verbose"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf sim u 0a0a0a0a")); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf sim u 11223344556677")); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf sim u 112233445566778899AA")); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf sim u 11223344 i x")); return PM3_SUCCESS; } /* * static int usage_hf14_sniff(void) { PrintAndLogEx(NORMAL, "It continuously gets data from the field and saves it to: log, emulator, emulator file."); PrintAndLogEx(NORMAL, "Usage: hf mf sniff [h] [l] [d] [f]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " l save encrypted sequence to logfile `uid.log`"); PrintAndLogEx(NORMAL, " d decrypt sequence and put it to log file `uid.log`"); // PrintAndLogEx(NORMAL, " n/a e decrypt sequence, collect read and write commands and save the result of the sequence to emulator memory"); PrintAndLogEx(NORMAL, " f decrypt sequence, collect read and write commands and save the result of the sequence to emulator dump file `uid.eml`"); PrintAndLogEx(NORMAL, "Example:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf sniff l d f")); return PM3_SUCCESS; } */ static int usage_hf14_nested(void) { PrintAndLogEx(NORMAL, "Usage:"); PrintAndLogEx(NORMAL, " all sectors: hf mf nested [t,d]"); PrintAndLogEx(NORMAL, " one sector: hf mf nested o [t]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " card memory - 0 - MINI(320 bytes), 1 - 1K, 2 - 2K, 4 - 4K, - 1K"); PrintAndLogEx(NORMAL, " t transfer keys into emulator memory"); PrintAndLogEx(NORMAL, " d write keys to binary file `hf-mf--key.bin`"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf nested 1 0 A FFFFFFFFFFFF")" -- key recovery against 1K, block 0, Key A using key FFFFFFFFFFFF"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf nested 1 0 A FFFFFFFFFFFF t")" -- and transfer keys into emulator memory"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf nested 1 0 A FFFFFFFFFFFF d")" -- or write keys to binary file "); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf nested o 0 A FFFFFFFFFFFF 4 A")" -- one sector key recovery. Use block 0 Key A to find block 4 Key A"); return PM3_SUCCESS; } static int usage_hf14_staticnested(void) { PrintAndLogEx(NORMAL, "Usage:"); PrintAndLogEx(NORMAL, " all sectors: hf mf staticnested [t,d]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " card memory - 0 - MINI(320 bytes), 1 - 1K, 2 - 2K, 4 - 4K, - 1K"); PrintAndLogEx(NORMAL, " t transfer keys into emulator memory"); PrintAndLogEx(NORMAL, " d write keys to binary file `hf-mf--key.bin`"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf staticnested 1 0 A FFFFFFFFFFFF")" -- key recovery against 1K, block 0, Key A using key FFFFFFFFFFFF"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf staticnested 1 0 A FFFFFFFFFFFF t")" -- and transfer keys into emulator memory"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf staticnested 1 0 A FFFFFFFFFFFF d")" -- or write keys to binary file "); return PM3_SUCCESS; } static int usage_hf14_hardnested(void) { PrintAndLogEx(NORMAL, "Usage:"); PrintAndLogEx(NORMAL, " hf mf hardnested "); PrintAndLogEx(NORMAL, " [known target key (12 hex symbols)] [w] [s]"); PrintAndLogEx(NORMAL, " or hf mf hardnested r [known target key]"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " w acquire nonces and UID, and write them to binary file with default name hf-mf--nonces.bin"); PrintAndLogEx(NORMAL, " s slower acquisition (required by some non standard cards)"); PrintAndLogEx(NORMAL, " r read hf-mf--nonces.bin if tag present, otherwise read nonces.bin, then start attack"); PrintAndLogEx(NORMAL, " u read/write hf-mf--nonces.bin instead of default name"); PrintAndLogEx(NORMAL, " f read/write instead of default name"); PrintAndLogEx(NORMAL, " t tests?"); PrintAndLogEx(NORMAL, " i set type of SIMD instructions. Without this flag programs autodetect it."); #if defined(COMPILER_HAS_SIMD_AVX512) PrintAndLogEx(NORMAL, " i 5 = AVX512"); #endif #if defined(COMPILER_HAS_SIMD) PrintAndLogEx(NORMAL, " i 2 = AVX2"); PrintAndLogEx(NORMAL, " i a = AVX"); PrintAndLogEx(NORMAL, " i s = SSE2"); PrintAndLogEx(NORMAL, " i m = MMX"); #endif PrintAndLogEx(NORMAL, " i n = none (use CPU regular instruction set)"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf hardnested 0 A FFFFFFFFFFFF 4 A")); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf hardnested 0 A FFFFFFFFFFFF 4 A w")); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf hardnested 0 A FFFFFFFFFFFF 4 A f nonces.bin w s")); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf hardnested r")); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf hardnested r a0a1a2a3a4a5")); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Add the known target key to check if it is present in the remaining key space:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf hardnested 0 A A0A1A2A3A4A5 4 A FFFFFFFFFFFF")); return PM3_SUCCESS; } static int usage_hf14_autopwn(void) { PrintAndLogEx(NORMAL, "Usage:"); PrintAndLogEx(NORMAL, " hf mf autopwn [k] "); PrintAndLogEx(NORMAL, " [* ] [f [.dic]] [s] [i ] [l] [v]"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Description:"); PrintAndLogEx(NORMAL, " This command automates the key recovery process on Mifare classic cards."); PrintAndLogEx(NORMAL, " It uses the darkside, nested and hardnested attack to extract the keys and card content."); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " k known key is supplied"); PrintAndLogEx(NORMAL, " f [.dic] key dictionary file"); PrintAndLogEx(NORMAL, " s slower acquisition for hardnested (required by some non standard cards)"); PrintAndLogEx(NORMAL, " v verbose output (statistics)"); PrintAndLogEx(NORMAL, " l legacy mode (use the slow 'mf chk' for the key enumeration)"); PrintAndLogEx(NORMAL, " * all sectors based on card memory"); PrintAndLogEx(NORMAL, " * 0 = MINI(320 bytes)"); PrintAndLogEx(NORMAL, " * 1 = 1k (default)"); PrintAndLogEx(NORMAL, " * 2 = 2k"); PrintAndLogEx(NORMAL, " * 4 = 4k"); PrintAndLogEx(NORMAL, " i set type of SIMD instructions for hardnested. Default: autodetection."); #if defined(COMPILER_HAS_SIMD_AVX512) PrintAndLogEx(NORMAL, " i 5 = AVX512"); #endif #if defined(COMPILER_HAS_SIMD) PrintAndLogEx(NORMAL, " i 2 = AVX2"); PrintAndLogEx(NORMAL, " i a = AVX"); PrintAndLogEx(NORMAL, " i s = SSE2"); #endif PrintAndLogEx(NORMAL, " i m = MMX"); PrintAndLogEx(NORMAL, " i n = none (use CPU regular instruction set)"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf autopwn")" -- target Mifare classic card with default keys"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf autopwn * 1 f mfc_default_keys")" -- target Mifare classic card (size 1k) with default dictionary"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf autopwn k 0 A FFFFFFFFFFFF")" -- target Mifare classic card with Sector0 typeA with known key 'FFFFFFFFFFFF'"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf autopwn k 0 A FFFFFFFFFFFF * 1 f mfc_default_keys")" -- this command combines the two above (reduce the need for nested / hardnested attacks, by using a dictionary)"); return PM3_SUCCESS; } static int usage_hf14_chk(void) { PrintAndLogEx(NORMAL, "Usage: hf mf chk [h] |<*card memory> [t|d] [] []"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " * all sectors based on card memory, other values then below defaults to 1k"); PrintAndLogEx(NORMAL, " 0 - MINI(320 bytes)"); PrintAndLogEx(NORMAL, " 1 - 1K"); PrintAndLogEx(NORMAL, " 2 - 2K"); PrintAndLogEx(NORMAL, " 4 - 4K"); PrintAndLogEx(NORMAL, " d write keys to binary file"); PrintAndLogEx(NORMAL, " t write keys to emulator memory\n"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf chk 0 A 1234567890ab")" -- target block 0, Key A using key 1234567890ab"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf chk 0 A mfc_default_keys.dic")" -- target block 0, Key A using default dictionary file"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf chk *1 ? t")" -- target all blocks, all keys, 1K, write to emulator memory"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf chk *1 ? d")" -- target all blocks, all keys, 1K, write to file"); return PM3_SUCCESS; } static int usage_hf14_chk_fast(void) { PrintAndLogEx(NORMAL, "This is a improved checkkeys method speedwise. It checks Mifare Classic tags sector keys against a dictionary file with keys"); PrintAndLogEx(NORMAL, "Usage: hf mf fchk [h] [t|d|f] [] []"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " all sectors based on card memory, other values than below defaults to 1k"); PrintAndLogEx(NORMAL, " 0 - MINI(320 bytes)"); PrintAndLogEx(NORMAL, " 1 - 1K "); PrintAndLogEx(NORMAL, " 2 - 2K"); PrintAndLogEx(NORMAL, " 4 - 4K"); PrintAndLogEx(NORMAL, " d write keys to binary file"); PrintAndLogEx(NORMAL, " t write keys to emulator memory"); PrintAndLogEx(NORMAL, " m use dictionary from flashmemory\n"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf fchk 1 1234567890ab")" -- target 1K using key 1234567890ab"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf fchk 1 mfc_default_keys.dic")" -- target 1K using default dictionary file"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf fchk 1 t")" -- target 1K, write to emulator memory"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf fchk 1 d")" -- target 1K, write to file"); if (IfPm3Flash()) PrintAndLogEx(NORMAL, _YELLOW_(" hf mf fchk 1 m")" -- target 1K, use dictionary from flashmemory"); return PM3_SUCCESS; } /* static int usage_hf14_keybrute(void) { PrintAndLogEx(NORMAL, "J_Run's 2nd phase of multiple sector nested authentication key recovery"); PrintAndLogEx(NORMAL, "You have a known 4 last bytes of a key recovered with mf_nonce_brute tool."); PrintAndLogEx(NORMAL, "First 2 bytes of key will be bruteforced"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, " ---[ This attack is obsolete, try hardnested instead ]---"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: hf mf keybrute [h] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " target block number"); PrintAndLogEx(NORMAL, " target key type"); PrintAndLogEx(NORMAL, " candidate key from mf_nonce_brute tool"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf keybrute 1 A 000011223344")); return 0; } */ static int usage_hf14_restore(void) { PrintAndLogEx(NORMAL, "Usage: hf mf restore [card memory] u k f "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLogEx(NORMAL, " u : uid, try to restore from hf-mf--key.bin and hf-mf--dump.bin"); PrintAndLogEx(NORMAL, " k : key filename, specific the full filename of key file"); PrintAndLogEx(NORMAL, " f : data filename, specific the full filename of data file"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf restore") " -- read the UID from tag first, then restore from hf-mf--key.bin and and hf-mf--dump.bin"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf restore 1 u 12345678") " -- restore from hf-mf-12345678-key.bin and hf-mf-12345678-dump.bin"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf restore 1 u 12345678 k dumpkey.bin") " -- restore from dumpkey.bin and hf-mf-12345678-dump.bin"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf restore 4") " -- read the UID from tag with 4K memory first, then restore from hf-mf--key.bin and and hf-mf--dump.bin"); return PM3_SUCCESS; } static int usage_hf14_decryptbytes(void) { PrintAndLogEx(NORMAL, "Decrypt Crypto-1 encrypted bytes given some known state of crypto. See tracelog to gather needed values\n"); PrintAndLogEx(NORMAL, "Usage: hf mf decrypt [h] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " reader nonce"); PrintAndLogEx(NORMAL, " encrypted reader response"); PrintAndLogEx(NORMAL, " encrypted tag response"); PrintAndLogEx(NORMAL, " encrypted data, taken directly after at_enc and forward"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf decrypt b830049b 9248314a 9280e203 41e586f9")); PrintAndLogEx(NORMAL, "\n this sample decrypts 41e586f9 -> 3003999a Annotated: 30 03 [99 9a] auth block 3 [crc]"); return PM3_SUCCESS; } static int usage_hf14_eget(void) { PrintAndLogEx(NORMAL, "Usage: hf mf eget "); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf eget 0")); return PM3_SUCCESS; } static int usage_hf14_eclr(void) { PrintAndLogEx(NORMAL, "It set card emulator memory to empty data blocks and key A/B FFFFFFFFFFFF \n"); PrintAndLogEx(NORMAL, "Usage: hf mf eclr"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf eclr")); return PM3_SUCCESS; } static int usage_hf14_eset(void) { PrintAndLogEx(NORMAL, "Usage: hf mf eset "); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf eset 1 000102030405060708090a0b0c0d0e0f")); return PM3_SUCCESS; } static int usage_hf14_eload(void) { PrintAndLogEx(NORMAL, "It loads emul dump from the file `filename.eml`"); PrintAndLogEx(NORMAL, "Usage: hf mf eload [card memory] [numblocks]"); PrintAndLogEx(NORMAL, " [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K, u = UL"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf eload filename")); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf eload 4 filename")); return PM3_SUCCESS; } static int usage_hf14_esave(void) { PrintAndLogEx(NORMAL, "It saves emul dump into the file `filename.eml` or `cardID.eml`"); PrintAndLogEx(NORMAL, " Usage: hf mf esave [card memory] [file name w/o `.eml`]"); PrintAndLogEx(NORMAL, " [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf esave")); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf esave 4")); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf esave 4 filename")); return PM3_SUCCESS; } static int usage_hf14_ecfill(void) { PrintAndLogEx(NORMAL, "Read card and transfer its data to emulator memory."); PrintAndLogEx(NORMAL, "Keys must be laid in the emulator memory. \n"); PrintAndLogEx(NORMAL, "Usage: hf mf ecfill [card memory]"); PrintAndLogEx(NORMAL, " [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf ecfill A")); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf ecfill A 4")); return PM3_SUCCESS; } static int usage_hf14_ekeyprn(void) { PrintAndLogEx(NORMAL, "Download and print the keys from emulator memory"); PrintAndLogEx(NORMAL, "Usage: hf mf ekeyprn [card memory] [d]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " card memory - 0 - MINI(320 bytes), 1 - 1K, 2 - 2K, 4 - 4K, - 1K"); PrintAndLogEx(NORMAL, " d write keys to binary file `hf-mf--key.bin`"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf ekeyprn 1")); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf ekeyprn d")); return PM3_SUCCESS; } static int usage_hf14_csetuid(void) { PrintAndLogEx(NORMAL, "Set UID, ATQA, and SAK for magic Chinese card. Only works with magic cards"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: hf mf csetuid [h] [ATQA 4 hex symbols] [SAK 2 hex symbols] [w]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " w wipe card before writing"); PrintAndLogEx(NORMAL, " UID 8 hex symbols"); PrintAndLogEx(NORMAL, " ATQA 4 hex symbols"); PrintAndLogEx(NORMAL, " SAK 2 hex symbols"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf csetuid 01020304")); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf csetuid 01020304 0004 08 w")); return PM3_SUCCESS; } static int usage_hf14_csetblk(void) { PrintAndLogEx(NORMAL, "Set block data for magic Chinese card. Only works with magic cards"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: hf mf csetblk [h] [w]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " w wipe card before writing"); PrintAndLogEx(NORMAL, " block number"); PrintAndLogEx(NORMAL, " block data to write (32 hex symbols)"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf csetblk 1 01020304050607080910111213141516")); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf csetblk 1 01020304050607080910111213141516 w")); return PM3_SUCCESS; } static int usage_hf14_cload(void) { PrintAndLogEx(NORMAL, "It loads magic Chinese card from the file `filename.eml`"); PrintAndLogEx(NORMAL, "or from emulator memory"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: hf mf cload [h] [e] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " e load card with data from emulator memory"); PrintAndLogEx(NORMAL, " j load card with data from json file"); PrintAndLogEx(NORMAL, " b load card with data from binary file"); PrintAndLogEx(NORMAL, " load card with data from eml file"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf cload mydump")); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf cload e")); return PM3_SUCCESS; } static int usage_hf14_cgetblk(void) { PrintAndLogEx(NORMAL, "Get block data from magic Chinese card. Only works with magic cards\n"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: hf mf cgetblk [h] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " block number"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf cgetblk 1")); return PM3_SUCCESS; } static int usage_hf14_cgetsc(void) { PrintAndLogEx(NORMAL, "Get sector data from magic Chinese card. Only works with magic cards\n"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: hf mf cgetsc [h] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " sector number"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf cgetsc 0")); return PM3_SUCCESS; } static int usage_hf14_csave(void) { PrintAndLogEx(NORMAL, "It saves `magic Chinese` card dump into the file `filename.eml` or `cardID.eml`"); PrintAndLogEx(NORMAL, "or into emulator memory"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: hf mf csave [h] [e] [u] [card memory] o "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " e save data to emulator memory"); PrintAndLogEx(NORMAL, " u save data to file, use carduid as filename"); PrintAndLogEx(NORMAL, " card memory 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLogEx(NORMAL, " o save data to file"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf csave u 1")); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf csave e 1")); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf csave 4 o filename")); return PM3_SUCCESS; } static int usage_hf14_nack(void) { PrintAndLogEx(NORMAL, "Test a mifare classic based card for the NACK bug."); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: hf mf nack [h] [v]"); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h this help"); PrintAndLogEx(NORMAL, " v verbose"); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, _YELLOW_(" hf mf nack")); return PM3_SUCCESS; } static int GetHFMF14AUID(uint8_t *uid, int *uidlen) { clearCommandBuffer(); SendCommandMIX(CMD_HF_ISO14443A_READER, ISO14A_CONNECT, 0, 0, NULL, 0); PacketResponseNG resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, 2500)) { PrintAndLogEx(WARNING, "iso14443a card select failed"); DropField(); return 0; } iso14a_card_select_t card; memcpy(&card, (iso14a_card_select_t *)resp.data.asBytes, sizeof(iso14a_card_select_t)); memcpy(uid, card.uid, card.uidlen * sizeof(uint8_t)); *uidlen = card.uidlen; return 1; } static char *GenerateFilename(const char *prefix, const char *suffix) { uint8_t uid[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; int uidlen = 0; char *fptr = calloc(sizeof(char) * (strlen(prefix) + strlen(suffix)) + sizeof(uid) * 2 + 1, sizeof(uint8_t)); GetHFMF14AUID(uid, &uidlen); if (!uidlen) { PrintAndLogEx(WARNING, "No tag found."); free(fptr); return NULL; } strcpy(fptr, prefix); FillFileNameByUID(fptr, uid, suffix, uidlen); return fptr; } static int32_t initSectorTable(sector_t **src, int32_t items) { // initialize storage (*src) = calloc(items, sizeof(sector_t)); if (*src == NULL) return -1; // empty e_sector for (int i = 0; i < items; ++i) { for (int j = 0; j < 2; ++j) { (*src)[i].Key[j] = 0xffffffffffff; (*src)[i].foundKey[j] = false; } } return items; } static int CmdHF14AMfDarkside(const char *Cmd) { uint8_t blockno = 0, key_type = MIFARE_AUTH_KEYA; uint64_t key = 0; char cmdp = tolower(param_getchar(Cmd, 0)); if (cmdp == 'h') return usage_hf14_mifare(); blockno = param_get8(Cmd, 0); cmdp = tolower(param_getchar(Cmd, 1)); if (cmdp == 'b') key_type = MIFARE_AUTH_KEYB; int isOK = mfDarkside(blockno, key_type, &key); PrintAndLogEx(NORMAL, ""); switch (isOK) { case -1 : PrintAndLogEx(WARNING, "button pressed. Aborted."); return PM3_ESOFT; case -2 : PrintAndLogEx(FAILED, "card is not vulnerable to Darkside attack (doesn't send NACK on authentication requests)."); return PM3_ESOFT; case -3 : PrintAndLogEx(FAILED, "card is not vulnerable to Darkside attack (its random number generator is not predictable)."); return PM3_ESOFT; case -4 : PrintAndLogEx(FAILED, "card is not vulnerable to Darkside attack (its random number generator seems to be based on the wellknown"); PrintAndLogEx(FAILED, "generating polynomial with 16 effective bits only, but shows unexpected behaviour."); return PM3_ESOFT; case -5 : PrintAndLogEx(WARNING, "aborted via keyboard."); return PM3_ESOFT; default : PrintAndLogEx(SUCCESS, "found valid key: "_YELLOW_("%012" PRIx64), key); break; } PrintAndLogEx(NORMAL, ""); return PM3_SUCCESS; } static int CmdHF14AMfWrBl(const char *Cmd) { uint8_t blockNo = 0; uint8_t keyType = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; uint8_t bldata[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; char cmdp = 0x00; if (strlen(Cmd) < 3) { PrintAndLogEx(NORMAL, "Usage: hf mf wrbl "); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf wrbl 1 A FFFFFFFFFFFF 000102030405060708090A0B0C0D0E0F"); return 0; } blockNo = param_get8(Cmd, 0); cmdp = tolower(param_getchar(Cmd, 1)); if (cmdp == 0x00) { PrintAndLogEx(NORMAL, "Key type must be A or B"); return 1; } if (cmdp != 'a') keyType = 1; if (param_gethex(Cmd, 2, key, 12)) { PrintAndLogEx(NORMAL, "Key must include 12 HEX symbols"); return 1; } if (param_gethex(Cmd, 3, bldata, 32)) { PrintAndLogEx(NORMAL, "Block data must include 32 HEX symbols"); return 1; } PrintAndLogEx(NORMAL, "--block no:%d, key type:%c, key:%s", blockNo, keyType ? 'B' : 'A', sprint_hex(key, 6)); PrintAndLogEx(NORMAL, "--data: %s", sprint_hex(bldata, 16)); uint8_t data[26]; memcpy(data, key, 6); memcpy(data + 10, bldata, 16); clearCommandBuffer(); SendCommandOLD(CMD_HF_MIFARE_WRITEBL, blockNo, keyType, 0, data, sizeof(data)); PacketResponseNG resp; if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { uint8_t isOK = resp.oldarg[0] & 0xff; PrintAndLogEx(NORMAL, "isOk:%02x", isOK); } else { PrintAndLogEx(NORMAL, "Command execute timeout"); } return 0; } static int CmdHF14AMfRdBl(const char *Cmd) { uint8_t blockNo = 0; uint8_t keyType = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; char cmdp = 0x00; if (strlen(Cmd) < 3) { PrintAndLogEx(NORMAL, "Usage: hf mf rdbl "); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf rdbl 0 A FFFFFFFFFFFF "); return PM3_SUCCESS; } blockNo = param_get8(Cmd, 0); cmdp = tolower(param_getchar(Cmd, 1)); if (cmdp == 0x00) { PrintAndLogEx(NORMAL, "Key type must be A or B"); return PM3_ESOFT; } if (cmdp != 'a') keyType = 1; if (param_gethex(Cmd, 2, key, 12)) { PrintAndLogEx(NORMAL, "Key must include 12 HEX symbols"); return PM3_ESOFT; } PrintAndLogEx(NORMAL, "--block no:%d, key type:%c, key:%s ", blockNo, keyType ? 'B' : 'A', sprint_hex(key, 6)); mf_readblock_t payload; payload.blockno = blockNo; payload.keytype = keyType; memcpy(payload.key, key, sizeof(payload.key)); clearCommandBuffer(); SendCommandNG(CMD_HF_MIFARE_READBL, (uint8_t *)&payload, sizeof(mf_readblock_t)); PacketResponseNG resp; if (WaitForResponseTimeout(CMD_HF_MIFARE_READBL, &resp, 1500)) { uint8_t *data = resp.data.asBytes; if (resp.status == PM3_SUCCESS) { PrintAndLogEx(NORMAL, "data: %s", sprint_hex(data, 16)); } else { PrintAndLogEx(FAILED, "failed reading block"); return PM3_ESOFT; } if (mfIsSectorTrailer(blockNo) && (data[6] || data[7] || data[8])) { PrintAndLogEx(NORMAL, "Trailer decoded:"); int bln = mfFirstBlockOfSector(mfSectorNum(blockNo)); int blinc = (mfNumBlocksPerSector(mfSectorNum(blockNo)) > 4) ? 5 : 1; for (int i = 0; i < 4; i++) { PrintAndLogEx(NORMAL, "Access block %d%s: %s", bln, ((blinc > 1) && (i < 3) ? "+" : ""), mfGetAccessConditionsDesc(i, &data[6])); bln += blinc; } PrintAndLogEx(NORMAL, "UserData: %s", sprint_hex_inrow(&data[9], 1)); } } else { PrintAndLogEx(WARNING, "Command execute timeout"); return PM3_ETIMEOUT; } return 0; } static int CmdHF14AMfRdSc(const char *Cmd) { uint8_t sectorNo = 0, keyType = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; char cmdp = 0x00; if (strlen(Cmd) < 3) { PrintAndLogEx(NORMAL, "Usage: hf mf rdsc "); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " hf mf rdsc 0 A FFFFFFFFFFFF "); return PM3_SUCCESS; } sectorNo = param_get8(Cmd, 0); if (sectorNo > MIFARE_4K_MAXSECTOR) { PrintAndLogEx(NORMAL, "Sector number must be less than 40"); return PM3_ESOFT; } cmdp = tolower(param_getchar(Cmd, 1)); if (cmdp != 'a' && cmdp != 'b') { PrintAndLogEx(NORMAL, "Key type must be A or B"); return PM3_ESOFT; } if (cmdp != 'a') keyType = 1; if (param_gethex(Cmd, 2, key, 12)) { PrintAndLogEx(NORMAL, "Key must include 12 HEX symbols"); return PM3_ESOFT; } PrintAndLogEx(NORMAL, "--sector no:%d key type:%c key:%s ", sectorNo, keyType ? 'B' : 'A', sprint_hex(key, 6)); clearCommandBuffer(); SendCommandOLD(CMD_HF_MIFARE_READSC, sectorNo, keyType, 0, key, 6); PrintAndLogEx(NORMAL, ""); PacketResponseNG resp; if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { uint8_t isOK = resp.oldarg[0] & 0xff; uint8_t *data = resp.data.asBytes; PrintAndLogEx(NORMAL, "isOk:%02x", isOK); if (isOK) { for (int i = 0; i < (sectorNo < 32 ? 3 : 15); i++) { PrintAndLogEx(NORMAL, "data : %s", sprint_hex(data + i * 16, 16)); } PrintAndLogEx(NORMAL, "trailer: %s", sprint_hex(data + (sectorNo < 32 ? 3 : 15) * 16, 16)); PrintAndLogEx(NORMAL, "Trailer decoded:"); int bln = mfFirstBlockOfSector(sectorNo); int blinc = (mfNumBlocksPerSector(sectorNo) > 4) ? 5 : 1; for (int i = 0; i < 4; i++) { PrintAndLogEx(NORMAL, "Access block %d%s: %s", bln, ((blinc > 1) && (i < 3) ? "+" : ""), mfGetAccessConditionsDesc(i, &(data + (sectorNo < 32 ? 3 : 15) * 16)[6])); bln += blinc; } PrintAndLogEx(NORMAL, "UserData: %s", sprint_hex_inrow(&(data + (sectorNo < 32 ? 3 : 15) * 16)[9], 1)); } } else { PrintAndLogEx(WARNING, "Command execute timeout"); } return PM3_SUCCESS; } static uint16_t NumOfBlocks(char card) { switch (card) { case '0' : return MIFARE_MINI_MAXBLOCK; case '1' : return MIFARE_1K_MAXBLOCK; case '2' : return MIFARE_2K_MAXBLOCK; case '4' : return MIFARE_4K_MAXBLOCK; default : return 0; } } static uint8_t NumOfSectors(char card) { switch (card) { case '0' : return MIFARE_MINI_MAXSECTOR; case '1' : return MIFARE_1K_MAXSECTOR; case '2' : return MIFARE_2K_MAXSECTOR; case '4' : return MIFARE_4K_MAXSECTOR; default : return 0; } } static uint8_t FirstBlockOfSector(uint8_t sectorNo) { if (sectorNo < 32) { return sectorNo * 4; } else { return 32 * 4 + (sectorNo - 32) * 16; } } static uint8_t NumBlocksPerSector(uint8_t sectorNo) { if (sectorNo < 32) { return 4; } else { return 16; } } static uint8_t GetSectorFromBlockNo(uint8_t blockNo) { if (blockNo < 128) return blockNo / 4; else return 32 + ((128 - blockNo) / 16); } static char GetFormatFromSector(uint8_t sectorNo) { switch (sectorNo) { case MIFARE_MINI_MAXSECTOR: return '0'; case MIFARE_1K_MAXSECTOR: return '1'; case MIFARE_2K_MAXSECTOR: return '2'; case MIFARE_4K_MAXSECTOR: return '4'; default : return ' '; } } static int FastDumpWithEcFill(uint8_t numsectors) { PacketResponseNG resp; mfc_eload_t payload; payload.sectorcnt = numsectors; payload.keytype = 0; // ecfill key A clearCommandBuffer(); SendCommandNG(CMD_HF_MIFARE_EML_LOAD, (uint8_t *)&payload, sizeof(payload)); int res = WaitForResponseTimeout(CMD_HF_MIFARE_EML_LOAD, &resp, 2000); if (res != PM3_SUCCESS) { } // ecfill key B payload.keytype = 1; clearCommandBuffer(); SendCommandNG(CMD_HF_MIFARE_EML_LOAD, (uint8_t *)&payload, sizeof(payload)); res = WaitForResponseTimeout(CMD_HF_MIFARE_EML_LOAD, &resp, 2000); if (res != PM3_SUCCESS) { } return PM3_SUCCESS; } static int CmdHF14AMfDump(const char *Cmd) { uint64_t t1 = msclock(); uint8_t sectorNo, blockNo; uint8_t keyA[40][6]; uint8_t keyB[40][6]; uint8_t rights[40][4]; uint8_t carddata[256][16]; uint8_t numSectors = 16; uint8_t cmdp = 0; char keyFilename[FILE_PATH_SIZE] = {0}; char dataFilename[FILE_PATH_SIZE]; char *fptr; memset(keyFilename, 0, sizeof(keyFilename)); memset(dataFilename, 0, sizeof(dataFilename)); FILE *f; PacketResponseNG resp; while (param_getchar(Cmd, cmdp) != 0x00) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_hf14_dump(); case 'k': param_getstr(Cmd, cmdp + 1, keyFilename, FILE_PATH_SIZE); cmdp += 2; break; case 'f': param_getstr(Cmd, cmdp + 1, dataFilename, FILE_PATH_SIZE); cmdp += 2; break; default: if (cmdp == 0) { numSectors = NumOfSectors(param_getchar(Cmd, cmdp)); if (numSectors == 0) return usage_hf14_dump(); cmdp++; } else { PrintAndLogEx(WARNING, "Unknown parameter '%c'\n", param_getchar(Cmd, cmdp)); return usage_hf14_dump(); } } } if (keyFilename[0] == 0x00) { fptr = GenerateFilename("hf-mf-", "-key.bin"); if (fptr == NULL) return PM3_ESOFT; strcpy(keyFilename, fptr); } if ((f = fopen(keyFilename, "rb")) == NULL) { PrintAndLogEx(WARNING, "Could not find file " _YELLOW_("%s"), keyFilename); return PM3_EFILE; } // Read keys A from file size_t bytes_read; for (sectorNo = 0; sectorNo < numSectors; sectorNo++) { bytes_read = fread(keyA[sectorNo], 1, 6, f); if (bytes_read != 6) { PrintAndLogEx(ERR, "File reading error."); fclose(f); return PM3_EFILE; } } // Read keys B from file for (sectorNo = 0; sectorNo < numSectors; sectorNo++) { bytes_read = fread(keyB[sectorNo], 1, 6, f); if (bytes_read != 6) { PrintAndLogEx(ERR, "File reading error."); fclose(f); return PM3_EFILE; } } fclose(f); PrintAndLogEx(INFO, "Reading sector access bits..."); uint8_t tries; mf_readblock_t payload; for (sectorNo = 0; sectorNo < numSectors; sectorNo++) { for (tries = 0; tries < MIFARE_SECTOR_RETRY; tries++) { printf("."); fflush(NULL); payload.blockno = FirstBlockOfSector(sectorNo) + NumBlocksPerSector(sectorNo) - 1; payload.keytype = 0; memcpy(payload.key, keyA[sectorNo], sizeof(payload.key)); clearCommandBuffer(); SendCommandNG(CMD_HF_MIFARE_READBL, (uint8_t *)&payload, sizeof(mf_readblock_t)); if (WaitForResponseTimeout(CMD_HF_MIFARE_READBL, &resp, 1500)) { uint8_t *data = resp.data.asBytes; if (resp.status == PM3_SUCCESS) { rights[sectorNo][0] = ((data[7] & 0x10) >> 2) | ((data[8] & 0x1) << 1) | ((data[8] & 0x10) >> 4); // C1C2C3 for data area 0 rights[sectorNo][1] = ((data[7] & 0x20) >> 3) | ((data[8] & 0x2) << 0) | ((data[8] & 0x20) >> 5); // C1C2C3 for data area 1 rights[sectorNo][2] = ((data[7] & 0x40) >> 4) | ((data[8] & 0x4) >> 1) | ((data[8] & 0x40) >> 6); // C1C2C3 for data area 2 rights[sectorNo][3] = ((data[7] & 0x80) >> 5) | ((data[8] & 0x8) >> 2) | ((data[8] & 0x80) >> 7); // C1C2C3 for sector trailer break; } else if (tries == 2) { // on last try set defaults PrintAndLogEx(FAILED, "could not get access rights for sector %2d. Trying with defaults...", sectorNo); rights[sectorNo][0] = rights[sectorNo][1] = rights[sectorNo][2] = 0x00; rights[sectorNo][3] = 0x01; } } else { PrintAndLogEx(FAILED, "command execute timeout when trying to read access rights for sector %2d. Trying with defaults...", sectorNo); rights[sectorNo][0] = rights[sectorNo][1] = rights[sectorNo][2] = 0x00; rights[sectorNo][3] = 0x01; } } } printf("\n"); PrintAndLogEx(SUCCESS, "Finished reading sector access bits"); PrintAndLogEx(INFO, "Dumping all blocks from card..."); for (sectorNo = 0; sectorNo < numSectors; sectorNo++) { for (blockNo = 0; blockNo < NumBlocksPerSector(sectorNo); blockNo++) { bool received = false; for (tries = 0; tries < MIFARE_SECTOR_RETRY; tries++) { if (blockNo == NumBlocksPerSector(sectorNo) - 1) { // sector trailer. At least the Access Conditions can always be read with key A. payload.blockno = FirstBlockOfSector(sectorNo) + blockNo; payload.keytype = 0; memcpy(payload.key, keyA[sectorNo], sizeof(payload.key)); clearCommandBuffer(); SendCommandNG(CMD_HF_MIFARE_READBL, (uint8_t *)&payload, sizeof(mf_readblock_t)); received = WaitForResponseTimeout(CMD_HF_MIFARE_READBL, &resp, 1500); } else { // data block. Check if it can be read with key A or key B uint8_t data_area = (sectorNo < 32) ? blockNo : blockNo / 5; if ((rights[sectorNo][data_area] == 0x03) || (rights[sectorNo][data_area] == 0x05)) { // only key B would work payload.blockno = FirstBlockOfSector(sectorNo) + blockNo; payload.keytype = 1; memcpy(payload.key, keyB[sectorNo], sizeof(payload.key)); clearCommandBuffer(); SendCommandNG(CMD_HF_MIFARE_READBL, (uint8_t *)&payload, sizeof(mf_readblock_t)); received = WaitForResponseTimeout(CMD_HF_MIFARE_READBL, &resp, 1500); } else if (rights[sectorNo][data_area] == 0x07) { // no key would work PrintAndLogEx(WARNING, "access rights do not allow reading of sector %2d block %3d", sectorNo, blockNo); // where do you want to go?? Next sector or block? break; } else { // key A would work payload.blockno = FirstBlockOfSector(sectorNo) + blockNo; payload.keytype = 0; memcpy(payload.key, keyA[sectorNo], sizeof(payload.key)); clearCommandBuffer(); SendCommandNG(CMD_HF_MIFARE_READBL, (uint8_t *)&payload, sizeof(mf_readblock_t)); received = WaitForResponseTimeout(CMD_HF_MIFARE_READBL, &resp, 1500); } } if (received) { if (resp.status == PM3_SUCCESS) { // break the re-try loop break; } } } if (received) { uint8_t *data = resp.data.asBytes; if (blockNo == NumBlocksPerSector(sectorNo) - 1) { // sector trailer. Fill in the keys. data[0] = (keyA[sectorNo][0]); data[1] = (keyA[sectorNo][1]); data[2] = (keyA[sectorNo][2]); data[3] = (keyA[sectorNo][3]); data[4] = (keyA[sectorNo][4]); data[5] = (keyA[sectorNo][5]); data[10] = (keyB[sectorNo][0]); data[11] = (keyB[sectorNo][1]); data[12] = (keyB[sectorNo][2]); data[13] = (keyB[sectorNo][3]); data[14] = (keyB[sectorNo][4]); data[15] = (keyB[sectorNo][5]); } if (resp.status == PM3_SUCCESS) { memcpy(carddata[FirstBlockOfSector(sectorNo) + blockNo], data, 16); PrintAndLogEx(SUCCESS, "successfully read block %2d of sector %2d.", blockNo, sectorNo); } else { PrintAndLogEx(FAILED, "could not read block %2d of sector %2d", blockNo, sectorNo); break; } } else { PrintAndLogEx(WARNING, "command execute timeout when trying to read block %2d of sector %2d.", blockNo, sectorNo); break; } } } PrintAndLogEx(SUCCESS, "time: %" PRIu64 " seconds\n", (msclock() - t1) / 1000); PrintAndLogEx(SUCCESS, "\nSucceeded in dumping all blocks"); if (strlen(dataFilename) < 1) { fptr = GenerateFilename("hf-mf-", "-dump"); if (fptr == NULL) return PM3_ESOFT; strcpy(dataFilename, fptr); } uint16_t bytes = 16 * (FirstBlockOfSector(numSectors - 1) + NumBlocksPerSector(numSectors - 1)); saveFile(dataFilename, ".bin", (uint8_t *)carddata, bytes); saveFileEML(dataFilename, (uint8_t *)carddata, bytes, MFBLOCK_SIZE); saveFileJSON(dataFilename, jsfCardMemory, (uint8_t *)carddata, bytes); return PM3_SUCCESS; } static int CmdHF14AMfRestore(const char *Cmd) { uint8_t sectorNo, blockNo; uint8_t keyType = 0; uint8_t key[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; uint8_t bldata[16] = {0x00}; uint8_t keyA[40][6]; uint8_t keyB[40][6]; uint8_t numSectors = 16; uint8_t cmdp = 0; char keyFilename[FILE_PATH_SIZE] = ""; char dataFilename[FILE_PATH_SIZE] = ""; char szTemp[FILE_PATH_SIZE - 20] = ""; char *fptr; FILE *fdump, *fkeys; while (param_getchar(Cmd, cmdp) != 0x00) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_hf14_restore(); case 'u': param_getstr(Cmd, cmdp + 1, szTemp, FILE_PATH_SIZE - 20); if (keyFilename[0] == 0x00) snprintf(keyFilename, FILE_PATH_SIZE, "hf-mf-%s-key.bin", szTemp); if (dataFilename[0] == 0x00) snprintf(dataFilename, FILE_PATH_SIZE, "hf-mf-%s-dump.bin", szTemp); cmdp += 2; break; case 'k': param_getstr(Cmd, cmdp + 1, keyFilename, FILE_PATH_SIZE); cmdp += 2; break; case 'f': param_getstr(Cmd, cmdp + 1, dataFilename, FILE_PATH_SIZE); cmdp += 2; break; default: if (cmdp == 0) { numSectors = NumOfSectors(param_getchar(Cmd, cmdp)); if (numSectors == 0) return usage_hf14_restore(); cmdp++; } else { PrintAndLogEx(WARNING, "Unknown parameter '%c'\n", param_getchar(Cmd, cmdp)); return usage_hf14_restore(); } } } if (keyFilename[0] == 0x00) { fptr = GenerateFilename("hf-mf-", "-key.bin"); if (fptr == NULL) return 1; strcpy(keyFilename, fptr); } if ((fkeys = fopen(keyFilename, "rb")) == NULL) { PrintAndLogEx(WARNING, "Could not find file " _YELLOW_("%s"), keyFilename); return 1; } size_t bytes_read; for (sectorNo = 0; sectorNo < numSectors; sectorNo++) { bytes_read = fread(keyA[sectorNo], 1, 6, fkeys); if (bytes_read != 6) { PrintAndLogEx(ERR, "File reading error " _YELLOW_("%s"), keyFilename); fclose(fkeys); return 2; } } for (sectorNo = 0; sectorNo < numSectors; sectorNo++) { bytes_read = fread(keyB[sectorNo], 1, 6, fkeys); if (bytes_read != 6) { PrintAndLogEx(ERR, "File reading error " _YELLOW_("%s"), keyFilename); fclose(fkeys); return 2; } } fclose(fkeys); if (dataFilename[0] == 0x00) { fptr = GenerateFilename("hf-mf-", "-dump.bin"); if (fptr == NULL) return 1; strcpy(dataFilename, fptr); } if ((fdump = fopen(dataFilename, "rb")) == NULL) { PrintAndLogEx(WARNING, "Could not find file " _YELLOW_("%s"), dataFilename); return 1; } PrintAndLogEx(INFO, "Restoring " _YELLOW_("%s")" to card", dataFilename); for (sectorNo = 0; sectorNo < numSectors; sectorNo++) { for (blockNo = 0; blockNo < NumBlocksPerSector(sectorNo); blockNo++) { uint8_t data[26]; memcpy(data, key, 6); bytes_read = fread(bldata, 1, 16, fdump); if (bytes_read != 16) { PrintAndLogEx(ERR, "File reading error " _YELLOW_("%s"), dataFilename); fclose(fdump); fdump = NULL; return 2; } if (blockNo == NumBlocksPerSector(sectorNo) - 1) { // sector trailer bldata[0] = (keyA[sectorNo][0]); bldata[1] = (keyA[sectorNo][1]); bldata[2] = (keyA[sectorNo][2]); bldata[3] = (keyA[sectorNo][3]); bldata[4] = (keyA[sectorNo][4]); bldata[5] = (keyA[sectorNo][5]); bldata[10] = (keyB[sectorNo][0]); bldata[11] = (keyB[sectorNo][1]); bldata[12] = (keyB[sectorNo][2]); bldata[13] = (keyB[sectorNo][3]); bldata[14] = (keyB[sectorNo][4]); bldata[15] = (keyB[sectorNo][5]); } PrintAndLogEx(NORMAL, "Writing to block %3d: %s", FirstBlockOfSector(sectorNo) + blockNo, sprint_hex(bldata, 16)); memcpy(data + 10, bldata, 16); clearCommandBuffer(); SendCommandOLD(CMD_HF_MIFARE_WRITEBL, FirstBlockOfSector(sectorNo) + blockNo, keyType, 0, data, sizeof(data)); PacketResponseNG resp; if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { uint8_t isOK = resp.oldarg[0] & 0xff; PrintAndLogEx(SUCCESS, "isOk:%02x", isOK); } else { PrintAndLogEx(WARNING, "Command execute timeout"); } } } fclose(fdump); PrintAndLogEx(INFO, "Finish restore"); return PM3_SUCCESS; } static int CmdHF14AMfNested(const char *Cmd) { sector_t *e_sector = NULL; uint8_t keyType = 0; uint8_t trgBlockNo = 0; uint8_t trgKeyType = 0; uint8_t SectorsCnt = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; uint8_t keyBlock[(ARRAYLEN(g_mifare_default_keys) + 1) * 6]; uint64_t key64 = 0; bool transferToEml = false; bool createDumpFile = false; if (strlen(Cmd) < 3) return usage_hf14_nested(); char cmdp, ctmp; cmdp = tolower(param_getchar(Cmd, 0)); uint8_t blockNo = param_get8(Cmd, 1); ctmp = tolower(param_getchar(Cmd, 2)); if (ctmp != 'a' && ctmp != 'b') { PrintAndLogEx(WARNING, "key type must be A or B"); return PM3_EINVARG; } if (ctmp != 'a') keyType = 1; if (param_gethex(Cmd, 3, key, 12)) { PrintAndLogEx(WARNING, "key must include 12 HEX symbols"); return PM3_EINVARG; } if (cmdp == 'o') { trgBlockNo = param_get8(Cmd, 4); ctmp = tolower(param_getchar(Cmd, 5)); if (ctmp != 'a' && ctmp != 'b') { PrintAndLogEx(WARNING, "target key type must be A or B"); return PM3_EINVARG; } if (ctmp != 'a') { trgKeyType = 1; } } else { SectorsCnt = NumOfSectors(cmdp); if (SectorsCnt == 0) return usage_hf14_nested(); } uint8_t j = 4; while (ctmp != 0x00) { ctmp = tolower(param_getchar(Cmd, j)); transferToEml |= (ctmp == 't'); createDumpFile |= (ctmp == 'd'); j++; } // check if tag doesn't have static nonce if (detect_classic_static_nonce() == 1) { PrintAndLogEx(WARNING, "Static nonce detected. Quitting..."); PrintAndLogEx(INFO, "\t Try use " _YELLOW_("`hf mf staticnested`")); return PM3_EOPABORTED; } // check if we can authenticate to sector if (mfCheckKeys(blockNo, keyType, true, 1, key, &key64) != PM3_SUCCESS) { PrintAndLogEx(WARNING, "Wrong key. Can't authenticate to block:%3d key type:%c", blockNo, keyType ? 'B' : 'A'); return PM3_EOPABORTED; } if (cmdp == 'o') { int16_t isOK = mfnested(blockNo, keyType, key, trgBlockNo, trgKeyType, keyBlock, true); switch (isOK) { case -1 : PrintAndLogEx(ERR, "Command execute timeout\n"); break; case -2 : PrintAndLogEx(WARNING, "Button pressed. Aborted.\n"); break; case -3 : PrintAndLogEx(FAILED, "Tag isn't vulnerable to Nested Attack (PRNG is not predictable).\n"); break; case -4 : PrintAndLogEx(FAILED, "No valid key found"); break; case -5 : key64 = bytes_to_num(keyBlock, 6); // transfer key to the emulator if (transferToEml) { uint8_t sectortrailer; if (trgBlockNo < 32 * 4) { // 4 block sector sectortrailer = trgBlockNo | 0x03; } else { // 16 block sector sectortrailer = trgBlockNo | 0x0f; } mfEmlGetMem(keyBlock, sectortrailer, 1); if (!trgKeyType) num_to_bytes(key64, 6, keyBlock); else num_to_bytes(key64, 6, &keyBlock[10]); mfEmlSetMem(keyBlock, sectortrailer, 1); PrintAndLogEx(SUCCESS, "Key transferred to emulator memory."); } return PM3_SUCCESS; default : PrintAndLogEx(ERR, "Unknown error.\n"); } return PM3_SUCCESS; } else { // ------------------------------------ multiple sectors working uint64_t t1 = msclock(); e_sector = calloc(SectorsCnt, sizeof(sector_t)); if (e_sector == NULL) return PM3_EMALLOC; // add our known key e_sector[GetSectorFromBlockNo(blockNo)].foundKey[keyType] = 1; e_sector[GetSectorFromBlockNo(blockNo)].Key[keyType] = key64; //test current key and additional standard keys first // add parameter key memcpy(keyBlock + (ARRAYLEN(g_mifare_default_keys) * 6), key, 6); for (int cnt = 0; cnt < ARRAYLEN(g_mifare_default_keys); cnt++) { num_to_bytes(g_mifare_default_keys[cnt], 6, (uint8_t *)(keyBlock + cnt * 6)); } PrintAndLogEx(SUCCESS, "Testing known keys. Sector count "_YELLOW_("%d"), SectorsCnt); int res = mfCheckKeys_fast(SectorsCnt, true, true, 1, ARRAYLEN(g_mifare_default_keys) + 1, keyBlock, e_sector, false); if (res == PM3_SUCCESS) { // all keys found PrintAndLogEx(SUCCESS, "Fast check found all keys"); goto jumptoend; } uint64_t t2 = msclock() - t1; PrintAndLogEx(SUCCESS, "Time to check " _YELLOW_("%zu") " known keys: %.0f seconds\n", ARRAYLEN(g_mifare_default_keys), (float)t2 / 1000.0); PrintAndLogEx(SUCCESS, "enter nested key recovery"); // nested sectors // int iterations = 0; bool calibrate = true; for (trgKeyType = 0; trgKeyType < 2; ++trgKeyType) { for (uint8_t sectorNo = 0; sectorNo < SectorsCnt; ++sectorNo) { for (int i = 0; i < MIFARE_SECTOR_RETRY; i++) { if (e_sector[sectorNo].foundKey[trgKeyType]) continue; int16_t isOK = mfnested(blockNo, keyType, key, FirstBlockOfSector(sectorNo), trgKeyType, keyBlock, calibrate); switch (isOK) { case -1 : PrintAndLogEx(ERR, "Command execute timeout\n"); break; case -2 : PrintAndLogEx(WARNING, "button pressed. Aborted.\n"); break; case -3 : PrintAndLogEx(FAILED, "Tag isn't vulnerable to Nested Attack (PRNG is not predictable).\n"); break; case -4 : //key not found calibrate = false; // iterations++; continue; case -5 : calibrate = false; // iterations++; e_sector[sectorNo].foundKey[trgKeyType] = 1; e_sector[sectorNo].Key[trgKeyType] = bytes_to_num(keyBlock, 6); mfCheckKeys_fast(SectorsCnt, true, true, 2, 1, keyBlock, e_sector, false); continue; default : PrintAndLogEx(ERR, "Unknown error.\n"); } free(e_sector); return PM3_ESOFT; } } } t1 = msclock() - t1; PrintAndLogEx(SUCCESS, "time in nested: " _YELLOW_("%.0f") " seconds\n", (float)t1 / 1000.0); // 20160116 If Sector A is found, but not Sector B, try just reading it of the tag? PrintAndLogEx(INFO, "trying to read key B..."); for (int i = 0; i < SectorsCnt; i++) { // KEY A but not KEY B if (e_sector[i].foundKey[0] && !e_sector[i].foundKey[1]) { uint8_t sectrail = (FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1); PrintAndLogEx(SUCCESS, "reading block %d", sectrail); mf_readblock_t payload; payload.blockno = sectrail; payload.keytype = 0; num_to_bytes(e_sector[i].Key[0], 6, payload.key); // KEY A clearCommandBuffer(); SendCommandNG(CMD_HF_MIFARE_READBL, (uint8_t *)&payload, sizeof(mf_readblock_t)); PacketResponseNG resp; if (!WaitForResponseTimeout(CMD_HF_MIFARE_READBL, &resp, 1500)) continue; if (resp.status != PM3_SUCCESS) continue; uint8_t *data = resp.data.asBytes; key64 = bytes_to_num(data + 10, 6); if (key64) { PrintAndLogEx(SUCCESS, "data: %s", sprint_hex(data + 10, 6)); e_sector[i].foundKey[1] = true; e_sector[i].Key[1] = key64; } } } jumptoend: PrintAndLogEx(NORMAL, ""); PrintAndLogEx(SUCCESS, _GREEN_("found keys:")); //print them printKeyTable(SectorsCnt, e_sector); // transfer them to the emulator if (transferToEml) { // fast push mode conn.block_after_ACK = true; for (int i = 0; i < SectorsCnt; i++) { mfEmlGetMem(keyBlock, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1); if (e_sector[i].foundKey[0]) num_to_bytes(e_sector[i].Key[0], 6, keyBlock); if (e_sector[i].foundKey[1]) num_to_bytes(e_sector[i].Key[1], 6, &keyBlock[10]); if (i == SectorsCnt - 1) { // Disable fast mode on last packet conn.block_after_ACK = false; } mfEmlSetMem(keyBlock, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1); } PrintAndLogEx(SUCCESS, "keys transferred to emulator memory."); } // Create dump file if (createDumpFile) { char *fptr = GenerateFilename("hf-mf-", "-key.bin"); if (createMfcKeyDump(fptr, SectorsCnt, e_sector) != PM3_SUCCESS) { PrintAndLogEx(ERR, "Failed to save keys to file"); free(e_sector); return PM3_ESOFT; } } free(e_sector); } return PM3_SUCCESS; } static int CmdHF14AMfNestedStatic(const char *Cmd) { sector_t *e_sector = NULL; uint8_t keyType = 0; uint8_t trgKeyType = 0; uint8_t SectorsCnt = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; uint8_t keyBlock[(ARRAYLEN(g_mifare_default_keys) + 1) * 6]; uint64_t key64 = 0; bool transferToEml = false; bool createDumpFile = false; if (strlen(Cmd) < 3) return usage_hf14_staticnested(); char cmdp, ctmp; cmdp = tolower(param_getchar(Cmd, 0)); uint8_t blockNo = param_get8(Cmd, 1); ctmp = tolower(param_getchar(Cmd, 2)); if (ctmp != 'a' && ctmp != 'b') { PrintAndLogEx(WARNING, "key type must be A or B"); return PM3_EINVARG; } if (ctmp != 'a') keyType = 1; if (param_gethex(Cmd, 3, key, 12)) { PrintAndLogEx(WARNING, "key must include 12 HEX symbols"); return PM3_EINVARG; } SectorsCnt = NumOfSectors(cmdp); if (SectorsCnt == 0) return usage_hf14_staticnested(); uint8_t j = 4; while (ctmp != 0x00) { ctmp = tolower(param_getchar(Cmd, j)); transferToEml |= (ctmp == 't'); createDumpFile |= (ctmp == 'd'); j++; } // check if tag have static nonce if (detect_classic_static_nonce() == 0) { PrintAndLogEx(WARNING, "None static nonce detected. Quitting..."); PrintAndLogEx(INFO, "\t Try use " _YELLOW_("`hf mf nested`")); return PM3_EOPABORTED; } // check if we can authenticate to sector if (mfCheckKeys(blockNo, keyType, true, 1, key, &key64) != PM3_SUCCESS) { PrintAndLogEx(WARNING, "Wrong key. Can't authenticate to block: %3d key type: %c", blockNo, keyType ? 'B' : 'A'); return PM3_EOPABORTED; } if (IfPm3Flash()) { PrintAndLogEx(INFO, "RDV4 with flashmemory supported detected."); } uint64_t t1 = msclock(); e_sector = calloc(SectorsCnt, sizeof(sector_t)); if (e_sector == NULL) return PM3_EMALLOC; // add our known key e_sector[GetSectorFromBlockNo(blockNo)].foundKey[keyType] = 1; e_sector[GetSectorFromBlockNo(blockNo)].Key[keyType] = key64; //test current key and additional standard keys first // add parameter key memcpy(keyBlock + (ARRAYLEN(g_mifare_default_keys) * 6), key, 6); for (int cnt = 0; cnt < ARRAYLEN(g_mifare_default_keys); cnt++) { num_to_bytes(g_mifare_default_keys[cnt], 6, (uint8_t *)(keyBlock + cnt * 6)); } PrintAndLogEx(SUCCESS, "Testing known keys. Sector count "_YELLOW_("%d"), SectorsCnt); int res = mfCheckKeys_fast(SectorsCnt, true, true, 1, ARRAYLEN(g_mifare_default_keys) + 1, keyBlock, e_sector, false); if (res == PM3_SUCCESS) { // all keys found PrintAndLogEx(SUCCESS, "Fast check found all keys"); goto jumptoend; } uint64_t t2 = msclock() - t1; PrintAndLogEx(SUCCESS, "Time to check "_YELLOW_("%zu") " known keys: %.0f seconds\n", ARRAYLEN(g_mifare_default_keys), (float)t2 / 1000.0); PrintAndLogEx(SUCCESS, "enter static nested key recovery"); // nested sectors for (trgKeyType = 0; trgKeyType < 2; ++trgKeyType) { for (uint8_t sectorNo = 0; sectorNo < SectorsCnt; ++sectorNo) { for (int i = 0; i < 1; i++) { if (e_sector[sectorNo].foundKey[trgKeyType]) continue; int16_t isOK = mfStaticNested(blockNo, keyType, key, FirstBlockOfSector(sectorNo), trgKeyType, keyBlock); switch (isOK) { case PM3_ETIMEOUT : PrintAndLogEx(ERR, "Command execute timeout"); break; case PM3_EOPABORTED : PrintAndLogEx(WARNING, "aborted via keyboard."); break; case PM3_ESOFT : continue; case PM3_SUCCESS : e_sector[sectorNo].foundKey[trgKeyType] = 1; e_sector[sectorNo].Key[trgKeyType] = bytes_to_num(keyBlock, 6); mfCheckKeys_fast(SectorsCnt, true, true, 2, 1, keyBlock, e_sector, false); continue; default : PrintAndLogEx(ERR, "unknown error.