//----------------------------------------------------------------------------- // Copyright (C) 2016 iceman // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Analyse bytes commands //----------------------------------------------------------------------------- #include "cmdanalyse.h" static int CmdHelp(const char *Cmd); int usage_analyse_lcr(void) { PrintAndLogEx(NORMAL, "Specifying the bytes of a UID with a known LRC will find the last byte value"); PrintAndLogEx(NORMAL, "needed to generate that LRC with a rolling XOR. All bytes should be specified in HEX."); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: analyse lcr [h] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h This help"); PrintAndLogEx(NORMAL, " bytes to calc missing XOR in a LCR"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " analyse lcr 04008064BA"); PrintAndLogEx(NORMAL, "expected output: Target (BA) requires final LRC XOR byte value: 5A"); return 0; } int usage_analyse_checksum(void) { PrintAndLogEx(NORMAL, "The bytes will be added with eachother and than limited with the applied mask"); PrintAndLogEx(NORMAL, "Finally compute ones' complement of the least significant bytes"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: analyse chksum [h] [v] b m "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h This help"); PrintAndLogEx(NORMAL, " v supress header"); PrintAndLogEx(NORMAL, " b bytes to calc missing XOR in a LCR"); PrintAndLogEx(NORMAL, " m bit mask to limit the outpuyt"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " analyse chksum b 137AF00A0A0D m FF"); PrintAndLogEx(NORMAL, "expected output: 0x61"); return 0; } int usage_analyse_crc(void){ PrintAndLogEx(NORMAL, "A stub method to test different crc implementations inside the PM3 sourcecode. Just because you figured out the poly, doesn't mean you get the desired output"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: analyse crc [h] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h This help"); PrintAndLogEx(NORMAL, " bytes to calc crc"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " analyse crc 137AF00A0A0D"); return 0; } int usage_analyse_nuid(void){ PrintAndLogEx(NORMAL, "Generate 4byte NUID from 7byte UID"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Usage: analyse hid [h] "); PrintAndLogEx(NORMAL, "Options:"); PrintAndLogEx(NORMAL, " h This help"); PrintAndLogEx(NORMAL, " input bytes (14 hexsymbols)"); PrintAndLogEx(NORMAL, ""); PrintAndLogEx(NORMAL, "Examples:"); PrintAndLogEx(NORMAL, " analyse nuid 11223344556677"); return 0; } static uint8_t calculateLRC( uint8_t* bytes, uint8_t len) { uint8_t LRC = 0; for (uint8_t i = 0; i < len; i++) LRC ^= bytes[i]; return LRC; } /* static uint16_t matrixadd ( uint8_t* bytes, uint8_t len){ ----------- 0x9c | 1001 1100 0x97 | 1001 0111 0x72 | 0111 0010 0x5e | 0101 1110 ----------------- C32F 9d74 return 0; } */ /* static uint16_t shiftadd ( uint8_t* bytes, uint8_t len){ return 0; } */ static uint16_t calcSumCrumbAdd( uint8_t* bytes, uint8_t len, uint32_t mask) { uint16_t sum = 0; for (uint8_t i = 0; i < len; i++) { sum += CRUMB(bytes[i], 0); sum += CRUMB(bytes[i], 2); sum += CRUMB(bytes[i], 4); sum += CRUMB(bytes[i], 6); } sum &= mask; return sum; } static uint16_t calcSumCrumbAddOnes( uint8_t* bytes, uint8_t len, uint32_t mask) { return (~calcSumCrumbAdd(bytes, len, mask) & mask); } static uint16_t calcSumNibbleAdd( uint8_t* bytes, uint8_t len, uint32_t mask) { uint16_t sum = 0; for (uint8_t i = 0; i < len; i++) { sum += NIBBLE_LOW(bytes[i]); sum += NIBBLE_HIGH(bytes[i]); } sum &= mask; return sum; } static uint16_t calcSumNibbleAddOnes( uint8_t* bytes, uint8_t len, uint32_t mask){ return (~calcSumNibbleAdd(bytes, len, mask) & mask); } static uint16_t calcSumCrumbXor( uint8_t* bytes, uint8_t len, uint32_t mask) { uint16_t sum = 0; for (uint8_t i = 0; i < len; i++) { sum ^= CRUMB(bytes[i], 0); sum ^= CRUMB(bytes[i], 2); sum ^= CRUMB(bytes[i], 4); sum ^= CRUMB(bytes[i], 6); } sum &= mask; return sum; } static uint16_t calcSumNibbleXor( uint8_t* bytes, uint8_t len, uint32_t mask) { uint16_t sum = 0; for (uint8_t i = 0; i < len; i++) { sum ^= NIBBLE_LOW(bytes[i]); sum ^= NIBBLE_HIGH(bytes[i]); } sum &= mask; return sum; } static uint16_t calcSumByteXor( uint8_t* bytes, uint8_t len, uint32_t mask) { uint16_t sum = 0; for (uint8_t i = 0; i < len; i++) { sum ^= bytes[i]; } sum &= mask; return sum; } static uint16_t calcSumByteAdd( uint8_t* bytes, uint8_t len, uint32_t mask) { uint16_t sum = 0; for (uint8_t i = 0; i < len; i++) { sum += bytes[i]; } sum &= mask; return sum; } // Ones complement static uint16_t calcSumByteAddOnes( uint8_t* bytes, uint8_t len, uint32_t mask) { return (~calcSumByteAdd(bytes, len, mask) & mask); } static uint16_t calcSumByteSub( uint8_t* bytes, uint8_t len, uint32_t mask) { uint8_t sum = 0; for (uint8_t i = 0; i < len; i++) { sum -= bytes[i]; } sum &= mask; return sum; } static uint16_t calcSumByteSubOnes( uint8_t* bytes, uint8_t len, uint32_t mask){ return (~calcSumByteSub(bytes, len, mask) & mask); } static uint16_t calcSumNibbleSub( uint8_t* bytes, uint8_t len, uint32_t mask) { uint8_t sum = 0; for (uint8_t i = 0; i < len; i++) { sum -= NIBBLE_LOW(bytes[i]); sum -= NIBBLE_HIGH(bytes[i]); } sum &= mask; return sum; } static uint16_t calcSumNibbleSubOnes( uint8_t* bytes, uint8_t len, uint32_t mask) { return (~calcSumNibbleSub(bytes, len, mask) & mask); } // BSD shift checksum 8bit version static uint16_t calcBSDchecksum8( uint8_t* bytes, uint8_t len, uint32_t mask){ uint16_t sum = 0; for(uint8_t i = 0; i < len; i++){ sum = ((sum & 0xFF) >> 1) | ((sum & 0x1) << 7); // rotate accumulator sum += bytes[i]; // add next byte sum &= 0xFF; // } sum &= mask; return sum; } // BSD shift checksum 4bit version static uint16_t calcBSDchecksum4( uint8_t* bytes, uint8_t len, uint32_t mask){ uint16_t sum = 0; for(uint8_t i = 0; i < len; i++){ sum = ((sum & 0xF) >> 1) | ((sum & 0x1) << 3); // rotate accumulator sum += NIBBLE_HIGH(bytes[i]); // add high nibble sum &= 0xF; // sum = ((sum & 0xF) >> 1) | ((sum & 0x1) << 3); // rotate accumulator sum += NIBBLE_LOW(bytes[i]); // add