\n"); } free(e_sector); return PM3_ESOFT; } } } t1 = msclock() - t1; PrintAndLogEx(SUCCESS, "time in static nested: " _YELLOW_("%.0f") " seconds\n", (float)t1 / 1000.0); // 20160116 If Sector A is found, but not Sector B, try just reading it of the tag? PrintAndLogEx(INFO, "trying to read key B..."); for (int i = 0; i < SectorsCnt; i++) { // KEY A but not KEY B if (e_sector[i].foundKey[0] && !e_sector[i].foundKey[1]) { uint8_t sectrail = (FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1); PrintAndLogEx(SUCCESS, "reading block %d", sectrail); mf_readblock_t payload; payload.blockno = sectrail; payload.keytype = 0; num_to_bytes(e_sector[i].Key[0], 6, payload.key); // KEY A clearCommandBuffer(); SendCommandNG(CMD_HF_MIFARE_READBL, (uint8_t *)&payload, sizeof(mf_readblock_t)); PacketResponseNG resp; if (!WaitForResponseTimeout(CMD_HF_MIFARE_READBL, &resp, 1500)) continue; if (resp.status != PM3_SUCCESS) continue; uint8_t *data = resp.data.asBytes; key64 = bytes_to_num(data + 10, 6); if (key64) { PrintAndLogEx(SUCCESS, "data: %s", sprint_hex(data + 10, 6)); e_sector[i].foundKey[1] = true; e_sector[i].Key[1] = key64; } } } jumptoend: PrintAndLogEx(NORMAL, ""); PrintAndLogEx(SUCCESS, _GREEN_("found keys:")); //print them printKeyTable(SectorsCnt, e_sector); // transfer them to the emulator if (transferToEml) { // fast push mode conn.block_after_ACK = true; for (int i = 0; i < SectorsCnt; i++) { mfEmlGetMem(keyBlock, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1); if (e_sector[i].foundKey[0]) num_to_bytes(e_sector[i].Key[0], 6, keyBlock); if (e_sector[i].foundKey[1]) num_to_bytes(e_sector[i].Key[1], 6, &keyBlock[10]); if (i == SectorsCnt - 1) { // Disable fast mode on last packet conn.block_after_ACK = false; } mfEmlSetMem(keyBlock, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1); } PrintAndLogEx(SUCCESS, "keys transferred to emulator memory."); } // Create dump file if (createDumpFile) { char *fptr = GenerateFilename("hf-mf-", "-key.bin"); if (createMfcKeyDump(fptr, SectorsCnt, e_sector) != PM3_SUCCESS) { PrintAndLogEx(ERR, "Failed to save keys to file"); free(e_sector); return PM3_ESOFT; } } free(e_sector); return PM3_SUCCESS; } static int CmdHF14AMfNestedHard(const char *Cmd) { uint8_t blockNo = 0; uint8_t keyType = 0; uint8_t trgBlockNo = 0; uint8_t trgKeyType = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; uint8_t trgkey[6] = {0, 0, 0, 0, 0, 0}; uint8_t cmdp = 0; char filename[FILE_PATH_SIZE] = {0}, *fptr; char szTemp[FILE_PATH_SIZE - 20]; char ctmp; bool know_target_key = false; bool nonce_file_read = false; bool nonce_file_write = false; bool slow = false; int tests = 0; switch (tolower(param_getchar(Cmd, cmdp))) { case 'h': return usage_hf14_hardnested(); case 'r': fptr = GenerateFilename("hf-mf-", "-nonces.bin"); if (fptr == NULL) strncpy(filename, "nonces.bin", FILE_PATH_SIZE - 1); else strncpy(filename, fptr, FILE_PATH_SIZE - 1); nonce_file_read = true; if (!param_gethex(Cmd, cmdp + 1, trgkey, 12)) { know_target_key = true; } cmdp++; break; case 't': tests = param_get32ex(Cmd, cmdp + 1, 100, 10); if (!param_gethex(Cmd, cmdp + 2, trgkey, 12)) { know_target_key = true; } cmdp += 2; break; default: if (param_getchar(Cmd, cmdp) == 0x00) { PrintAndLogEx(WARNING, "Block number is missing"); return 1; } blockNo = param_get8(Cmd, cmdp); ctmp = tolower(param_getchar(Cmd, cmdp + 1)); if (ctmp != 'a' && ctmp != 'b') { PrintAndLogEx(WARNING, "Key type must be A or B"); return 1; } if (ctmp != 'a') { keyType = 1; } if (param_gethex(Cmd, cmdp + 2, key, 12)) { PrintAndLogEx(WARNING, "Key must include 12 HEX symbols"); return 1; } if (param_getchar(Cmd, cmdp + 3) == 0x00) { PrintAndLogEx(WARNING, "Target block number is missing"); return 1; } trgBlockNo = param_get8(Cmd, cmdp + 3); ctmp = tolower(param_getchar(Cmd, cmdp + 4)); if (ctmp != 'a' && ctmp != 'b') { PrintAndLogEx(WARNING, "Target key type must be A or B"); return 1; } if (ctmp != 'a') { trgKeyType = 1; } cmdp += 5; } if (!param_gethex(Cmd, cmdp, trgkey, 12)) { know_target_key = true; cmdp++; } while ((ctmp = param_getchar(Cmd, cmdp))) { switch (tolower(ctmp)) { case 's': slow = true; break; case 'w': nonce_file_write = true; fptr = GenerateFilename("hf-mf-", "-nonces.bin"); if (fptr == NULL) return 1; strncpy(filename, fptr, FILE_PATH_SIZE - 1); break; case 'u': param_getstr(Cmd, cmdp + 1, szTemp, FILE_PATH_SIZE - 20); snprintf(filename, FILE_PATH_SIZE, "hf-mf-%s-nonces.bin", szTemp); cmdp++; break; case 'f': param_getstr(Cmd, cmdp + 1, szTemp, FILE_PATH_SIZE - 20); strncpy(filename, szTemp, FILE_PATH_SIZE - 20); cmdp++; break; case 'i': SetSIMDInstr(SIMD_AUTO); ctmp = tolower(param_getchar(Cmd, cmdp + 1)); switch (ctmp) { #if defined(COMPILER_HAS_SIMD_AVX512) case '5': SetSIMDInstr(SIMD_AVX512); break; #endif #if defined(COMPILER_HAS_SIMD) case '2': SetSIMDInstr(SIMD_AVX2); break; case 'a': SetSIMDInstr(SIMD_AVX); break; case 's': SetSIMDInstr(SIMD_SSE2); break; case 'm': SetSIMDInstr(SIMD_MMX); break; #endif case 'n': SetSIMDInstr(SIMD_NONE); break; default: PrintAndLogEx(WARNING, "Unknown SIMD type. %c", ctmp); return 1; } cmdp += 2; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'\n", ctmp); usage_hf14_hardnested(); return 1; } cmdp++; } if (!know_target_key && nonce_file_read == false) { // check if tag doesn't have static nonce if (detect_classic_static_nonce() == 1) { PrintAndLogEx(WARNING, "Static nonce detected. Quitting..."); PrintAndLogEx(INFO, "\t Try use `" _YELLOW_("hf mf staticnested") "`"); return PM3_EOPABORTED; } uint64_t key64 = 0; // check if we can authenticate to sector if (mfCheckKeys(blockNo, keyType, true, 1, key, &key64) != PM3_SUCCESS) { PrintAndLogEx(WARNING, "Key is wrong. Can't authenticate to block: %3d key type: %c", blockNo, keyType ? 'B' : 'A'); return 3; } } PrintAndLogEx(NORMAL, "--target block no:%3d, target key type:%c, known target key: 0x%02x%02x%02x%02x%02x%02x%s, file action: %s, Slow: %s, Tests: %d ", trgBlockNo, trgKeyType ? 'B' : 'A', trgkey[0], trgkey[1], trgkey[2], trgkey[3], trgkey[4], trgkey[5], know_target_key ? "" : " (not set)", nonce_file_write ? "write" : nonce_file_read ? "read" : "none", slow ? "Yes" : "No", tests); uint64_t foundkey = 0; int16_t isOK = mfnestedhard(blockNo, keyType, key, trgBlockNo, trgKeyType, know_target_key ? trgkey : NULL, nonce_file_read, nonce_file_write, slow, tests, &foundkey, filename); if (tests == 0) DropField(); if (isOK) { switch (isOK) { case 1 : PrintAndLogEx(ERR, "Error: No response from Proxmark3.\n"); break; case 2 : PrintAndLogEx(NORMAL, "Button pressed. Aborted.\n"); break; default : break; } return 2; } return 0; } static int CmdHF14AMfAutoPWN(const char *Cmd) { // Nested and Hardnested parameter uint8_t blockNo = 0; uint8_t keyType = 0; uint8_t key[6] = {0}; uint64_t key64 = 0; bool calibrate = true; // Attack key storage variables uint8_t *keyBlock = NULL; uint32_t key_cnt = 0; sector_t *e_sector; uint8_t sectors_cnt = MIFARE_1K_MAXSECTOR; int block_cnt = MIFARE_1K_MAXBLOCK; uint8_t tmp_key[6] = {0}; bool know_target_key = false; // For the timer uint64_t t1; // Parameters and dictionary file char filename[FILE_PATH_SIZE] = {0}; uint8_t cmdp = 0; char ctmp; // Nested and Hardnested returned status uint64_t foundkey = 0; int16_t isOK = 0; int current_sector_i = 0, current_key_type_i = 0; // Dumping and transfere to simulater memory uint8_t block[16] = {0x00}; uint8_t *dump; int bytes; char *fnameptr = filename; // Settings bool slow = false; bool legacy_mfchk = false; int prng_type = PM3_EUNDEF; bool verbose = false; bool has_filename = false; bool errors = false; uint8_t num_found_keys = 0; // Parse the options given by the user while ((ctmp = param_getchar(Cmd, cmdp)) && !errors) { switch (tolower(ctmp)) { case 'h': return usage_hf14_autopwn(); case 'f': if (param_getstr(Cmd, cmdp + 1, filename, FILE_PATH_SIZE) >= FILE_PATH_SIZE) { PrintAndLogEx(FAILED, "Filename too long"); errors = true; } else { has_filename = true; } cmdp += 2; break; case 'l': legacy_mfchk = true; cmdp++; break; case 'v': verbose = true; cmdp++; break; case '*': // Get the number of sectors sectors_cnt = NumOfSectors(param_getchar(Cmd, cmdp + 1)); block_cnt = NumOfBlocks(param_getchar(Cmd, cmdp + 1)); cmdp += 2; break; case 'k': // Get the known block number if (param_getchar(Cmd, cmdp + 1) == 0x00) { errors = true; break; } blockNo = param_get8(Cmd, cmdp + 1); // Get the knonwn block type ctmp = tolower(param_getchar(Cmd, cmdp + 2)); if (ctmp != 'a' && ctmp != 'b') { PrintAndLogEx(WARNING, "Key type must be A or B"); errors = true; break; } if (ctmp != 'a') { keyType = 1; } // Get the known block key if (param_gethex(Cmd, cmdp + 3, key, 12)) { PrintAndLogEx(WARNING, "Key must include 12 HEX symbols"); errors = true; } know_target_key = true; cmdp += 3; case 's': slow = true; cmdp++; break; case 'i': SetSIMDInstr(SIMD_AUTO); ctmp = tolower(param_getchar(Cmd, cmdp + 1)); switch (ctmp) { #if defined(COMPILER_HAS_SIMD_AVX512) case '5': SetSIMDInstr(SIMD_AVX512); break; #endif #if defined(COMPILER_HAS_SIMD) case '2': SetSIMDInstr(SIMD_AVX2); break; case 'a': SetSIMDInstr(SIMD_AVX); break; case 's': SetSIMDInstr(SIMD_SSE2); break; case 'm': SetSIMDInstr(SIMD_MMX); break; #endif case 'n': SetSIMDInstr(SIMD_NONE); break; default: PrintAndLogEx(WARNING, "Unknown SIMD type. %c", ctmp); return PM3_EINVARG; } cmdp += 2; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'\n", ctmp); return usage_hf14_autopwn(); } } if (errors) { return usage_hf14_autopwn(); } // create/initialize key storage structure int32_t res = initSectorTable(&e_sector, sectors_cnt); if (res != sectors_cnt) { free(e_sector); return PM3_EMALLOC; } // card prng type (weak=1 / hard=0 / select/card comm error = negative value) prng_type = detect_classic_prng(); if (prng_type < 0) { PrintAndLogEx(FAILED, "\nNo tag detected or other tag communication error"); free(e_sector); return prng_type; } // print parameters if (verbose) { PrintAndLogEx(INFO, _YELLOW_("======================= SETTINGS =======================")); PrintAndLogEx(INFO, " card sectors .. " _YELLOW_("%d"), sectors_cnt); PrintAndLogEx(INFO, " key supplied .. " _YELLOW_("%s"), know_target_key ? "True" : "False"); PrintAndLogEx(INFO, " known sector .. " _YELLOW_("%d"), blockNo); PrintAndLogEx(INFO, " keytype ....... " _YELLOW_("%c"), keyType ? 'B' : 'A'); PrintAndLogEx(INFO, " known key ..... " _YELLOW_("%s"), sprint_hex(key, sizeof(key))); PrintAndLogEx(INFO, " card PRNG ..... " _YELLOW_("%s"), prng_type ? "WEAK" : "HARD"); PrintAndLogEx(INFO, " dictionary .... " _YELLOW_("%s"), strlen(filename) ? filename : "NONE"); PrintAndLogEx(INFO, " legacy mode ... " _YELLOW_("%s"), legacy_mfchk ? "True" : "False"); PrintAndLogEx(INFO, _YELLOW_("======================= SETTINGS =======================")); } // Start the timer t1 = msclock(); // check the user supplied key if (know_target_key == false) PrintAndLogEx(WARNING, "no known key was supplied, key recovery might fail"); else { if (verbose) { PrintAndLogEx(INFO, _YELLOW_("======================= START KNOWN KEY ATTACK =======================")); } if (mfCheckKeys(FirstBlockOfSector(blockNo), keyType, true, 1, key, &key64) == PM3_SUCCESS) { PrintAndLogEx(INFO, "target sector:%3u key type: %c -- using valid key [" _YELLOW_("%s") "] (used for nested / hardnested attack)", blockNo, keyType ? 'B' : 'A', sprint_hex(key, sizeof(key)) ); // Store the key for the nested / hardnested attack (if supplied by the user) e_sector[blockNo].Key[keyType] = key64; e_sector[blockNo].foundKey[keyType] = 'U'; ++num_found_keys; } else { know_target_key = false; PrintAndLogEx(FAILED, "Key is wrong. Can't authenticate to sector:"_RED_("%3d") " key type: "_RED_("%c") " key: " _RED_("%s"), blockNo, keyType ? 'B' : 'A', sprint_hex(key, sizeof(key)) ); PrintAndLogEx(WARNING, "falling back to dictionary"); } // Check if the user supplied key is used by other sectors for (int i = 0; i < sectors_cnt; i++) { for (int j = 0; j < 2; j++) { if (e_sector[i].foundKey[j] == 0) { if (mfCheckKeys(FirstBlockOfSector(i), j, true, 1, key, &key64) == PM3_SUCCESS) { e_sector[i].Key[j] = bytes_to_num(key, 6); e_sector[i].foundKey[j] = 'U'; // If the user supplied secctor / keytype was wrong --> just be nice and correct it ;) if (know_target_key == false) { num_to_bytes(e_sector[i].Key[j], 6, key); know_target_key = true; blockNo = i; keyType = j; PrintAndLogEx(SUCCESS, "target sector:%3u key type: %c -- found valid key ["_YELLOW_("%s") "] (used for nested / hardnested attack)", i, j ? 'B' : 'A', sprint_hex(key, sizeof(key)) ); } else { PrintAndLogEx(SUCCESS, "target sector:%3u key type: %c -- found valid key ["_YELLOW_("%s") "]", i, j ? 'B' : 'A', sprint_hex(key, sizeof(key)) ); } ++num_found_keys; } } } } if (verbose) PrintAndLogEx(INFO, _YELLOW_("======================= STOP KNOWN KEY ATTACK =======================")); if (num_found_keys == sectors_cnt * 2) goto all_found; } bool load_success = true; // Load the dictionary if (has_filename) { res = loadFileDICTIONARY_safe(filename, (void **) &keyBlock, 6, &key_cnt); if (res != PM3_SUCCESS || key_cnt == 0 || keyBlock == NULL) { PrintAndLogEx(FAILED, "An error occurred while loading the dictionary! (we will use the default keys now)"); if (keyBlock != NULL) free(keyBlock); load_success = false; } } if (has_filename == false || load_success == false) { keyBlock = calloc(ARRAYLEN(g_mifare_default_keys), 6); if (keyBlock == NULL) { free(e_sector); return PM3_EMALLOC; } for (int cnt = 0; cnt < ARRAYLEN(g_mifare_default_keys); cnt++) { num_to_bytes(g_mifare_default_keys[cnt], 6, keyBlock + cnt * 6); } key_cnt = ARRAYLEN(g_mifare_default_keys); PrintAndLogEx(SUCCESS, "loaded " _GREEN_("%2d") " keys from hardcoded default array", key_cnt); } // Use the dictionary to find sector keys on the card if (verbose) PrintAndLogEx(INFO, _YELLOW_("======================= START DICTIONARY ATTACK =======================")); if (legacy_mfchk) { // Check all the sectors for (int i = 0; i < sectors_cnt; i++) { for (int j = 0; j < 2; j++) { // Check if the key is known if (e_sector[i].foundKey[j] == 0) { for (uint32_t k = 0; k < key_cnt; k++) { printf("."); fflush(stdout); if (mfCheckKeys(FirstBlockOfSector(i), j, true, 1, (keyBlock + (6 * k)), &key64) == PM3_SUCCESS) { e_sector[i].Key[j] = bytes_to_num((keyBlock + (6 * k)), 6); e_sector[i].foundKey[j] = 'D'; ++num_found_keys; break; } } } } } printf("\n"); fflush(stdout); } else { uint32_t chunksize = key_cnt > (PM3_CMD_DATA_SIZE / 6) ? (PM3_CMD_DATA_SIZE / 6) : key_cnt; bool firstChunk = true, lastChunk = false; for (uint8_t strategy = 1; strategy < 3; strategy++) { PrintAndLogEx(INFO, "running strategy %u", strategy); // main keychunk loop for (uint32_t i = 0; i < key_cnt; i += chunksize) { if (kbd_enter_pressed()) { PrintAndLogEx(WARNING, "\naborted via keyboard!\n"); i = key_cnt; strategy = 3; break; // Exit the loop } uint32_t size = ((key_cnt - i) > chunksize) ? chunksize : key_cnt - i; // last chunk? if (size == key_cnt - i) lastChunk = true; res = mfCheckKeys_fast(sectors_cnt, firstChunk, lastChunk, strategy, size, keyBlock + (i * 6), e_sector, false); if (firstChunk) firstChunk = false; // all keys, aborted if (res == PM3_SUCCESS) { i = key_cnt; strategy = 3; break; // Exit the loop } } // end chunks of keys firstChunk = true; lastChunk = false; } // end strategy } if (verbose) PrintAndLogEx(INFO, _YELLOW_("======================= STOP DICTIONARY ATTACK =======================")); // Analyse the dictionary attack for (int i = 0; i < sectors_cnt; i++) { for (int j = 0; j < 2; j++) { if (e_sector[i].foundKey[j] == 1) { e_sector[i].foundKey[j] = 'D'; num_to_bytes(e_sector[i].Key[j], 6, tmp_key); // Store valid credentials for the nested / hardnested attack if none exist if (know_target_key == false) { num_to_bytes(e_sector[i].Key[j], 6, key); know_target_key = true; blockNo = i; keyType = j; PrintAndLogEx(SUCCESS, "target sector:%3u key type: %c -- found valid key [" _YELLOW_("%s") "] (used for nested / hardnested attack)", i, j ? 'B' : 'A', sprint_hex(tmp_key, sizeof(tmp_key)) ); } else { PrintAndLogEx(SUCCESS, "target sector:%3u key type: %c -- found valid key [" _YELLOW_("%s") "]", i, j ? 'B' : 'A', sprint_hex(tmp_key, sizeof(tmp_key)) ); } } } } // Check if at least one sector key was found if (know_target_key == false) { // Check if the darkside attack can be used if (prng_type) { if (verbose) PrintAndLogEx(INFO, _YELLOW_("======================= START DARKSIDE ATTACK =======================")); isOK = mfDarkside(FirstBlockOfSector(blockNo), keyType, &key64); if (verbose) PrintAndLogEx(INFO, _YELLOW_("======================= STOP DARKSIDE ATTACK =======================")); switch (isOK) { case -1 : PrintAndLogEx(WARNING, "\nButton pressed. Aborted."); goto noValidKeyFound; case -2 : PrintAndLogEx(FAILED, "\nCard is not vulnerable to Darkside attack (doesn't send NACK on authentication requests)."); goto noValidKeyFound; case -3 : PrintAndLogEx(FAILED, "\nCard is not vulnerable to Darkside attack (its random number generator is not predictable)."); goto noValidKeyFound; case -4 : PrintAndLogEx(FAILED, "\nCard is not vulnerable to Darkside attack (its random number generator seems to be based on the wellknown"); PrintAndLogEx(FAILED, "generating polynomial with 16 effective bits only, but shows unexpected behaviour."); goto noValidKeyFound; case -5 : PrintAndLogEx(WARNING, "\nAborted via keyboard."); goto noValidKeyFound; default : PrintAndLogEx(SUCCESS, "\nFound valid key: %012" PRIx64 "\n", key64); break; } // Store the keys e_sector[blockNo].Key[keyType] = key64; e_sector[blockNo].foundKey[keyType] = 'S'; PrintAndLogEx(SUCCESS, "target sector:%3u key type: %c -- found valid key [" _YELLOW_("%s") "] (used for nested / hardnested attack)", blockNo, keyType ? 'B' : 'A', sprint_hex(key, sizeof(key)) ); } else { noValidKeyFound: PrintAndLogEx(FAILED, "No usable key was found!"); free(keyBlock); free(e_sector); return PM3_ESOFT; } } free(keyBlock); // Clear the needed variables num_to_bytes(0, 6, tmp_key); bool nested_failed = false; // Iterate over each sector and key(A/B) for (current_sector_i = 0; current_sector_i < sectors_cnt; current_sector_i++) { for (current_key_type_i = 0; current_key_type_i < 2; current_key_type_i++) { // If the key is already known, just skip it if (e_sector[current_sector_i].foundKey[current_key_type_i] == 0) { // Try the found keys are reused if (bytes_to_num(tmp_key, 6) != 0) { // The fast check --> mfCheckKeys_fast(sectors_cnt, true, true, 2, 1, tmp_key, e_sector, false); // Returns false keys, so we just stick to the slower mfchk. for (int i = 0; i < sectors_cnt; i++) { for (int j = 0; j < 2; j++) { // Check if the sector key is already broken if (e_sector[i].foundKey[j]) continue; // Check if the key works if (mfCheckKeys(FirstBlockOfSector(i), j, true, 1, tmp_key, &key64) == PM3_SUCCESS) { e_sector[i].Key[j] = bytes_to_num(tmp_key, 6); e_sector[i].foundKey[j] = 'R'; PrintAndLogEx(SUCCESS, "target sector:%3u key type: %c -- found valid key [" _YELLOW_("%s") "]", i, j ? 'B' : 'A', sprint_hex(tmp_key, sizeof(tmp_key)) ); } } } } // Clear the last found key num_to_bytes(0, 6, tmp_key); if (current_key_type_i == 1) { if (e_sector[current_sector_i].foundKey[0] && !e_sector[current_sector_i].foundKey[1]) { if (verbose) { PrintAndLogEx(INFO, _YELLOW_("======================= START READ B KEY ATTACK =======================")); PrintAndLogEx(INFO, "reading B key: sector: %3d key type: %c", current_sector_i, current_key_type_i ? 'B' : 'A'); } uint8_t sectrail = (FirstBlockOfSector(current_sector_i) + NumBlocksPerSector(current_sector_i) - 1); mf_readblock_t payload; payload.blockno = sectrail; payload.keytype = 0; num_to_bytes(e_sector[current_sector_i].Key[0], 6, payload.key); // KEY A clearCommandBuffer(); SendCommandNG(CMD_HF_MIFARE_READBL, (uint8_t *)&payload, sizeof(mf_readblock_t)); PacketResponseNG resp; if (!WaitForResponseTimeout(CMD_HF_MIFARE_READBL, &resp, 1500)) goto skipReadBKey; if (resp.status != PM3_SUCCESS) goto skipReadBKey; uint8_t *data = resp.data.asBytes; key64 = bytes_to_num(data + 10, 6); if (key64) { e_sector[current_sector_i].foundKey[current_key_type_i] = 'A'; e_sector[current_sector_i].Key[current_key_type_i] = key64; num_to_bytes(key64, 6, tmp_key); PrintAndLogEx(SUCCESS, "target sector:%3u key type: %c -- found valid key [" _YELLOW_("%s") "]", current_sector_i, current_key_type_i ? 'B' : 'A', sprint_hex(tmp_key, sizeof(tmp_key)) ); } else { if (verbose) PrintAndLogEx(WARNING, "unknown B key: sector: %3d key type: %c (reading the B key was not possible, maybe due to insufficient access rights) ", current_sector_i, current_key_type_i ? 'B' : 'A' ); } if (verbose) PrintAndLogEx(INFO, _YELLOW_("======================= STOP READ B KEY ATTACK =======================")); } } // Use the nested / hardnested attack skipReadBKey: if (e_sector[current_sector_i].foundKey[current_key_type_i] == 0) { if (prng_type && (! nested_failed)) { uint8_t retries = 0; if (verbose) { PrintAndLogEx(INFO, _YELLOW_("======================= START NESTED ATTACK =======================")); PrintAndLogEx(INFO, "sector no: %3d, target key type: %c", current_sector_i, current_key_type_i ? 'B' : 'A'); } tryNested: isOK = mfnested(FirstBlockOfSector(blockNo), keyType, key, FirstBlockOfSector(current_sector_i), current_key_type_i, tmp_key, calibrate); switch (isOK) { case -1 : PrintAndLogEx(ERR, "\nError: No response from Proxmark3."); free(e_sector); return PM3_ESOFT; case -2 : PrintAndLogEx(WARNING, "\nButton pressed. Aborted."); free(e_sector); return PM3_ESOFT; case -3 : PrintAndLogEx(FAILED, "Tag isn't vulnerable to Nested Attack (PRNG is probably not predictable)."); PrintAndLogEx(FAILED, "Nested attack failed --> try hardnested"); goto tryHardnested; case -4 : //key not found calibrate = false; // this can happen on some old cards, it's worth trying some more before switching to slower hardnested if (retries++ < MIFARE_SECTOR_RETRY) { PrintAndLogEx(FAILED, "Nested attack failed, trying again (%i/%i)", retries, MIFARE_SECTOR_RETRY); goto tryNested; } else { PrintAndLogEx(FAILED, "Nested attack failed, moving to hardnested"); nested_failed = true; goto tryHardnested; } break; case -5 : calibrate = false; e_sector[current_sector_i].Key[current_key_type_i] = bytes_to_num(tmp_key, 6); e_sector[current_sector_i].foundKey[current_key_type_i] = 'N'; break; default : PrintAndLogEx(ERR, "unknown Error.\n"); free(e_sector); return PM3_ESOFT; } if (verbose) PrintAndLogEx(INFO, _YELLOW_("======================= STOP NESTED ATTACK =======================")); } else { tryHardnested: // If the nested attack fails then we try the hardnested attack if (verbose) { PrintAndLogEx(INFO, _YELLOW_("======================= START HARDNESTED ATTACK =======================")); PrintAndLogEx(INFO, "sector no: %3d, target key type: %c, Slow: %s", current_sector_i, current_key_type_i ? 'B' : 'A', slow ? "Yes" : "No"); } isOK = mfnestedhard(FirstBlockOfSector(blockNo), keyType, key, FirstBlockOfSector(current_sector_i), current_key_type_i, NULL, false, false, slow, 0, &foundkey, NULL); DropField(); if (isOK) { switch (isOK) { case 1 : PrintAndLogEx(ERR, "\nError: No response from Proxmark3."); break; case 2 : PrintAndLogEx(NORMAL, "\nButton pressed. Aborted."); break; default : break; } free(e_sector); return PM3_ESOFT; } // Copy the found key to the tmp_key variale (for the following print statement, and the mfCheckKeys above) num_to_bytes(foundkey, 6, tmp_key); e_sector[current_sector_i].Key[current_key_type_i] = foundkey; e_sector[current_sector_i].foundKey[current_key_type_i] = 'H'; if (verbose) PrintAndLogEx(INFO, _YELLOW_("======================= STOP HARDNESTED ATTACK =======================")); } // Check if the key was found if (e_sector[current_sector_i].foundKey[current_key_type_i]) { PrintAndLogEx(SUCCESS, "target sector:%3u key type: %c -- found valid key [" _YELLOW_("%s") "]", current_sector_i, current_key_type_i ? 'B' : 'A', sprint_hex(tmp_key, sizeof(tmp_key)) ); } } } } } all_found: // Show the results to the user PrintAndLogEx(NORMAL, ""); PrintAndLogEx(SUCCESS, _GREEN_("found keys:")); printKeyTable(sectors_cnt, e_sector); // Dump the keys PrintAndLogEx(NORMAL, ""); char *fptr = GenerateFilename("hf-mf-", "-key.bin"); if (createMfcKeyDump(fptr, sectors_cnt, e_sector) != PM3_SUCCESS) { PrintAndLogEx(ERR, "Failed to save keys to file"); } PrintAndLogEx(SUCCESS, "transferring keys to simulator memory (Cmd Error: 04 can occur)"); for (current_sector_i = 0; current_sector_i < sectors_cnt; current_sector_i++) { mfEmlGetMem(block, current_sector_i, 1); if (e_sector[current_sector_i].foundKey[0]) num_to_bytes(e_sector[current_sector_i].Key[0], 6, block); if (e_sector[current_sector_i].foundKey[1]) num_to_bytes(e_sector[current_sector_i].Key[1], 6, block + 10); mfEmlSetMem(block, FirstBlockOfSector(current_sector_i) + NumBlocksPerSector(current_sector_i) - 1, 1); } // use ecfill trick FastDumpWithEcFill(sectors_cnt); bytes = block_cnt * MFBLOCK_SIZE; dump = calloc(bytes, sizeof(uint8_t)); if (!dump) { PrintAndLogEx(ERR, "Fail, cannot allocate memory"); free(e_sector); return PM3_EMALLOC; } memset(dump, 0, bytes); PrintAndLogEx(INFO, "downloading the card content from emulator memory"); if (!GetFromDevice(BIG_BUF_EML, dump, bytes, 0, NULL, 0, NULL, 2500, false)) { PrintAndLogEx(ERR, "Fail, transfer from device time-out"); free(e_sector); free(dump); return PM3_ETIMEOUT; } fnameptr = GenerateFilename("hf-mf-", "-dump"); if (fnameptr == NULL) { free(dump); free(e_sector); return PM3_ESOFT; } strcpy(filename, fnameptr); saveFile(filename, ".bin", dump, bytes); saveFileEML(filename, dump, bytes, MFBLOCK_SIZE); saveFileJSON(filename, jsfCardMemory, dump, bytes); // Generate and show statistics t1 = msclock() - t1; PrintAndLogEx(INFO, "autopwn execution time: " _YELLOW_("%.0f") " seconds", (float)t1 / 1000.0); free(dump); free(e_sector); return PM3_SUCCESS; } /* static int CmdHF14AMfNestedFixed(const char *Cmd){ if (strlen(Cmd) < 3) return usage_hf14_fixednested(); return PM3_SUCCESS; } */ /* static int randInRange(int min, int max) { return min + (int)(rand() / (double)(RAND_MAX) * (max - min + 1)); } */ //Fisher–Yates shuffle /* static void shuffle(uint8_t *array, uint16_t len) { uint8_t tmp[6]; uint16_t x; time_t t; srand((unsigned) time(&t)); while (len) { x = randInRange(0, (len -= 6)) | 0; // 0 = i < n x %= 6; memcpy(tmp, array + x, 6); memcpy(array + x, array + len, 6); memcpy(array + len, tmp, 6); } } */ static int CmdHF14AMfChk_fast(const char *Cmd) { char ctmp = 0x00; ctmp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) < 1 || ctmp == 'h') return usage_hf14_chk_fast(); FILE *f; char filename[FILE_PATH_SIZE] = {0}; char buf[13]; uint8_t *keyBlock, *p; uint8_t sectorsCnt = 1; int i, keycnt = 0; int clen = 0; int transferToEml = 0, createDumpFile = 0; uint32_t keyitems = ARRAYLEN(g_mifare_default_keys); bool use_flashmemory = false; sector_t *e_sector = NULL; keyBlock = calloc(ARRAYLEN(g_mifare_default_keys), 6); if (keyBlock == NULL) return PM3_EMALLOC; for (int cnt = 0; cnt < ARRAYLEN(g_mifare_default_keys); cnt++) num_to_bytes(g_mifare_default_keys[cnt], 6, keyBlock + cnt * 6); // sectors switch (ctmp) { case '0': sectorsCnt = MIFARE_MINI_MAXSECTOR; break; case '1': sectorsCnt = MIFARE_1K_MAXSECTOR; break; case '2': sectorsCnt = MIFARE_2K_MAXSECTOR; break; case '4': sectorsCnt = MIFARE_4K_MAXSECTOR; break; default: sectorsCnt = MIFARE_1K_MAXSECTOR; } for (i = 1; param_getchar(Cmd, i); i++) { ctmp = tolower(param_getchar(Cmd, i)); clen = param_getlength(Cmd, i); if (clen == 12) { if (param_gethex(Cmd, i, keyBlock + 6 * keycnt, 12)) { PrintAndLogEx(FAILED, "not hex, skipping"); continue; } if (keyitems - keycnt < 2) { p = realloc(keyBlock, 6 * (keyitems += 64)); if (!p) { PrintAndLogEx(FAILED, "Cannot allocate memory for Keys"); free(keyBlock); return PM3_EMALLOC; } keyBlock = p; } PrintAndLogEx(NORMAL, "[%2d] key %s", keycnt, sprint_hex((keyBlock + 6 * keycnt), 6)); keycnt++; } else if (clen == 1) { if (ctmp == 't') { transferToEml = 1; continue; } if (ctmp == 'd') { createDumpFile = 1; continue; } if ((ctmp == 'm') && (IfPm3Flash())) { use_flashmemory = true; continue; } } else { // May be a dic file if (param_getstr(Cmd, i, filename, FILE_PATH_SIZE) >= FILE_PATH_SIZE) { PrintAndLogEx(FAILED, "Filename too long"); free(keyBlock); return PM3_EINVARG; } char *dict_path; int res = searchFile(&dict_path, DICTIONARIES_SUBDIR, filename, ".dic", false); if (res != PM3_SUCCESS) { free(keyBlock); return res; } f = fopen(dict_path, "r"); if (!f) { PrintAndLogEx(FAILED, "File: " _YELLOW_("%s") ": not found or locked.", dict_path); free(dict_path); free(keyBlock); return PM3_EFILE; } free(dict_path); // read file while (fgets(buf, sizeof(buf), f)) { if (strlen(buf) < 12 || buf[11] == '\n') continue; while (fgetc(f) != '\n' && !feof(f)) ; //goto next line if (buf[0] == '#') continue; //The line start with # is comment, skip if (!isxdigit(buf[0])) { PrintAndLogEx(FAILED, "File content error. '" _YELLOW_("%s")"' must include 12 HEX symbols", buf); continue; } buf[12] = 0; if (keyitems - keycnt < 2) { p = realloc(keyBlock, 6 * (keyitems += 64)); if (!p) { PrintAndLogEx(FAILED, "Cannot allocate memory for default keys"); free(keyBlock); fclose(f); return PM3_EMALLOC; } keyBlock = p; } int pos = 6 * keycnt; memset(keyBlock + pos, 0, 6); num_to_bytes(strtoll(buf, NULL, 16), 6, keyBlock + pos); keycnt++; memset(buf, 0, sizeof(buf)); } fclose(f); PrintAndLogEx(SUCCESS, "Loaded %2d keys from " _YELLOW_("%s"), keycnt, filename); } } if (keycnt == 0 && !use_flashmemory) { PrintAndLogEx(SUCCESS, "No key specified, trying default keys"); for (; keycnt < ARRAYLEN(g_mifare_default_keys); keycnt++) PrintAndLogEx(NORMAL, "[%2d] %02x%02x%02x%02x%02x%02x", keycnt, (keyBlock + 6 * keycnt)[0], (keyBlock + 6 * keycnt)[1], (keyBlock + 6 * keycnt)[2], (keyBlock + 6 * keycnt)[3], (keyBlock + 6 * keycnt)[4], (keyBlock + 6 * keycnt)[5]); } // create/initialize key storage structure int32_t res = initSectorTable(&e_sector, sectorsCnt); if (res != sectorsCnt) { free(keyBlock); return PM3_EMALLOC; } uint32_t chunksize = keycnt > (PM3_CMD_DATA_SIZE / 6) ? (PM3_CMD_DATA_SIZE / 6) : keycnt; bool firstChunk = true, lastChunk = false; // time uint64_t t1 = msclock(); if (use_flashmemory) { PrintAndLogEx(SUCCESS, "Using dictionary in flash memory"); mfCheckKeys_fast(sectorsCnt, true, true, 1, 0, keyBlock, e_sector, use_flashmemory); } else { // strategys. 1= deep first on sector 0 AB, 2= width first on all sectors for (uint8_t strategy = 1; strategy < 3; strategy++) { PrintAndLogEx(INFO, "Running strategy %u", strategy); // main keychunk loop for (i = 0; i < keycnt; i += chunksize) { if (kbd_enter_pressed()) { PrintAndLogEx(WARNING, "\naborted via keyboard!\n"); goto out; } uint32_t size = ((keycnt - i) > chunksize) ? chunksize : keycnt - i; // last chunk? if (size == keycnt - i) lastChunk = true; res = mfCheckKeys_fast(sectorsCnt, firstChunk, lastChunk, strategy, size, keyBlock + (i * 6), e_sector, false); if (firstChunk) firstChunk = false; // all keys, aborted if (res == PM3_SUCCESS || res == 2) goto out; } // end chunks of keys firstChunk = true; lastChunk = false; } // end strategy } out: t1 = msclock() - t1; PrintAndLogEx(INFO, "Time in checkkeys (fast): %.1fs\n", (float)(t1 / 1000.0)); // check.. uint8_t found_keys = 0; for (i = 0; i < sectorsCnt; ++i) { if (e_sector[i].foundKey[0]) found_keys++; if (e_sector[i].foundKey[1]) found_keys++; } if (found_keys == 0) { PrintAndLogEx(WARNING, "No keys found"); } else { PrintAndLogEx(NORMAL, ""); PrintAndLogEx(SUCCESS, _GREEN_("found keys:")); printKeyTable(sectorsCnt, e_sector); if (use_flashmemory && found_keys == (sectorsCnt << 1)) { PrintAndLogEx(SUCCESS, "Card dumped aswell. run " _YELLOW_("`%s %c`"), "hf mf esave", GetFormatFromSector(sectorsCnt) ); } if (transferToEml) { // fast push mode conn.block_after_ACK = true; uint8_t block[16] = {0x00}; for (i = 0; i < sectorsCnt; ++i) { uint8_t blockno = FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1; mfEmlGetMem(block, blockno, 1); if (e_sector[i].foundKey[0]) num_to_bytes(e_sector[i].Key[0], 6, block); if (e_sector[i].foundKey[1]) num_to_bytes(e_sector[i].Key[1], 6, block + 10); if (i == sectorsCnt - 1) { // Disable fast mode on last packet conn.block_after_ACK = false; } mfEmlSetMem(block, blockno, 1); } PrintAndLogEx(SUCCESS, "Found keys have been transferred to the emulator memory"); if (found_keys == (sectorsCnt << 1)) { FastDumpWithEcFill(sectorsCnt); } } if (createDumpFile) { char *fptr = GenerateFilename("hf-mf-", "-key.bin"); if (createMfcKeyDump(fptr, sectorsCnt, e_sector) != PM3_SUCCESS) { PrintAndLogEx(ERR, "Failed to save keys to file"); } } } free(keyBlock); free(e_sector); PrintAndLogEx(NORMAL, ""); return PM3_SUCCESS; } static int CmdHF14AMfChk(const char *Cmd) { char ctmp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) < 3 || ctmp == 'h') return usage_hf14_chk(); FILE *f; char filename[FILE_PATH_SIZE] = {0}; char buf[13]; uint8_t *keyBlock, *p; sector_t *e_sector = NULL; uint8_t blockNo = 0; uint8_t SectorsCnt = 1; uint8_t keyType = 0; uint32_t keyitems = ARRAYLEN(g_mifare_default_keys); uint64_t key64 = 0; int clen = 0; int transferToEml = 0; int createDumpFile = 0; int i, keycnt = 0; if (param_getchar(Cmd, 0) == '*') { blockNo = 3; SectorsCnt = NumOfSectors(param_getchar(Cmd + 1, 0)); if (SectorsCnt == 0) { return usage_hf14_chk(); } } else { blockNo = param_get8(Cmd, 0); } ctmp = tolower(param_getchar(Cmd, 1)); clen = param_getlength(Cmd, 1); if (clen == 1) { switch (ctmp) { case 'a': keyType = 0; break; case 'b': keyType = 1; break; case '?': keyType = 2; break; default: PrintAndLogEx(FAILED, "Key type must be A , B or ?"); return PM3_ESOFT; }; } // Allocate memory for keys to be tested keyBlock = calloc(ARRAYLEN(g_mifare_default_keys), 6); if (keyBlock == NULL) return PM3_EMALLOC; // Copy default keys to list for (int cnt = 0; cnt < ARRAYLEN(g_mifare_default_keys); cnt++) num_to_bytes(g_mifare_default_keys[cnt], 6, (uint8_t *)(keyBlock + cnt * 6)); for (i = 2; param_getchar(Cmd, i); i++) { ctmp = tolower(param_getchar(Cmd, i)); clen = param_getlength(Cmd, i); if (clen == 12) { if (param_gethex(Cmd, i, keyBlock + 6 * keycnt, 12)) { PrintAndLogEx(FAILED, "not hex, skipping"); continue; } if (keyitems - keycnt < 2) { p = realloc(keyBlock, 6 * (keyitems += 64)); if (!p) { PrintAndLogEx(FAILED, "cannot allocate memory for Keys"); free(keyBlock); return PM3_EMALLOC; } keyBlock = p; } PrintAndLogEx(NORMAL, "[%2d] key %s", keycnt, sprint_hex((keyBlock + 6 * keycnt), 6)); keycnt++; } else if (clen == 1) { if (ctmp == 't') { transferToEml = 1; continue; } if (ctmp == 'd') { createDumpFile = 1; continue; } } else { // May be a dic file if (param_getstr(Cmd, i, filename, sizeof(filename)) >= FILE_PATH_SIZE) { PrintAndLogEx(FAILED, "File name too long"); free(keyBlock); return PM3_EINVARG; } char *dict_path; int res = searchFile(&dict_path, DICTIONARIES_SUBDIR, filename, ".dic", false); if (res != PM3_SUCCESS) { free(keyBlock); return PM3_EFILE; } f = fopen(dict_path, "r"); if (!f) { PrintAndLogEx(FAILED, "File: " _YELLOW_("%s") ": not found or locked.", dict_path); free(dict_path); free(keyBlock); return PM3_EFILE; } free(dict_path); // load keys from dictionary file while (fgets(buf, sizeof(buf), f)) { if (strlen(buf) < 12 || buf[11] == '\n') continue; while (fgetc(f) != '\n' && !feof(f)) ; //goto next line if (buf[0] == '#') continue; //The line start with # is comment, skip // codesmell, only checks first char? if (!isxdigit(buf[0])) { PrintAndLogEx(FAILED, "File content error. '" _YELLOW_("%s")"' must include 12 HEX symbols", buf); continue; } buf[12] = 0; if (keyitems - keycnt < 2) { p = realloc(keyBlock, 6 * (keyitems += 64)); if (!p) { PrintAndLogEx(FAILED, "Cannot allocate memory for defKeys"); free(keyBlock); fclose(f); return PM3_EMALLOC; } keyBlock = p; } memset(keyBlock + 6 * keycnt, 0, 6); num_to_bytes(strtoll(buf, NULL, 16), 6, keyBlock + 6 * keycnt); //PrintAndLogEx(NORMAL, "check key[%2d] %012" PRIx64, keycnt, bytes_to_num(keyBlock + 6*keycnt, 6)); keycnt++; memset(buf, 0, sizeof(buf)); } fclose(f); PrintAndLogEx(SUCCESS, "Loaded %2d keys from " _YELLOW_("%s"), keycnt, filename); } } if (keycnt == 0) { PrintAndLogEx(INFO, "No key specified, trying default keys"); for (; keycnt < ARRAYLEN(g_mifare_default_keys); keycnt++) PrintAndLogEx(NORMAL, "[%2d] %02x%02x%02x%02x%02x%02x", keycnt, (keyBlock + 6 * keycnt)[0], (keyBlock + 6 * keycnt)[1], (keyBlock + 6 * keycnt)[2], (keyBlock + 6 * keycnt)[3], (keyBlock + 6 * keycnt)[4], (keyBlock + 6 * keycnt)[5] ); } // create/initialize key storage structure int32_t res = initSectorTable(&e_sector, SectorsCnt); if (res != SectorsCnt) { free(keyBlock); return PM3_EMALLOC; } uint8_t trgKeyType = 0; uint16_t max_keys = keycnt > KEYS_IN_BLOCK ? KEYS_IN_BLOCK : keycnt; // time uint64_t t1 = msclock(); // fast push mode conn.block_after_ACK = true; // clear trace log by first check keys call only bool clearLog = true; // check keys. for (trgKeyType = (keyType == 2) ? 