low nibble sum &= 0xF; // } sum &= mask; return sum; } // measuring LFSR maximum length int CmdAnalyseLfsr(const char *Cmd){ uint16_t start_state = 0; /* Any nonzero start state will work. */ uint16_t lfsr = start_state; //uint32_t period = 0; uint8_t iv = param_get8ex(Cmd, 0, 0, 16); uint8_t find = param_get8ex(Cmd, 1, 0, 16); PrintAndLogEx(NORMAL, "LEGIC LFSR IV 0x%02X: \n", iv); PrintAndLogEx(NORMAL, " bit# | lfsr | ^0x40 | 0x%02X ^ lfsr \n",find); for (uint8_t i = 0x01; i < 0x30; i += 1) { //period = 0; legic_prng_init(iv); legic_prng_forward(i); lfsr = legic_prng_get_bits(12); PrintAndLogEx(NORMAL, " %02X | %03X | %03X | %03X \n",i, lfsr, 0x40 ^ lfsr, find ^ lfsr); } return 0; } int CmdAnalyseLCR(const char *Cmd) { uint8_t data[50]; char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) == 0|| cmdp == 'h' || cmdp == 'H') return usage_analyse_lcr(); int len = 0; param_gethex_ex(Cmd, 0, data, &len); if ( len%2 ) return usage_analyse_lcr(); len >>= 1; uint8_t finalXor = calculateLRC(data, len); PrintAndLogEx(NORMAL, "Target [%02X] requires final LRC XOR byte value: 0x%02X",data[len-1] ,finalXor); return 0; } int CmdAnalyseCRC(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) == 0 || cmdp == 'h' || cmdp == 'H') return usage_analyse_crc(); int len = strlen(Cmd); if ( len & 1 ) return usage_analyse_crc(); // add 1 for null terminator. uint8_t *data = malloc(len+1); if ( data == NULL ) return 1; if ( param_gethex(Cmd, 0, data, len)) { free(data); return usage_analyse_crc(); } len >>= 1; PrintAndLogEx(NORMAL, "\nTests with (%d) | %s",len, sprint_hex(data, len)); // 51 f5 7a d6 uint8_t uid[] = {0x51, 0xf5, 0x7a, 0xd6}; //12 34 56 init_table(CRC_LEGIC); uint8_t legic8 = CRC8Legic(uid, sizeof(uid)); PrintAndLogEx(NORMAL, "Legic 16 | %X (EF6F expected) [legic8 = %02x]", crc16_legic(data, len, legic8), legic8); init_table(CRC_FELICA); PrintAndLogEx(NORMAL, "FeliCa | %X ", crc16_xmodem(data, len)); PrintAndLogEx(NORMAL, "\nTests of reflection. Current methods in source code"); PrintAndLogEx(NORMAL, " reflect(0x3e23L,3) is %04X == 0x3e26", reflect(0x3e23L,3) ); PrintAndLogEx(NORMAL, " reflect8(0x80) is %02X == 0x01", reflect8(0x80)); PrintAndLogEx(NORMAL, " reflect16(0x8000) is %04X == 0x0001", reflect16(0xc6c6)); // // Test of CRC16, '123456789' string. // uint8_t b1, b2; PrintAndLogEx(NORMAL, "\n\nStandard test with 31 32 33 34 35 36 37 38 39 '123456789'\n\n"); uint8_t dataStr[] = { 0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39 }; legic8 = CRC8Legic(dataStr, sizeof(dataStr)); //these below has been tested OK. PrintAndLogEx(NORMAL, "Confirmed CRC Implementations"); PrintAndLogEx(NORMAL, "-------------------------------------\n"); PrintAndLogEx(NORMAL, "CRC 8 based\n\n"); PrintAndLogEx(NORMAL, "LEGIC: CRC8 : %X (C6 expected)", legic8); PrintAndLogEx(NORMAL, "MAXIM: CRC8 : %X (A1 expected)", CRC8Maxim(dataStr, sizeof(dataStr))); PrintAndLogEx(NORMAL, "-------------------------------------\n"); PrintAndLogEx(NORMAL, "CRC16 based\n\n"); // input from commandline PrintAndLogEx(NORMAL, "CCITT | %X (29B1 expected)", crc(CRC_CCITT, dataStr, sizeof(dataStr))); uint8_t poll[] = {0xb2,0x4d,0x12,0x01,0x01,0x2e,0x3d,0x17,0x26,0x47,0x80, 0x95,0x00,0xf1,0x00,0x00,0x00,0x01,0x43,0x00,0xb3,0x7f}; PrintAndLogEx(NORMAL, "FeliCa | %X (B37F expected)", crc(CRC_FELICA, poll+2, sizeof(poll)-4)); PrintAndLogEx(NORMAL, "FeliCa | %X (0000 expected)", crc(CRC_FELICA, poll+2, sizeof(poll)-2)); uint8_t sel_corr[] = { 0x40, 0xe1, 0xe1, 0xff, 0xfe, 0x5f, 0x02, 0x3c, 0x43, 0x01}; PrintAndLogEx(NORMAL, "iCLASS | %04x (0143 expected)", crc(CRC_ICLASS, sel_corr, sizeof(sel_corr)-2)); PrintAndLogEx(NORMAL, "---------------------------------------------------------------\n\n\n"); // ISO14443 crc A compute_crc(CRC_14443_A, dataStr, sizeof(dataStr), &b1, &b2); uint16_t crcAA = b1 << 8 | b2; PrintAndLogEx(NORMAL, "ISO14443 crc A | %04x or %04x (BF05 expected)\n", crcAA, crc(CRC_14443_A, dataStr, sizeof(dataStr)) ); // ISO14443 crc B compute_crc(CRC_14443_B, dataStr, sizeof(dataStr), &b1, &b2); uint16_t crcBB = b1 << 8 | b2; PrintAndLogEx(NORMAL, "ISO14443 crc B | %04x or %04x (906E expected)\n", crcBB, crc(CRC_14443_B, dataStr, sizeof(dataStr)) ); // ISO15693 crc (x.25) compute_crc(CRC_15693, dataStr, sizeof(dataStr), &b1, &b2); uint16_t crcCC = b1 << 8 | b2; PrintAndLogEx(NORMAL, "ISO15693 crc X25| %04x or %04x (906E expected)\n", crcCC, crc(CRC_15693, dataStr, sizeof(dataStr)) ); // ICLASS compute_crc(CRC_ICLASS, dataStr, sizeof(dataStr), &b1, &b2); uint16_t crcDD = b1 << 8 | b2; PrintAndLogEx(NORMAL, "ICLASS crc | %04x or %04x\n", crcDD, crc(CRC_ICLASS, dataStr, sizeof(dataStr)) ); // FeliCa compute_crc(CRC_FELICA, dataStr, sizeof(dataStr), &b1, &b2); uint16_t crcEE = b1 << 8 | b2; PrintAndLogEx(NORMAL, "FeliCa | %04x or %04x (31C3 expected)\n", crcEE, crc(CRC_FELICA, dataStr, sizeof(dataStr))); free(data); return 0; } int CmdAnalyseCHKSUM(const char *Cmd){ uint8_t data[50]; uint8_t cmdp = 0; uint32_t mask = 0xFFFF; bool errors = false; bool useHeader = false; int len = 0; memset(data, 0x0, sizeof(data)); while(param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch(param_getchar(Cmd, cmdp)) { case 'b': case 'B': param_gethex_ex(Cmd, cmdp+1, data, &len); if ( len%2 ) errors = true; len >>= 1; cmdp += 2; break; case 'm': case 'M': mask = param_get32ex(Cmd, cmdp+1, 0, 16); cmdp += 2; break; case 'v': case 'V': useHeader = true; cmdp++; break; case 'h': case 'H': return usage_analyse_checksum(); default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors || cmdp == 0 ) return usage_analyse_checksum(); if (useHeader) { PrintAndLogEx(NORMAL, " add | sub | add 1's compl | sub 1's compl | xor"); PrintAndLogEx(NORMAL, "byte nibble crumb | byte nibble | byte nibble cumb | byte nibble | byte nibble cumb | BSD |"); PrintAndLogEx(NORMAL, "------------------+-------------+------------------+-----------------+--------------------"); } PrintAndLogEx(NORMAL, "0x%X 0x%X 0x%X | 0x%X 0x%X | 0x%X 0x%X 0x%X | 0x%X 0x%X | 0x%X 0x%X 0x%X | 0x%X 0x%X |\n", calcSumByteAdd(data, len, mask) , calcSumNibbleAdd(data, len, mask) , calcSumCrumbAdd(data, len, mask) , calcSumByteSub(data, len, mask) , calcSumNibbleSub(data, len, mask) , calcSumByteAddOnes(data, len, mask) , calcSumNibbleAddOnes(data, len, mask) , calcSumCrumbAddOnes(data, len, mask) , calcSumByteSubOnes(data, len, mask) , calcSumNibbleSubOnes(data, len, mask) , calcSumByteXor(data, len, mask) , calcSumNibbleXor(data, len, mask) , calcSumCrumbXor(data, len, mask) , calcBSDchecksum8(data, len, mask) , calcBSDchecksum4(data, len, mask) ); return 0; } int CmdAnalyseDates(const char *Cmd){ // look for datestamps in a given array of bytes PrintAndLogEx(NORMAL, "To be implemented. Feel free to contribute!"); return 0; } int CmdAnalyseTEASelfTest(const char *Cmd){ uint8_t v[8], v_le[8]; memset(v, 0x00, sizeof(v)); memset(v_le, 0x00, sizeof(v_le)); uint8_t* v_ptr = v_le; uint8_t cmdlen = strlen(Cmd); cmdlen = ( sizeof(v)<<2 < cmdlen ) ? sizeof(v)<<2 : cmdlen; if ( param_gethex(Cmd, 0, v, cmdlen) > 0 ){ PrintAndLogEx(WARNING, "Can't read hex chars, uneven? :: %u", cmdlen); return 1; } SwapEndian64ex(v , 8, 4, v_ptr); // ENCRYPTION KEY: uint8_t key[16] = {0x55,0xFE,0xF6,0x30,0x62,0xBF,0x0B,0xC1,0xC9,0xB3,0x7C,0x34,0x97,0x3E,0x29,0xFB }; uint8_t keyle[16]; uint8_t* key_ptr = keyle; SwapEndian64ex(key , sizeof(key), 4, key_ptr); PrintAndLogEx(NORMAL, "TEST LE enc| %s", sprint_hex(v_ptr, 8)); tea_decrypt(v_ptr, key_ptr); PrintAndLogEx(NORMAL, "TEST LE dec | %s", sprint_hex_ascii(v_ptr, 8)); tea_encrypt(v_ptr, key_ptr); tea_encrypt(v_ptr, key_ptr); PrintAndLogEx(NORMAL, "TEST enc2 | %s", sprint_hex_ascii(v_ptr, 8)); return 0; } char* pb(uint32_t b) { static char buf1[33] = {0}; static char buf2[33] = {0}; static char *s; if (s != buf1) s = buf1; else s = buf2; memset(s, 0, sizeof(buf1)); uint32_t mask = 0x80000000; for (uint8_t i=0; i<32;i++) { s[i] = (mask & b)?'1':'0'; mask >>= 1; } return s; } int CmdAnalyseA(const char *Cmd){ int hexlen = 0; uint8_t cmdp = 0; bool errors = false; uint32_t startindex = 0, len = 0, cmd = 0; uint8_t data[USB_CMD_DATA_SIZE] = {0x00}; while (param_getchar(Cmd, cmdp) != 0x00 && !errors) { switch (tolower(param_getchar(Cmd, cmdp))) { case 'l': len = param_get32ex(Cmd, cmdp+1, 0, 10); cmdp += 2; break; case 'i': startindex = param_get32ex(Cmd, cmdp+1, 0, 10); cmdp += 2; break; case 'c': cmd = param_get8ex(Cmd, cmdp+1, 0, 10); cmdp += 2; break; case 'd': param_gethex_ex(Cmd, cmdp+1, data, &hexlen); if ( hexlen != sizeof(data) ) { PrintAndLogEx(WARNING, "Read %d bytes of %u", hexlen, sizeof(data) ); } cmdp += 2; break; case 'h': return usage_analyse_checksum(); default: PrintAndLogEx(WARNING, "Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } } //Validations if (errors || cmdp == 0 ) return usage_analyse_checksum(); UsbCommand c, resp; switch ( cmd ) { case 0: c = (UsbCommand) {CMD_READ_FLASH_MEM, {startindex, len, 0}}; clearCommandBuffer(); SendCommand(&c); if ( !WaitForResponseTimeout(CMD_ACK, &resp, 2000) ) { PrintAndLogEx(NORMAL, "timeout while waiting for reply."); return 1; } break; case 1: c = (UsbCommand) {CMD_WRITE_FLASH_MEM, {startindex, len, 