0 : keyType; trgKeyType < 2; (keyType == 2) ? (++trgKeyType) : (trgKeyType = 2)) { // loop sectors but block is used as to keep track of from which blocks to test int b = blockNo; for (i = 0; i < SectorsCnt; ++i) { // skip already found keys. if (e_sector[i].foundKey[trgKeyType]) continue; for (uint16_t c = 0; c < keycnt; c += max_keys) { printf("."); fflush(stdout); if (kbd_enter_pressed()) { PrintAndLogEx(INFO, "\naborted via keyboard!\n"); goto out; } uint16_t size = keycnt - c > max_keys ? max_keys : keycnt - c; if (mfCheckKeys(b, trgKeyType, clearLog, size, &keyBlock[6 * c], &key64) == PM3_SUCCESS) { e_sector[i].Key[trgKeyType] = key64; e_sector[i].foundKey[trgKeyType] = true; clearLog = false; break; } clearLog = false; } b < 127 ? (b += 4) : (b += 16); } } t1 = msclock() - t1; PrintAndLogEx(INFO, "\nTime in checkkeys: %.0f seconds\n", (float)t1 / 1000.0); // 20160116 If Sector A is found, but not Sector B, try just reading it of the tag? if (keyType != 1) { PrintAndLogEx(INFO, "testing to read key B..."); // loop sectors but block is used as to keep track of from which blocks to test int b = blockNo; for (i = 0; i < SectorsCnt; i++) { // KEY A but not KEY B if (e_sector[i].foundKey[0] && !e_sector[i].foundKey[1]) { uint8_t s = GetSectorFromBlockNo(b); uint8_t sectrail = (FirstBlockOfSector(s) + NumBlocksPerSector(s) - 1); PrintAndLogEx(INFO, "Sector %u, First block of sector %u, Num of block %u", s, FirstBlockOfSector(s), NumBlocksPerSector(s)); PrintAndLogEx(INFO, "Reading block %d", sectrail); mf_readblock_t payload; payload.blockno = sectrail; payload.keytype = 0; // Use key A num_to_bytes(e_sector[i].Key[0], 6, payload.key); clearCommandBuffer(); SendCommandNG(CMD_HF_MIFARE_READBL, (uint8_t *)&payload, sizeof(mf_readblock_t)); PacketResponseNG resp; if (!WaitForResponseTimeout(CMD_HF_MIFARE_READBL, &resp, 1500)) continue; if (resp.status != PM3_SUCCESS) continue; uint8_t *data = resp.data.asBytes; key64 = bytes_to_num(data + 10, 6); if (key64) { PrintAndLogEx(NORMAL, "Data:%s", sprint_hex(data + 10, 6)); e_sector[i].foundKey[1] = 1; e_sector[i].Key[1] = key64; } } b < 127 ? (b += 4) : (b += 16); } } out: PrintAndLogEx(NORMAL, ""); PrintAndLogEx(SUCCESS, _GREEN_("found keys:")); //print keys if (SectorsCnt == 1) printKeyTableEx(SectorsCnt, e_sector, GetSectorFromBlockNo(blockNo)); else printKeyTable(SectorsCnt, e_sector); if (transferToEml) { // fast push mode conn.block_after_ACK = true; uint8_t block[16] = {0x00}; for (i = 0; i < SectorsCnt; ++i) { uint8_t blockno = FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1; mfEmlGetMem(block, blockno, 1); if (e_sector[i].foundKey[0]) num_to_bytes(e_sector[i].Key[0], 6, block); if (e_sector[i].foundKey[1]) num_to_bytes(e_sector[i].Key[1], 6, block + 10); if (i == SectorsCnt - 1) { // Disable fast mode on last packet conn.block_after_ACK = false; } mfEmlSetMem(block, blockno, 1); } PrintAndLogEx(SUCCESS, "Found keys have been transferred to the emulator memory"); } if (createDumpFile) { char *fptr = GenerateFilename("hf-mf-", "-key.bin"); if (createMfcKeyDump(fptr, SectorsCnt, e_sector) != PM3_SUCCESS) { PrintAndLogEx(ERR, "Failed to save keys to file"); } } free(keyBlock); free(e_sector); // Disable fast mode and send a dummy command to make it effective conn.block_after_ACK = false; SendCommandNG(CMD_PING, NULL, 0); if (!WaitForResponseTimeout(CMD_PING, NULL, 1000)) { PrintAndLogEx(WARNING, "command execution time out"); return PM3_ETIMEOUT; } PrintAndLogEx(NORMAL, ""); return PM3_SUCCESS; } sector_t *k_sector = NULL; uint8_t k_sectorsCount = 40; void showSectorTable(void) { if (k_sector != NULL) { printKeyTable(k_sectorsCount, k_sector); free(k_sector); k_sector = NULL; } } void readerAttack(nonces_t data, bool setEmulatorMem, bool verbose) { uint64_t key = 0; bool success = false; if (k_sector == NULL) { int32_t res = initSectorTable(&k_sector, k_sectorsCount); if (res != k_sectorsCount) { return; } } success = mfkey32_moebius(&data, &key); if (success) { uint8_t sector = data.sector; uint8_t keytype = data.keytype; PrintAndLogEx(INFO, "Reader is trying authenticate with: Key %s, sector %02d: [%012" PRIx64 "]" , keytype ? "B" : "A" , sector , key ); k_sector[sector].Key[keytype] = key; k_sector[sector].foundKey[keytype] = true; //set emulator memory for keys if (setEmulatorMem) { uint8_t memBlock[16] = {0, 0, 0, 0, 0, 0, 0xff, 0x0F, 0x80, 0x69, 0, 0, 0, 0, 0, 0}; num_to_bytes(k_sector[sector].Key[0], 6, memBlock); num_to_bytes(k_sector[sector].Key[1], 6, memBlock + 10); //iceman, guessing this will not work so well for 4K tags. PrintAndLogEx(INFO, "Setting Emulator Memory Block %02d: [%s]" , (sector * 4) + 3 , sprint_hex(memBlock, sizeof(memBlock)) ); mfEmlSetMem(memBlock, (sector * 4) + 3, 1); } } } static int CmdHF14AMfSim(const char *Cmd) { uint8_t uid[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; uint8_t atqa[2] = {0, 0}; int atqalen = 0; uint8_t sak[1] = {0}; int saklen = 0; uint8_t exitAfterNReads = 0; uint16_t flags = 0; int uidlen = 0; uint8_t cmdp = 0; bool errors = false, verbose = false, setEmulatorMem = false; nonces_t data[1]; char csize[13] = { 0 }; char uidsize[8] = { 0 }; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'e': setEmulatorMem = true; cmdp++; break; case 'h': return usage_hf14_mfsim(); case 'i': flags |= FLAG_INTERACTIVE; cmdp++; break; case 'n': exitAfterNReads = param_get8(Cmd, cmdp + 1); cmdp += 2; break; case 't': switch (param_get8(Cmd, cmdp + 1)) { case 0: flags |= FLAG_MF_MINI; sprintf(csize, "MINI"); k_sectorsCount = MIFARE_MINI_MAXSECTOR; break; case 1: flags |= FLAG_MF_1K; sprintf(csize, "1K"); k_sectorsCount = MIFARE_1K_MAXSECTOR; break; case 2: flags |= FLAG_MF_2K; sprintf(csize, "2K with RATS"); k_sectorsCount = MIFARE_2K_MAXSECTOR; break; case 4: flags |= FLAG_MF_4K; sprintf(csize, "4K"); k_sectorsCount = MIFARE_4K_MAXSECTOR; break; default: PrintAndLogEx(WARNING, "Unknown parameter for option t"); errors = true; break; } cmdp += 2; break; case 'a': param_gethex_ex(Cmd, cmdp + 1, atqa, &atqalen); if (atqalen >> 1 != 2) { PrintAndLogEx(WARNING, "Wrong ATQA length"); errors = true; break; } flags |= FLAG_FORCED_ATQA; cmdp += 2; break; case 's': param_gethex_ex(Cmd, cmdp + 1, sak, &saklen); if (saklen >> 1 != 1) { PrintAndLogEx(WARNING, "Wrong SAK length"); errors = true; break; } flags |= FLAG_FORCED_SAK; cmdp += 2; break; case 'u': param_gethex_ex(Cmd, cmdp + 1, uid, &uidlen); uidlen >>= 1; switch (uidlen) { case 10: flags |= FLAG_10B_UID_IN_DATA; sprintf(uidsize, "10 byte"); break; case 7: flags |= FLAG_7B_UID_IN_DATA; sprintf(uidsize, "7 byte"); break; case 4: flags |= FLAG_4B_UID_IN_DATA; sprintf(uidsize, "4 byte"); break; default: return usage_hf14_mfsim(); } cmdp += 2; break; case 'v': verbose = true; cmdp++; break; case 'x': flags |= FLAG_NR_AR_ATTACK; cmdp++; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors) return usage_hf14_mfsim(); // Use UID, SAK, ATQA from EMUL, if uid not defined if ((flags & (FLAG_4B_UID_IN_DATA | FLAG_7B_UID_IN_DATA | FLAG_10B_UID_IN_DATA)) == 0) { flags |= FLAG_UID_IN_EMUL; } PrintAndLogEx(INFO, _YELLOW_("Mifare %s") " | %s UID " _YELLOW_("%s") "" , csize , uidsize , (uidlen == 0) ? "N/A" : sprint_hex(uid, uidlen) ); PrintAndLogEx(INFO, "Options [ numreads: %d, flags: %d (0x%02x) ]" , exitAfterNReads , flags , flags); struct { uint16_t flags; uint8_t exitAfter; uint8_t uid[10]; uint16_t atqa; uint8_t sak; } PACKED payload; payload.flags = flags; payload.exitAfter = exitAfterNReads; memcpy(payload.uid, uid, uidlen); payload.atqa = (atqa[1] << 8) | atqa[0]; payload.sak = sak[0]; clearCommandBuffer(); SendCommandNG(CMD_HF_MIFARE_SIMULATE, (uint8_t *)&payload, sizeof(payload)); PacketResponseNG resp; if (flags & FLAG_INTERACTIVE) { PrintAndLogEx(INFO, "Press pm3-button or send another cmd to abort simulation"); while (!kbd_enter_pressed()) { if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) continue; if (!(flags & FLAG_NR_AR_ATTACK)) break; if ((resp.oldarg[0] & 0xffff) != CMD_HF_MIFARE_SIMULATE) break; memcpy(data, resp.data.asBytes, sizeof(data)); readerAttack(data[0], setEmulatorMem, verbose); } showSectorTable(); } k_sectorsCount = MIFARE_4K_MAXSECTOR; return PM3_SUCCESS; } /* static int CmdHF14AMfSniff(const char *Cmd) { bool wantLogToFile = false; bool wantDecrypt = false; //bool wantSaveToEml = false; TODO bool wantSaveToEmlFile = false; //var int res = 0, len = 0, blockLen = 0; int pckNum = 0, num = 0; uint8_t sak = 0; uint8_t uid[10]; uint8_t uid_len = 0; uint8_t atqa[2] = {0x00, 0x00}; bool isTag = false; uint8_t *buf = NULL; uint16_t bufsize = 0; uint8_t *bufPtr = NULL; uint16_t traceLen = 0; memset(uid, 0x00, sizeof(uid)); char ctmp = tolower(param_getchar(Cmd, 0)); if (ctmp == 'h') return usage_hf14_sniff(); for (int i = 0; i < 4; i++) { ctmp = tolower(param_getchar(Cmd, i)); if (ctmp == 'l') wantLogToFile = true; if (ctmp == 'd') wantDecrypt = true; //if (ctmp == 'e') wantSaveToEml = true; TODO if (ctmp == 'f') wantSaveToEmlFile = true; } PrintAndLogEx(NORMAL, "-------------------------------------------------------------------------\n"); PrintAndLogEx(NORMAL, "Executing mifare sniffing command. \n"); PrintAndLogEx(NORMAL, "Press the button on the Proxmark3 device to abort both Proxmark3 and client.\n"); PrintAndLogEx(NORMAL, "Press Enter to abort the client.\n"); PrintAndLogEx(NORMAL, "-------------------------------------------------------------------------\n"); clearCommandBuffer(); SendCommandNG(CMD_HF_MIFARE_SNIFF, NULL, 0); PacketResponseNG resp; // wait cycle while (true) { printf("."); fflush(stdout); if (kbd_enter_pressed()) { PrintAndLogEx(INFO, "\naborted via keyboard!\n"); break; } if (!WaitForResponseTimeout(CMD_ACK, &resp, 2000)) { continue; } res = resp.oldarg[0] & 0xff; traceLen = resp.oldarg[1]; len = resp.oldarg[2]; if (res == 0) { PrintAndLogEx(SUCCESS, "hf mifare sniff finished"); free(buf); return 0; } if (res == 1) { // there is (more) data to be transferred if (pckNum == 0) { // first packet, (re)allocate necessary buffer if (traceLen > bufsize || buf == NULL) { uint8_t *p; if (buf == NULL) // not yet allocated p = calloc(traceLen, sizeof(uint8_t)); else // need more memory p = realloc(buf, traceLen); if (p == NULL) { PrintAndLogEx(FAILED, "Cannot allocate memory for trace"); free(buf); return 2; } buf = p; } bufPtr = buf; bufsize = traceLen; memset(buf, 0x00, traceLen); } // what happens if LEN is bigger then TRACELEN --iceman memcpy(bufPtr, resp.data.asBytes, len); bufPtr += len; pckNum++; } if (res == 2) { // received all data, start displaying blockLen = bufPtr - buf; bufPtr = buf; PrintAndLogEx(NORMAL, ">\n"); PrintAndLogEx(SUCCESS, "received trace len: %d packages: %d", blockLen, pckNum); while (bufPtr - buf < blockLen) { bufPtr += 6; // skip (void) timing information len = *((uint16_t *)bufPtr); if (len & 0x8000) { isTag = true; len &= 0x7fff; } else { isTag = false; } bufPtr += 2; // the uid identification package // 0xFF 0xFF xx xx xx xx xx xx xx xx xx xx aa aa cc 0xFF 0xFF // x = uid, a = atqa, c = sak if ((len == 17) && (bufPtr[0] == 0xff) && (bufPtr[1] == 0xff) && (bufPtr[15] == 0xff) && (bufPtr[16] == 0xff)) { memcpy(uid, bufPtr + 2, 10); memcpy(atqa, bufPtr + 2 + 10, 2); switch (atqa[0] & 0xC0) { case 0x80: uid_len = 10; break; case 0x40: uid_len = 7; break; default: uid_len = 4; break; } sak = bufPtr[14]; PrintAndLogEx(SUCCESS, "UID %s | ATQA %02x %02x | SAK 0x%02x", sprint_hex(uid, uid_len), atqa[1], atqa[0], sak); if (wantLogToFile || wantDecrypt) { FillFileNameByUID(logHexFileName, uid, ".log", uid_len); AddLogCurrentDT(logHexFileName); PrintAndLogEx(SUCCESS, "Trace saved to %s", logHexFileName); } if (wantDecrypt) mfTraceInit(uid, uid_len, atqa, sak, wantSaveToEmlFile); } else { PrintAndLogEx(NORMAL, "%03d| %s |%s", num, isTag ? "TAG" : "RDR", sprint_hex(bufPtr, len)); if (wantLogToFile) AddLogHex(logHexFileName, isTag ? "TAG| " : "RDR| ", bufPtr, len); if (wantDecrypt) mfTraceDecode(bufPtr, len, wantSaveToEmlFile); num++; } bufPtr += len; bufPtr += ((len - 1) / 8 + 1); // ignore parity } pckNum = 0; } } // while (true) free(buf); return PM3_SUCCESS; } */ /* static int CmdHF14AMfKeyBrute(const char *Cmd) { uint8_t blockNo = 0, keytype = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; uint64_t foundkey = 0; char cmdp = tolower(param_getchar(Cmd, 0)); if (cmdp == 'h') return usage_hf14_keybrute(); // block number blockNo = param_get8(Cmd, 0); // keytype cmdp = tolower(param_getchar(Cmd, 1)); if (cmdp == 'b') keytype = 1; // key if (param_gethex(Cmd, 2, key, 12)) return usage_hf14_keybrute(); uint64_t t1 = msclock(); if (mfKeyBrute(blockNo, keytype, key, &foundkey)) PrintAndLogEx(SUCCESS, "found valid key: %012" PRIx64 " \n", foundkey); else PrintAndLogEx(FAILED, "key not found"); t1 = msclock() - t1; PrintAndLogEx(SUCCESS, "\ntime in keybrute: %.0f seconds\n", (float)t1 / 1000.0); return PM3_SUCCESS; } */ void printKeyTable(uint8_t sectorscnt, sector_t *e_sector) { return printKeyTableEx(sectorscnt, e_sector, 0); } void printKeyTableEx(uint8_t sectorscnt, sector_t *e_sector, uint8_t start_sector) { char strA[12 + 1] = {0}; char strB[12 + 1] = {0}; PrintAndLogEx(SUCCESS, "|-----|----------------|---|----------------|---|"); PrintAndLogEx(SUCCESS, "| Sec | key A |res| key B |res|"); PrintAndLogEx(SUCCESS, "|-----|----------------|---|----------------|---|"); for (uint8_t i = 0; i < sectorscnt; i++) { snprintf(strA, sizeof(strA), "------------"); snprintf(strB, sizeof(strB), "------------"); if (e_sector[i].foundKey[0]) snprintf(strA, sizeof(strA), "%012" PRIx64, e_sector[i].Key[0]); if (e_sector[i].foundKey[1]) snprintf(strB, sizeof(strB), "%012" PRIx64, e_sector[i].Key[1]); if (e_sector[i].foundKey[0] > 1) { PrintAndLogEx(SUCCESS, "| "_YELLOW_("%03d")" | " _GREEN_("%s")" | " _YELLOW_("%c")" | " _GREEN_("%s")" | " _YELLOW_("%c")" |" , i , strA, e_sector[i].foundKey[0] , strB, e_sector[i].foundKey[1] ); } else { // keep track if we use start_sector or i... uint8_t s = start_sector; if (start_sector == 0) s = i; PrintAndLogEx(SUCCESS, "| "_YELLOW_("%03d")" | " _GREEN_("%s")" | " _YELLOW_("%d")" | " _GREEN_("%s")" | " _YELLOW_("%d")" |" , s , strA, e_sector[i].foundKey[0] , strB, e_sector[i].foundKey[1] ); } } PrintAndLogEx(SUCCESS, "|-----|----------------|---|----------------|---|"); if (e_sector[0].foundKey[0] > 1) { PrintAndLogEx(INFO, "( " _YELLOW_("D") ":Dictionary / " _YELLOW_("S") ":darkSide / " _YELLOW_("U") ":User / " _YELLOW_("R") ":Reused / " _YELLOW_("N") ":Nested / " _YELLOW_("H") ":Hardnested / " _YELLOW_("A") ":keyA " ")" ); } else { PrintAndLogEx(SUCCESS, "( " _YELLOW_("0") ":Failed / " _YELLOW_("1") ":Success)"); } } // EMULATOR COMMANDS static int CmdHF14AMfEGet(const char *Cmd) { char c = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) < 1 || c == 'h') return usage_hf14_eget(); uint8_t data[16] = {0x00}; uint8_t blockNo = param_get8(Cmd, 0); PrintAndLogEx(NORMAL, ""); if (mfEmlGetMem(data, blockNo, 1) == PM3_SUCCESS) { PrintAndLogEx(NORMAL, "data[%3d]:%s", blockNo, sprint_hex(data, sizeof(data))); } return PM3_SUCCESS; } static int CmdHF14AMfEClear(const char *Cmd) { char c = tolower(param_getchar(Cmd, 0)); if (c == 'h') return usage_hf14_eclr(); clearCommandBuffer(); SendCommandNG(CMD_HF_MIFARE_EML_MEMCLR, NULL, 0); return PM3_SUCCESS; } static int CmdHF14AMfESet(const char *Cmd) { char c = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) < 3 || c == 'h') return usage_hf14_eset(); uint8_t memBlock[16]; memset(memBlock, 0x00, sizeof(memBlock)); uint8_t blockNo = param_get8(Cmd, 0); if (param_gethex(Cmd, 1, memBlock, 32)) { PrintAndLogEx(WARNING, "block data must include 32 HEX symbols"); return PM3_ESOFT; } // 1 - blocks count return mfEmlSetMem(memBlock, blockNo, 1); } int CmdHF14AMfELoad(const char *Cmd) { size_t counter = 0; char filename[FILE_PATH_SIZE]; int blockNum, numBlocks, nameParamNo = 1; uint8_t blockWidth = 16; char c = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) < 2 && c == 'h') return usage_hf14_eload(); switch (c) { case '0' : numBlocks = MIFARE_MINI_MAXBLOCK; break; case '1' : case '\0': numBlocks = MIFARE_1K_MAXBLOCK; break; case '2' : numBlocks = MIFARE_2K_MAXBLOCK; break; case '4' : numBlocks = MIFARE_4K_MAXBLOCK; break; case 'u' : numBlocks = 255; blockWidth = 4; break; default: { numBlocks = MIFARE_1K_MAXBLOCK; nameParamNo = 0; } } uint32_t numblk2 = param_get32ex(Cmd, 2, 0, 10); if (numblk2 > 0) numBlocks = numblk2; if (0 == param_getstr(Cmd, nameParamNo, filename, sizeof(filename))) return usage_hf14_eload(); uint8_t *data = calloc(4096, sizeof(uint8_t)); size_t datalen = 0; //int res = loadFile(filename, ".bin", data, maxdatalen, &datalen); int res = loadFileEML(filename, data, &datalen); if (res) { free(data); return PM3_EFILE; } // 64 or 256 blocks. if ((datalen % blockWidth) != 0) { PrintAndLogEx(FAILED, "File content error. Size doesn't match blockwidth "); free(data); return PM3_ESOFT; } // convert old mfu format to new if (blockWidth == 4) { res = convertOldMfuDump(&data, &datalen); if (res) { PrintAndLogEx(FAILED, "Failed convert on load to new Ultralight/NTAG format"); free(data); return res; } // update expected blocks to match converted data. if (numBlocks != datalen / 4) { numBlocks = datalen / 4; } } PrintAndLogEx(INFO, "Uploading to emulator memory"); // fast push mode conn.block_after_ACK = true; blockNum = 0; while (datalen) { if (datalen == blockWidth) { // Disable fast mode on last packet conn.block_after_ACK = false; } if (mfEmlSetMem_xt(data + counter, blockNum, 1, blockWidth) != PM3_SUCCESS) { PrintAndLogEx(FAILED, "Cant set emul block: %3d", blockNum); free(data); return PM3_ESOFT; } printf("."); fflush(stdout); blockNum++; counter += blockWidth; datalen -= blockWidth; } free(data); PrintAndLogEx(NORMAL, "\n"); if (blockWidth == 4) { PrintAndLogEx(HINT, "You are ready to simulate. See " _YELLOW_("`hf mfu sim h`")); // MFU / NTAG if ((blockNum != numBlocks)) { PrintAndLogEx(WARNING, "Warning, Ultralight/Ntag file content, Loaded %d blocks of expected %d blocks into emulator memory", blockNum, numBlocks); return PM3_SUCCESS; } } else { PrintAndLogEx(HINT, "You are ready to simulate. See " _YELLOW_("`hf mf sim h`")); // MFC if ((blockNum != numBlocks)) { PrintAndLogEx(WARNING, "Error, file content, Only loaded %d blocks, must be %d blocks into emulator memory", blockNum, numBlocks); return PM3_SUCCESS; } } PrintAndLogEx(SUCCESS, "Done"); return PM3_SUCCESS; } static int CmdHF14AMfESave(const char *Cmd) { char filename[FILE_PATH_SIZE]; char *fnameptr = filename; uint8_t *dump; int len, bytes, nameParamNo = 1; uint16_t blocks; memset(filename, 0, sizeof(filename)); char c = tolower(param_getchar(Cmd, 0)); if (c == 'h') return usage_hf14_esave(); if (c != 0) { blocks = NumOfBlocks(c); if (blocks == 0) return usage_hf14_esave(); } else { blocks = MIFARE_1K_MAXBLOCK; } bytes = blocks * MFBLOCK_SIZE; dump = calloc(bytes, sizeof(uint8_t)); if (!dump) { PrintAndLogEx(WARNING, "Fail, cannot allocate memory"); return PM3_EMALLOC; } memset(dump, 0, bytes); PrintAndLogEx(INFO, "downloading from emulator memory"); if (!GetFromDevice(BIG_BUF_EML, dump, bytes, 0, NULL, 0, NULL, 2500, false)) { PrintAndLogEx(WARNING, "Fail, transfer from device time-out"); free(dump); return PM3_ETIMEOUT; } len = param_getstr(Cmd, nameParamNo, filename, sizeof(filename)); if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5; // user supplied filename? if (len < 1) { fnameptr += sprintf(fnameptr, "hf-mf-"); FillFileNameByUID(fnameptr, dump, "-dump", 4); } saveFile(filename, ".bin", dump, bytes); saveFileEML(filename, dump, bytes, MFBLOCK_SIZE); saveFileJSON(filename, jsfCardMemory, dump, bytes); free(dump); return PM3_SUCCESS; } static int CmdHF14AMfECFill(const char *Cmd) { uint8_t keyType = 0; uint8_t numSectors = 16; char c = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) < 1 || c == 'h') return usage_hf14_ecfill(); if (c != 'a' && c != 'b') { PrintAndLogEx(WARNING, "Key type must be A or B"); return PM3_ESOFT; } if (c != 'a') keyType = 1; c = tolower(param_getchar(Cmd, 1)); if (c != 0) { numSectors = NumOfSectors(c); if (numSectors == 0) return usage_hf14_ecfill(); } else { numSectors = MIFARE_1K_MAXSECTOR; } PrintAndLogEx(NORMAL, "--params: numSectors: %d, keyType: %c\n", numSectors, (keyType == 0) ? 'A' : 'B'); mfc_eload_t payload; payload.sectorcnt = numSectors; payload.keytype = keyType; clearCommandBuffer(); SendCommandNG(CMD_HF_MIFARE_EML_LOAD, (uint8_t *)&payload, sizeof(payload)); return PM3_SUCCESS; } static int CmdHF14AMfEKeyPrn(const char *Cmd) { uint8_t sectors_cnt = MIFARE_1K_MAXSECTOR; uint8_t data[16]; uint8_t uid[4]; uint8_t cmdp = 0; bool errors = false, createDumpFile = false; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { char ctmp = tolower(param_getchar(Cmd, cmdp)); switch (ctmp) { case 'd': createDumpFile = true; cmdp++; break; case 'h': return usage_hf14_ekeyprn(); case '0': case '1': case '2': case '4': sectors_cnt = NumOfSectors(ctmp); if (sectors_cnt == 0) return usage_hf14_ekeyprn(); cmdp++; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } // validations if (errors) return usage_hf14_ekeyprn(); sector_t *e_sector = NULL; // create/initialize key storage structure int32_t res = initSectorTable(&e_sector, sectors_cnt); if (res != sectors_cnt) { free(e_sector); return PM3_EMALLOC; } // read UID from EMUL if (mfEmlGetMem(data, 0, 1) != PM3_SUCCESS) { PrintAndLogEx(WARNING, "error get block %d", 0); free(e_sector); return PM3_ESOFT; } memcpy(uid, data, sizeof(uid)); // download keys from EMUL for (int i = 0; i < sectors_cnt; i++) { if (mfEmlGetMem(data, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1) != PM3_SUCCESS) { PrintAndLogEx(WARNING, "error get block %d", FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1); e_sector[i].foundKey[0] = false; e_sector[i].foundKey[1] = false; } else { e_sector[i].foundKey[0] = true; e_sector[i].Key[0] = bytes_to_num(data, 6); e_sector[i].foundKey[1] = true; e_sector[i].Key[1] = bytes_to_num(data + 10, 6); } } // print keys printKeyTable(sectors_cnt, e_sector); // dump the keys if (createDumpFile) { char filename[FILE_PATH_SIZE] = {0}; char *fptr = filename; fptr += sprintf(fptr, "hf-mf-"); FillFileNameByUID(fptr + strlen(fptr), uid, "-key", sizeof(uid)); createMfcKeyDump(filename, sectors_cnt, e_sector); } free(e_sector); return PM3_SUCCESS; } // CHINESE MAGIC COMMANDS static int CmdHF14AMfCSetUID(const char *Cmd) { uint8_t wipeCard = 0; uint8_t uid[8] = {0x00}; uint8_t oldUid[8] = {0x00}; uint8_t atqa[2] = {0x00}; uint8_t sak[1] = {0x00}; uint8_t atqaPresent = 1; int res, argi = 0; char ctmp; if (strlen(Cmd) < 1 || param_getchar(Cmd, argi) == 'h') return usage_hf14_csetuid(); if (param_getchar(Cmd, argi) && param_gethex(Cmd, argi, uid, 8)) return usage_hf14_csetuid(); argi++; ctmp = tolower(param_getchar(Cmd, argi)); if (ctmp == 'w') { wipeCard = 1; atqaPresent = 0; } if (atqaPresent) { if (param_getchar(Cmd, argi)) { if (param_gethex(Cmd, argi, atqa, 4)) { PrintAndLogEx(WARNING, "ATQA must include 4 HEX symbols"); return PM3_ESOFT; } argi++; if (!param_getchar(Cmd, argi) || param_gethex(Cmd, argi, sak, 2)) { PrintAndLogEx(WARNING, "SAK must include 2 HEX symbols"); return PM3_ESOFT; } argi++; } else atqaPresent = 0; } if (!wipeCard) { ctmp = tolower(param_getchar(Cmd, argi)); if (ctmp == 'w') { wipeCard = 1; } } PrintAndLogEx(NORMAL, "--wipe card:%s uid:%s", (wipeCard) ? "YES" : "NO", sprint_hex(uid, 4)); res = mfCSetUID(uid, (atqaPresent) ? atqa : NULL, (atqaPresent) ? sak : NULL, oldUid, wipeCard); if (res) { PrintAndLogEx(ERR, "Can't set UID. error=%d", res); return PM3_ESOFT; } PrintAndLogEx(SUCCESS, "Old UID : %s", sprint_hex(oldUid, 4)); PrintAndLogEx(SUCCESS, "New UID : %s", sprint_hex(uid, 4)); return PM3_SUCCESS; } static int CmdHF14AMfCWipe(const char *cmd) { uint8_t uid[8] = {0x00}; int uidLen = 0; uint8_t atqa[2] = {0x00}; int atqaLen = 0; uint8_t sak[1] = {0x00}; int sakLen = 0; CLIParserInit("hf mf cwipe", "Wipe gen1 magic chinese card. Set UID/ATQA/SAK/Data/Keys/Access to default values.", "Usage:\n\thf mf cwipe -> wipe card.\n" "\thf mf cwipe -u 09080706 -a 0004 -s 18 -- set UID, ATQA and SAK and wipe card."); void *argtable[] = { arg_param_begin, arg_str0("uU", "uid", "", "UID for card"), arg_str0("aA", "atqa", "", "ATQA for card"), arg_str0("sS", "sak", "", "SAK for card"), arg_param_end }; CLIExecWithReturn(cmd, argtable, true); CLIGetHexWithReturn(1, uid, &uidLen); CLIGetHexWithReturn(2, atqa, &atqaLen); CLIGetHexWithReturn(3, sak, &sakLen); CLIParserFree(); if (uidLen && uidLen != 4) { PrintAndLogEx(ERR, "UID length must be 4 bytes instead of: %d", uidLen); return PM3_EINVARG; } if (atqaLen && atqaLen != 2) { PrintAndLogEx(ERR, "ATQA length must be 2 bytes instead of: %d", atqaLen); return PM3_EINVARG; } if (sakLen && sakLen != 1) { PrintAndLogEx(ERR, "SAK length must be 1 byte instead of: %d", sakLen); return PM3_EINVARG; } int res = mfCWipe((uidLen) ? uid : NULL, (atqaLen) ? atqa : NULL, (sakLen) ? sak : NULL); if (res) { PrintAndLogEx(ERR, "Can't wipe card. error=%d", res); return PM3_ESOFT; } PrintAndLogEx(SUCCESS, "Card wiped successfully"); return PM3_SUCCESS; } static int CmdHF14AMfCSetBlk(const char *Cmd) { uint8_t block[16] = {0x00}; uint8_t blockNo = 0; uint8_t params = MAGIC_SINGLE; int res; char ctmp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) < 1 || ctmp == 'h') return usage_hf14_csetblk(); blockNo = param_get8(Cmd, 0); if (param_gethex(Cmd, 1, block, 32)) return usage_hf14_csetblk(); ctmp = tolower(param_getchar(Cmd, 2)); if (ctmp == 'w') params |= MAGIC_WIPE; PrintAndLogEx(NORMAL, "--block number:%2d data:%s", blockNo, sprint_hex(block, 16)); res = mfCSetBlock(blockNo, block, NULL, params); if (res) { PrintAndLogEx(ERR, "Can't write block. error=%d", res); return PM3_ESOFT; } return PM3_SUCCESS; } static int CmdHF14AMfCLoad(const char *Cmd) { uint8_t fillFromEmulator = 0; bool fillFromJson = false; bool fillFromBin = false; char fileName[50] = {0}; char ctmp = tolower(param_getchar(Cmd, 0)); if (param_getlength(Cmd, 0) == 1) { if (ctmp == 'h' || ctmp == 0x00) return usage_hf14_cload(); if (ctmp == 'e') fillFromEmulator = 1; if (ctmp == 'j') fillFromJson = true; if (ctmp == 'b') fillFromBin = true; } if (fillFromJson || fillFromBin) param_getstr(Cmd, 1, fileName, sizeof(fileName)); if (fillFromEmulator) { for (int blockNum = 0; blockNum < 16 * 4; blockNum += 1) { int flags = 0; uint8_t buf8[16] = {0x00}; if (mfEmlGetMem(buf8, blockNum, 1)) { PrintAndLogEx(WARNING, "Cant get block: %d", blockNum); return 2; } if (blockNum == 0) flags = MAGIC_INIT + MAGIC_WUPC; // switch on field and send magic sequence if (blockNum == 1) flags = 0; // just write if (blockNum == 16 * 4 - 1) flags = MAGIC_HALT + MAGIC_OFF; // Done. Magic Halt and switch off field. if (mfCSetBlock(blockNum, buf8, NULL, flags)) { PrintAndLogEx(WARNING, "Cant set magic card block: %d", blockNum); return PM3_ESOFT; } printf("."); fflush(stdout); } PrintAndLogEx(NORMAL, "\n"); return PM3_SUCCESS; } size_t maxdatalen = 4096; uint8_t *data = calloc(maxdatalen, sizeof(uint8_t)); if (!data) { PrintAndLogEx(WARNING, "Fail, cannot allocate memory"); return PM3_EMALLOC; } size_t datalen = 0; int res = 0; if (fillFromBin) { res = loadFile(fileName, ".bin", data, maxdatalen, &datalen); } else { if (fillFromJson) { res = loadFileJSON(fileName, data, maxdatalen, &datalen); } else { res = loadFileEML(Cmd, data, &datalen); } } if (res) { if (data) free(data); return PM3_EFILE; } // 64 or 256blocks. if (datalen != 1024 && datalen != 4096) { PrintAndLogEx(ERR, "File content error. "); free(data); return PM3_EFILE; } PrintAndLogEx(INFO, "Copying to magic card"); int blockNum = 0; int flags = 0; while (datalen) { // switch on field and send magic sequence if (blockNum == 0) flags = MAGIC_INIT + MAGIC_WUPC; // write if (blockNum == 1) flags = 0; // Switch off field. if (blockNum == 16 * 4 - 1) flags = MAGIC_HALT + MAGIC_OFF; if (mfCSetBlock(blockNum, data + (16 * blockNum), NULL, flags)) { PrintAndLogEx(WARNING, "Can't set magic card block: %d", blockNum); free(data); return PM3_ESOFT; } datalen -= 16; printf("."); fflush(stdout); blockNum++; // magic card type - mifare 1K if (blockNum >= MIFARE_1K_MAXBLOCK) break; } PrintAndLogEx(NORMAL, "\n"); // 64 or 256blocks. if (blockNum != 16 * 4 && blockNum != 32 * 4 + 8 * 16) { PrintAndLogEx(ERR, "File content error. There must be 64 blocks"); free(data); return PM3_EFILE; } PrintAndLogEx(SUCCESS, "Card loaded %d blocks from file", blockNum); free(data); return PM3_SUCCESS; } static int CmdHF14AMfCGetBlk(const char *Cmd) { uint8_t data[16] = {0}; char ctmp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) < 1 || ctmp == 'h') return usage_hf14_cgetblk(); uint8_t blockNo = param_get8(Cmd, 0); PrintAndLogEx(NORMAL, "--block number:%2d ", blockNo); int res = mfCGetBlock(blockNo, data, MAGIC_SINGLE); if (res) { PrintAndLogEx(ERR, "Can't read block. error=%d", res); return PM3_ESOFT; } PrintAndLogEx(NORMAL, "data: %s", sprint_hex(data, sizeof(data))); if (mfIsSectorTrailer(blockNo)) { PrintAndLogEx(NORMAL, "Trailer decoded:"); PrintAndLogEx(NORMAL, "Key A: %s", sprint_hex_inrow(data, 6)); PrintAndLogEx(NORMAL, "Key B: %s", sprint_hex_inrow(&data[10], 6)); int bln = mfFirstBlockOfSector(mfSectorNum(blockNo)); int blinc = (mfNumBlocksPerSector(mfSectorNum(blockNo)) > 4) ? 5 : 1; for (int i = 0; i < 4; i++) { PrintAndLogEx(NORMAL, "Access block %d%s: %s", bln, ((blinc > 1) && (i < 3) ? "+" : ""), mfGetAccessConditionsDesc(i, &data[6])); bln += blinc; } PrintAndLogEx(NORMAL, "UserData: %s", sprint_hex_inrow(&data[9], 1)); } return PM3_SUCCESS; } static int CmdHF14AMfCGetSc(const char *Cmd) { uint8_t data[16] = {0}; char ctmp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) < 1 || ctmp == 'h') return usage_hf14_cgetsc(); uint8_t sector = param_get8(Cmd, 0); if (sector > 39) { PrintAndLogEx(WARNING, "Sector number must be less then 40"); return PM3_ESOFT; } PrintAndLogEx(NORMAL, "\n # | data | Sector | %02d/ 0x%02X ", sector, sector); PrintAndLogEx(NORMAL, "----+------------------------------------------------"); uint8_t blocks = 4; uint8_t start = sector * 4; if (sector > 32) { blocks = 16; start = 128 + (sector - 32) * 16; } int flags = MAGIC_INIT + MAGIC_WUPC; for (int i = 0; i < blocks; i++) { if (i == 1) flags = 0; if (i == blocks - 1) flags = MAGIC_HALT + MAGIC_OFF; int res = mfCGetBlock(start + i, data, flags); if (res) { PrintAndLogEx(ERR, "Can't read block. %d error=%d", start + i, res); return PM3_ESOFT; } PrintAndLogEx(NORMAL, "%3d | %s", start + i, sprint_hex(data, 16)); } return PM3_SUCCESS; } static int CmdHF14AMfCSave(const char *Cmd) { char filename[FILE_PATH_SIZE]; char *fnameptr = filename; uint8_t *dump; bool fillEmulator = false; bool errors = false, hasname = false, useuid = false; int i, len, flags; uint8_t numblocks = 0, cmdp = 0; uint16_t bytes = 0; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { char ctmp = tolower(param_getchar(Cmd, cmdp)); switch (ctmp) { case 'e': useuid = true; fillEmulator = true; cmdp++; break; case 'h': return usage_hf14_csave(); case '0': case '1': case '2': case '4': numblocks = NumOfBlocks(ctmp); bytes = numblocks * MFBLOCK_SIZE; PrintAndLogEx(SUCCESS, "Saving magic mifare %cK", ctmp); cmdp++; break; case 'u': useuid = true; hasname = true; cmdp++; break; case 'o': len = param_getstr(Cmd, cmdp + 1, filename, FILE_PATH_SIZE); if (len < 1) { errors = true; break; } useuid = false; hasname = true; cmdp += 2; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } if (!hasname && !fillEmulator) errors = true; if (errors || cmdp == 0) return usage_hf14_csave(); dump = calloc(bytes, sizeof(uint8_t)); if (!dump) { PrintAndLogEx(WARNING, "Fail, cannot allocate memory"); return PM3_EMALLOC; } // Select card to get UID/UIDLEN information clearCommandBuffer(); SendCommandMIX(CMD_HF_ISO14443A_READER, ISO14A_CONNECT, 0, 0, NULL, 0); PacketResponseNG resp; if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { PrintAndLogEx(WARNING, "iso14443a card select failed"); free(dump); return PM3_ESOFT; } /* 0: couldn't read 1: OK, with ATS 2: OK, no ATS 3: proprietary Anticollision */ uint64_t select_status = resp.oldarg[0]; if (select_status == 0) { PrintAndLogEx(WARNING, "iso14443a card select failed"); return select_status; } iso14a_card_select_t card; memcpy(&card, (iso14a_card_select_t *)resp.data.asBytes, sizeof(iso14a_card_select_t)); flags = MAGIC_INIT + MAGIC_WUPC; for (i = 0; i < numblocks; i++) { if (i == 1) flags = 0; if (i == numblocks - 1) flags = MAGIC_HALT + MAGIC_OFF; if (mfCGetBlock(i, dump + (i * MFBLOCK_SIZE), flags)) { PrintAndLogEx(WARNING, "Cant get block: %d", i); free(dump); return PM3_ESOFT; } } if (useuid) { fnameptr += sprintf(fnameptr, "hf-mf-"); FillFileNameByUID(fnameptr, card.uid, "-dump", card.uidlen); } if (fillEmulator) { PrintAndLogEx(INFO, "uploading to emulator memory"); // fast push mode conn.block_after_ACK = true; for (i = 0; i < numblocks; i += 5) { if (i == numblocks - 1) { // Disable fast mode on last packet conn.block_after_ACK = false; } if (mfEmlSetMem(dump + (i * MFBLOCK_SIZE), i, 5) != PM3_SUCCESS) { PrintAndLogEx(WARNING, "Cant set emul block: %d", i); } printf("."); fflush(stdout); } PrintAndLogEx(NORMAL, "\n"); PrintAndLogEx(SUCCESS, "uploaded %d bytes to emulator memory", bytes); } saveFile(filename, ".bin", dump, bytes); saveFileEML(filename, dump, bytes, MFBLOCK_SIZE); saveFileJSON(filename, jsfCardMemory, dump, bytes); free(dump); return PM3_SUCCESS; } //needs nt, ar, at, Data to decrypt static int CmdHf14AMfDecryptBytes(const char *Cmd) { char ctmp = tolower(param_getchar(Cmd, 0)); if (strlen(Cmd) < 1 || ctmp == 'h') return usage_hf14_decryptbytes(); uint32_t nt = param_get32ex(Cmd, 0, 0, 16); uint32_t ar_enc = param_get32ex(Cmd, 1, 0, 16); uint32_t at_enc = param_get32ex(Cmd, 2, 0, 16); int len = param_getlength(Cmd, 3); if (len & 1) { PrintAndLogEx(WARNING, "Uneven hex string length. LEN=%d", len); return PM3_ESOFT; } PrintAndLogEx(NORMAL, "nt\t%08X", nt); PrintAndLogEx(NORMAL, "ar enc\t%08X", ar_enc); PrintAndLogEx(NORMAL, "at enc\t%08X", at_enc); uint8_t *data = calloc(len, sizeof(uint8_t)); if (!data) { PrintAndLogEx(WARNING, "Fail, cannot allocate memory"); return PM3_EMALLOC; } param_gethex_ex(Cmd, 3, data, &len); len >>= 1; tryDecryptWord(nt, ar_enc, at_enc, data, len); free(data); return PM3_SUCCESS; } static int CmdHf14AMfSetMod(const char *Cmd) { uint8_t key[6] = {0, 0, 0, 0, 0, 0}; uint8_t mod = 2; char ctmp = param_getchar(Cmd, 0); if (ctmp == '0') { mod = 0; } else if (ctmp == '1') { mod = 1; } int gethexfail = param_gethex(Cmd, 1, key, 12); if (mod == 2 || gethexfail) { PrintAndLogEx(NORMAL, "Sets the load modulation strength of a MIFARE Classic EV1 card."); PrintAndLogEx(NORMAL, "Usage: hf mf setmod <0|1> "); PrintAndLogEx(NORMAL, " 0 = normal modulation"); PrintAndLogEx(NORMAL, " 1 = strong modulation (default)"); return PM3_ESOFT; } uint8_t data[7]; data[0] = mod; memcpy(data + 1, key, 6); clearCommandBuffer(); SendCommandNG(CMD_HF_MIFARE_SETMOD, data, sizeof(data)); PacketResponseNG resp; if (WaitForResponseTimeout(CMD_HF_MIFARE_SETMOD, &resp, 1500)) { if (resp.status == PM3_SUCCESS) PrintAndLogEx(SUCCESS, "Success"); else PrintAndLogEx(FAILED, "Failed"); } else { PrintAndLogEx(WARNING, "Command execute timeout"); } return PM3_SUCCESS; } // Mifare NACK bug detection static int CmdHf14AMfNack(const char *Cmd) { char ctmp = tolower(param_getchar(Cmd, 0)); if (ctmp == 'h') return usage_hf14_nack(); bool verbose = (ctmp == 'v'); if (verbose) PrintAndLogEx(INFO, "Started testing card for NACK bug. Press Enter to abort"); detect_classic_nackbug(verbose); return PM3_SUCCESS; } static int CmdHF14AMfice(const char *Cmd) { uint8_t blockNo = 0; uint8_t keyType = 0; uint8_t trgBlockNo = 0; uint8_t trgKeyType = 1; bool slow = false; bool initialize = true; bool acquisition_completed = false; uint8_t cmdp = 0; uint32_t flags = 0; uint32_t total_num_nonces = 0; char ctmp; char filename[FILE_PATH_SIZE], *fptr; FILE *fnonces = NULL; PacketResponseNG resp; uint32_t part_limit = 3000; uint32_t limit = 50000; while ((ctmp = param_getchar(Cmd, cmdp))) { switch (tolower(ctmp)) { case 'h': return usage_hf14_ice(); case 'f': param_getstr(Cmd, cmdp + 1, filename, FILE_PATH_SIZE); cmdp++; break; case 'l': limit = param_get32ex(Cmd, cmdp + 1, 50000, 10); cmdp++; break; default: PrintAndLogEx(WARNING, "Unknown parameter '%c'\n", ctmp); usage_hf14_ice(); return PM3_ESOFT; } cmdp++; } if (filename[0] == '\0') { fptr = GenerateFilename("hf-mf-", "-nonces.bin"); if (fptr == NULL) return PM3_EFILE; strcpy(filename, fptr); } PrintAndLogEx(NORMAL, "Collecting "_YELLOW_("%u")" nonces \n", limit); if ((fnonces = fopen(filename, "wb")) == NULL) { PrintAndLogEx(WARNING, "Could not create file " _YELLOW_("%s"), filename); return PM3_EFILE; } clearCommandBuffer(); uint64_t t1 = msclock(); do { if (kbd_enter_pressed()) { PrintAndLogEx(INFO, "\naborted via keyboard!\n"); break; } flags = 0; flags |= initialize ? 0x0001 : 0; flags |= slow ? 0x0002 : 0; clearCommandBuffer(); SendCommandMIX(CMD_HF_MIFARE_ACQ_NONCES, blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, flags, NULL, 0); if (!WaitForResponseTimeout(CMD_ACK, &resp, 3000)) goto out; if (resp.oldarg[0]) goto out; uint32_t items = resp.oldarg[2]; fwrite(resp.data.asBytes, 1, items * 4, fnonces); fflush(fnonces); total_num_nonces += items; if (total_num_nonces > part_limit) { PrintAndLogEx(INFO, "Total nonces %u\n", total_num_nonces); part_limit += 3000; } acquisition_completed = (total_num_nonces > limit); initialize = false; } while (!acquisition_completed); out: PrintAndLogEx(SUCCESS, "time: %" PRIu64 " seconds\n", (msclock() - t1) / 1000); if (fnonces) { fflush(fnonces); fclose(fnonces); } clearCommandBuffer(); SendCommandMIX(CMD_HF_MIFARE_ACQ_NONCES, blockNo + keyType * 0x100, trgBlockNo + trgKeyType * 0x100, 4, NULL, 0); return PM3_SUCCESS; } static int CmdHF14AMfAuth4(const char *Cmd) { uint8_t keyn[20] = {0}; int keynlen = 0; uint8_t key[16] = {0}; int keylen = 0; CLIParserInit("hf mf auth4", "Executes AES authentication command in ISO14443-4", "Usage:\n\thf mf auth4 4000 000102030405060708090a0b0c0d0e0f -> executes authentication\n" "\thf mf auth4 9003 FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF -> executes authentication\n"); void *argtable[] = { arg_param_begin, arg_str1(NULL, NULL, "", NULL), arg_str1(NULL, NULL, "", NULL), arg_param_end }; CLIExecWithReturn(Cmd, argtable, true); CLIGetHexWithReturn(1, keyn, &keynlen); CLIGetHexWithReturn(2, key, &keylen); CLIParserFree(); if (keynlen != 2) { PrintAndLogEx(ERR, " must be 2 bytes long instead of: %d", keynlen); return PM3_ESOFT; } if (keylen != 16) { PrintAndLogEx(ERR, " must be 16 bytes long instead of: %d", keylen); return PM3_ESOFT; } return MifareAuth4(NULL, keyn, key, true, false, true, true, false); } // https://www.nxp.com/docs/en/application-note/AN10787.pdf static int CmdHF14AMfMAD(const char *Cmd) { CLIParserInit("hf mf mad", "Checks and prints Mifare Application Directory (MAD)", "Usage:\n\thf mf mad -> shows MAD if exists\n" "\thf mf mad -a 03e1 -k ffffffffffff -b -> shows NDEF data if exists. read card with custom key and key B\n"); void *argtable[] = { arg_param_begin, arg_lit0("vV", "verbose", "show technical data"), arg_str0("aA", "aid", "print all sectors with aid", NULL), arg_str0("kK", "key", "key for printing sectors", NULL), arg_lit0("bB", "keyb", "use key B for access printing sectors (by default: key A)"), arg_param_end }; CLIExecWithReturn(Cmd, argtable, true); bool verbose = arg_get_lit(1); uint8_t aid[2] = {0}; int aidlen; CLIGetHexWithReturn(2, aid, &aidlen); uint8_t key[6] = {0}; int keylen; CLIGetHexWithReturn(3, key, &keylen); bool keyB = arg_get_lit(4); CLIParserFree(); if (aidlen != 2 && keylen > 0) { PrintAndLogEx(WARNING, "do not need a key without aid."); } uint8_t sector0[16 * 4] = {0}; uint8_t sector10[16 * 4] = {0}; if (mfReadSector(MF_MAD1_SECTOR, MF_KEY_A, (uint8_t *)g_mifare_mad_key, sector0)) { PrintAndLogEx(ERR, "read sector 0 error. card don't have MAD or don't have MAD on default keys."); return PM3_ESOFT; } if (verbose) { for (int i = 0; i < 4; i ++) PrintAndLogEx(NORMAL, "[%d] %s", i, sprint_hex(§or0[i * 16], 16)); } bool haveMAD2 = false; MAD1DecodeAndPrint(sector0, verbose, &haveMAD2); if (haveMAD2) { if (mfReadSector(MF_MAD2_SECTOR, MF_KEY_A, (uint8_t *)g_mifare_mad_key, sector10)) { PrintAndLogEx(ERR, "read sector 0x10 error. card don't have MAD or don't have MAD on default keys."); return PM3_ESOFT; } MAD2DecodeAndPrint(sector10, verbose); } if (aidlen == 2) { uint16_t aaid = (aid[0] << 8) + aid[1]; PrintAndLogEx(NORMAL, "\n-------------- AID 0x%04x ---------------", aaid); uint16_t mad[7 + 8 + 8 + 8 + 8] = {0}; size_t madlen = 0; if (MADDecode(sector0, sector10, mad, &madlen)) { PrintAndLogEx(ERR, "can't decode mad."); return PM3_ESOFT; } uint8_t akey[6] = {0}; memcpy(akey, g_mifare_ndef_key, 6); if (keylen == 6) { memcpy(akey, key, 6); } for (int i = 0; i < madlen; i++) { if (aaid == mad[i]) { uint8_t vsector[16 * 4] = {0}; if (mfReadSector(i + 1, keyB ? MF_KEY_B : MF_KEY_A, akey, vsector)) { PrintAndLogEx(NORMAL, ""); PrintAndLogEx(ERR, "read sector %d error.", i + 1); return PM3_ESOFT; } for (int j = 0; j < (verbose ? 4 : 3); j ++) PrintAndLogEx(NORMAL, " [%03d] %s", (i + 1) * 4 + j, sprint_hex(&vsector[j * 16], 16)); } } } return PM3_SUCCESS; } static int CmdHFMFNDEF(const char *Cmd) { CLIParserInit("hf mf ndef", "Prints NFC Data Exchange Format (NDEF)", "Usage:\n\thf mf ndef -> shows NDEF data\n" "\thf mf ndef -a 03e1 -k ffffffffffff -b -> shows NDEF data with custom AID, key and with key B\n"); void *argtable[] = { arg_param_begin, arg_litn("vV", "verbose", 0, 2, "show technical data"), arg_str0("aA", "aid", "replace default aid for NDEF", NULL), arg_str0("kK", "key", "replace default key for NDEF", NULL), arg_lit0("bB", "keyb", "use key B for access sectors (by default: key A)"), arg_param_end }; CLIExecWithReturn(Cmd, argtable, true); bool verbose = arg_get_lit(1); bool verbose2 = arg_get_lit(1) > 1; uint8_t aid[2] = {0}; int aidlen; CLIGetHexWithReturn(2, aid, &aidlen); uint8_t key[6] = {0}; int keylen; CLIGetHexWithReturn(3, key, &keylen); bool keyB = arg_get_lit(4); CLIParserFree(); uint16_t ndefAID = 0x03e1; if (aidlen == 2) ndefAID = (aid[0] << 8) + aid[1]; uint8_t ndefkey[6] = {0}; memcpy(ndefkey, g_mifare_ndef_key, 6); if (keylen == 6) { memcpy(ndefkey, key, 6); } uint8_t sector0[16 * 4] = {0}; uint8_t sector10[16 * 4] = {0}; uint8_t data[4096] = {0}; int datalen = 0; PrintAndLogEx(NORMAL, ""); if (mfReadSector(MF_MAD1_SECTOR, MF_KEY_A, (uint8_t *)g_mifare_mad_key, sector0)) { PrintAndLogEx(ERR, "read sector 0 error. card don't have MAD or don't have MAD on default keys."); return PM3_ESOFT; } bool haveMAD2 = false; int res = MADCheck(sector0, NULL, verbose, &haveMAD2); if (res) { PrintAndLogEx(ERR, "MAD error %d.", res); return res; } if (haveMAD2) { if (mfReadSector(MF_MAD2_SECTOR, MF_KEY_A, (uint8_t *)g_mifare_mad_key, sector10)) { PrintAndLogEx(ERR, "read sector 0x10 error. card don't have MAD or don't have MAD on default keys."); return PM3_ESOFT; } } uint16_t mad[7 + 8 + 8 + 8 + 8] = {0}; size_t madlen = 0; if (MADDecode(sector0, (haveMAD2 ? sector10 : NULL), mad, &madlen)) { PrintAndLogEx(ERR, "can't decode mad."); return PM3_ESOFT; } printf("data reading:"); for (int i = 0; i < madlen; i++) { if (ndefAID == mad[i]) { uint8_t vsector[16 * 4] = {0}; if (mfReadSector(i + 1, keyB ? MF_KEY_B : MF_KEY_A, ndefkey, vsector)) { PrintAndLogEx(ERR, "read sector %d error.", i + 1); return PM3_ESOFT; } memcpy(&data[datalen], vsector, 16 * 3); datalen += 16 * 3; printf("."); } } printf(" OK\n"); if (!datalen) { PrintAndLogEx(ERR, "no NDEF data."); return PM3_SUCCESS; } if (verbose2) { PrintAndLogEx(NORMAL, "NDEF data:"); dump_buffer(data, datalen, stdout, 1); } NDEFDecodeAndPrint(data, datalen, verbose); return PM3_SUCCESS; } static int CmdHFMFPersonalize(const char *cmd) { CLIParserInit("hf mf personalize", "Personalize the UID of a Mifare Classic EV1 card. This is only possible if it is a 7Byte UID card and if it is not already personalized.", "Usage:\n\thf mf personalize UIDF0 -> double size UID according to ISO/IEC14443-3\n" "\thf mf personalize UIDF1 -> double size UID according to ISO/IEC14443-3, optional usage of selection process shortcut\n" "\thf mf personalize UIDF2 -> single size random ID according to ISO/IEC14443-3\n" "\thf mf personalize UIDF3 -> single size NUID according to ISO/IEC14443-3\n" "\thf mf personalize -t B -k B0B1B2B3B4B5 UIDF3 -> use key B = 0xB0B1B2B3B4B5 instead of default key A\n"); void *argtable[] = { arg_param_begin, arg_str0("tT", "keytype", "", "key type (A or B) to authenticate sector 0 (default: A)"), arg_str0("kK", "key", "", "key to authenticate sector 0 (default: FFFFFFFFFFFF)"), arg_str1(NULL, NULL, "", "Personalization Option"), arg_param_end }; CLIExecWithReturn(cmd, argtable, true); char keytypestr[2] = "a"; uint8_t keytype = 0x00; int keytypestr_len; int res = CLIParamStrToBuf(arg_get_str(1), (uint8_t *)keytypestr, 1, &keytypestr_len); str_lower(keytypestr); if (res || (keytypestr[0] != 'a' && keytypestr[0] != 'b')) { PrintAndLogEx(ERR, "ERROR: not a valid key type. Key type must be A or B"); CLIParserFree(); return PM3_EINVARG; } if (keytypestr[0] == 'b') { keytype = 0x01; } uint8_t key[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; int key_len; res = CLIParamHexToBuf(arg_get_str(2), key, 6, &key_len); if (res || (!res && key_len > 0 && key_len != 6)) { PrintAndLogEx(ERR, "ERROR: not a valid key. Key must be 12 hex digits"); CLIParserFree(); return PM3_EINVARG; } char pers_optionstr[6]; int opt_len; uint8_t pers_option; res = CLIParamStrToBuf(arg_get_str(3), (uint8_t *)pers_optionstr, 5, &opt_len); str_lower(pers_optionstr); if (res || (!res && opt_len > 0 && opt_len != 5) || (strncmp(pers_optionstr, "uidf0", 5) && strncmp(pers_optionstr, "uidf1", 5) && strncmp(pers_optionstr, "uidf2", 5) && strncmp(pers_optionstr, "uidf3", 5))) { PrintAndLogEx(ERR, "ERROR: invalid personalization option. Must be one of UIDF0, UIDF1, UIDF2, or UIDF3"); CLIParserFree(); return PM3_EINVARG; } if (!strncmp(pers_optionstr, "uidf0", 5)) { pers_option = MIFARE_EV1_UIDF0; } else if (!strncmp(pers_optionstr, "uidf1", 5)) { pers_option = MIFARE_EV1_UIDF1; } else if (!strncmp(pers_optionstr, "uidf2", 5)) { pers_option = MIFARE_EV1_UIDF2; } else { pers_option = MIFARE_EV1_UIDF3; } CLIParserFree(); clearCommandBuffer(); struct { uint8_t keytype; uint8_t pers_option; uint8_t key[6]; } PACKED payload; payload.keytype = keytype; payload.pers_option = pers_option; memcpy(payload.key, key, 6); SendCommandNG(CMD_HF_MIFARE_PERSONALIZE_UID, (uint8_t *)&payload, sizeof(payload)); PacketResponseNG resp; if (!WaitForResponseTimeout(CMD_HF_MIFARE_PERSONALIZE_UID, &resp, 2500)) return PM3_ETIMEOUT; PrintAndLogEx(SUCCESS, "Personalization %s", resp.status == PM3_SUCCESS ? "SUCCEEDED" : "FAILED"); return PM3_SUCCESS; } static int CmdHF14AMfList(const char *Cmd) { (void)Cmd; // Cmd is not used so far return CmdTraceList("mf"); } static command_t CommandTable[] = { {"help", CmdHelp, AlwaysAvailable, "This help"}, {"list", CmdHF14AMfList, AlwaysAvailable, "List MIFARE history"}, {"darkside", CmdHF14AMfDarkside, IfPm3Iso14443a, "Darkside attack"}, {"nested", CmdHF14AMfNested, IfPm3Iso14443a, "Nested attack"}, {"hardnested", CmdHF14AMfNestedHard, AlwaysAvailable, "Nested attack for hardened MIFARE Classic cards"}, {"staticnested", CmdHF14AMfNestedStatic, IfPm3Iso14443a, "Nested attack against static nonce MIFARE Classic cards"}, {"autopwn", CmdHF14AMfAutoPWN, IfPm3Iso14443a, "Automatic key recovery tool for MIFARE Classic"}, // {"keybrute", CmdHF14AMfKeyBrute, IfPm3Iso14443a, "J_Run's 2nd phase of multiple sector nested authentication key recovery"}, {"nack", CmdHf14AMfNack, IfPm3Iso14443a, "Test for MIFARE NACK bug"}, {"chk", CmdHF14AMfChk, IfPm3Iso14443a, "Check keys"}, {"fchk", CmdHF14AMfChk_fast, IfPm3Iso14443a, "Check keys fast, targets all keys on card"}, {"decrypt", CmdHf14AMfDecryptBytes, AlwaysAvailable, "[nt] [ar_enc] [at_enc] [data] - to decrypt sniff or trace"}, {"-----------", CmdHelp, IfPm3Iso14443a, ""}, {"auth4", CmdHF14AMfAuth4, IfPm3Iso14443a, "ISO14443-4 AES authentication"}, {"dump", CmdHF14AMfDump, IfPm3Iso14443a, "Dump MIFARE classic tag to binary file"}, {"mad", CmdHF14AMfMAD, IfPm3Iso14443a, "Checks and prints MAD"}, {"ndef", CmdHFMFNDEF, IfPm3Iso14443a, "Prints NDEF records from card"}, {"personalize", CmdHFMFPersonalize, IfPm3Iso14443a, "Personalize UID (Mifare Classic EV1 only)"}, {"rdbl", CmdHF14AMfRdBl, IfPm3Iso14443a, "Read MIFARE classic block"}, {"rdsc", CmdHF14AMfRdSc, IfPm3Iso14443a, "Read MIFARE classic sector"}, {"restore", CmdHF14AMfRestore, IfPm3Iso14443a, "Restore MIFARE classic binary file to BLANK tag"}, {"wrbl", CmdHF14AMfWrBl, IfPm3Iso14443a, "Write MIFARE classic block"}, {"setmod", CmdHf14AMfSetMod, IfPm3Iso14443a, "Set MIFARE Classic EV1 load modulation strength"}, // {"sniff", CmdHF14AMfSniff, 0, "Sniff card-reader communication"}, {"-----------", CmdHelp, IfPm3Iso14443a, ""}, {"sim", CmdHF14AMfSim, IfPm3Iso14443a, "Simulate MIFARE card"}, {"eclr", CmdHF14AMfEClear, IfPm3Iso14443a, "Clear simulator memory"}, {"eget", CmdHF14AMfEGet, IfPm3Iso14443a, "Get simulator memory block"}, {"eset", CmdHF14AMfESet, IfPm3Iso14443a, "Set simulator memory block"}, {"eload", CmdHF14AMfELoad, IfPm3Iso14443a, "Load from file emul dump"}, {"esave", CmdHF14AMfESave, IfPm3Iso14443a, "Save to file emul dump"}, {"ecfill", CmdHF14AMfECFill, IfPm3Iso14443a, "Fill simulator memory with help of keys from simulator"}, {"ekeyprn", CmdHF14AMfEKeyPrn, IfPm3Iso14443a, "Print keys from simulator memory"}, {"-----------", CmdHelp, IfPm3Iso14443a, ""}, {"csetuid", CmdHF14AMfCSetUID, IfPm3Iso14443a, "Set UID (magic chinese card)"}, {"cwipe", CmdHF14AMfCWipe, IfPm3Iso14443a, "Wipe card to default UID/Sectors/Keys"}, {"csetblk", CmdHF14AMfCSetBlk, IfPm3Iso14443a, "Write block (magic chinese card)"}, {"cgetblk", CmdHF14AMfCGetBlk, IfPm3Iso14443a, "Read block (magic chinese card)"}, {"cgetsc", CmdHF14AMfCGetSc, IfPm3Iso14443a, "Read sector (magic chinese card)"}, {"cload", CmdHF14AMfCLoad, IfPm3Iso14443a, "Load dump (magic chinese card)"}, {"csave", CmdHF14AMfCSave, IfPm3Iso14443a, "Save dump from magic chinese card into file or emulator"}, {"-----------", CmdHelp, IfPm3Iso14443a, ""}, {"ice", CmdHF14AMfice, IfPm3Iso14443a, "collect MIFARE Classic nonces to file"}, {NULL, NULL, NULL, NULL} }; static int CmdHelp(const char *Cmd) { (void)Cmd; // Cmd is not used so far CmdsHelp(CommandTable); return PM3_SUCCESS; } int CmdHFMF(const char *Cmd) { clearCommandBuffer(); return CmdsParse(CommandTable, Cmd); }