0}}; memcpy(c.d.asBytes, data, len); clearCommandBuffer(); SendCommand(&c); if ( !WaitForResponseTimeout(CMD_ACK, &resp, 2000) ) { PrintAndLogEx(NORMAL, "timeout while waiting for reply."); return 1; } uint8_t isok = resp.arg[0] & 0xFF; if (isok) PrintAndLogEx(SUCCESS, "Flash write ok"); else PrintAndLogEx(FAILED, "Flash write ok"); break; } return 0; PrintAndLogEx(NORMAL, "-- " _BLUE_(its my message) "\n"); PrintAndLogEx(NORMAL, "-- " _RED_(its my message) "\n"); PrintAndLogEx(NORMAL, "-- " _YELLOW_(its my message) "\n"); PrintAndLogEx(NORMAL, "-- " _GREEN_(its my message) "\n"); //uint8_t syncBit = 99; // The start bit is one ore more Sequence Y followed by a Sequence Z (... 11111111 00x11111). We need to distinguish from // Sequence X followed by Sequence Y followed by Sequence Z (111100x1 11111111 00x11111) // we therefore look for a ...xx1111 11111111 00x11111xxxxxx... pattern // (12 '1's followed by 2 '0's, eventually followed by another '0', followed by 5 '1's) # define SYNC_16BIT 0xB24D uint32_t shiftReg = param_get32ex(Cmd, 0, 0xb24d, 16); uint8_t bt = param_get8ex(Cmd, 1, 0xBB, 16); uint8_t byte_offset = 99; // reverse byte uint8_t rev = reflect8(bt); PrintAndLogEx(NORMAL, "input %02x | %02x \n", bt, rev); // add byte to shift register shiftReg = shiftReg << 8 | rev; PrintAndLogEx(NORMAL, "shiftreg after %08x | pattern %08x \n", shiftReg, SYNC_16BIT); uint8_t n0 = 0, n1 = 0; n0 = (rev & (uint8_t)(~(0xFF >> (8-4)))) >> 4; n1 = (n1 << 4) | (rev & (uint8_t)(~(0xFF << 4))); PrintAndLogEx(NORMAL, "rev %02X | %02X %s | %02X %s |\n", rev, n0, pb(n0), n1, pb(n1) ); /* hex(0xb24d shr 0) 0xB24D 0b1011001001001101 hex(0xb24d shr 1) 0x5926 hex(0xb24d shr 2) 0x2C93 */ for ( int i =0; i< 16; i++) { PrintAndLogEx(NORMAL, " (shiftReg >> %d) & 0xFFFF == %08x ---", i, (( shiftReg >> i) & 0xFFFF )); // kolla om SYNC_PATTERN finns. if ((( shiftReg >> 7) & 0xFFFF ) == SYNC_16BIT) byte_offset = 7; else if ((( shiftReg >> 6) & 0xFFFF ) == SYNC_16BIT) byte_offset = 6; else if ((( shiftReg >> 5) & 0xFFFF ) == SYNC_16BIT) byte_offset = 5; else if ((( shiftReg >> 4) & 0xFFFF ) == SYNC_16BIT) byte_offset = 4; else if ((( shiftReg >> 3) & 0xFFFF ) == SYNC_16BIT) byte_offset = 3; else if ((( shiftReg >> 2) & 0xFFFF ) == SYNC_16BIT) byte_offset = 2; else if ((( shiftReg >> 1) & 0xFFFF ) == SYNC_16BIT) byte_offset = 1; else if ((( shiftReg >> 0) & 0xFFFF ) == SYNC_16BIT) byte_offset = 0; PrintAndLogEx(NORMAL, "Offset %u \n", byte_offset); if ( byte_offset != 99 ) break; shiftReg >>=1; } uint8_t p1 = (rev & (uint8_t)(~(0xFF << byte_offset))); PrintAndLogEx(NORMAL, "Offset %u | leftovers %02x %s \n", byte_offset, p1, pb(p1) ); /* pm3 --> da hex2bin 4db2 0100110110110010 */ return 0; /* // split byte into two parts. uint8_t offset = 3, n0 = 0, n1 = 0; rev = 0xB2; for (uint8_t m=0; m<8; m++) { offset = m; n0 = (rev & (uint8_t)(~(0xFF >> (8-offset)))) >> offset; n1 = (n1 << offset) | (rev & (uint8_t)(~(0xFF << offset))); PrintAndLogEx(NORMAL, "rev %02X | %02X %s | %02X %s |\n", rev, n0, pb(n0), n1, pb(n1) ); n0 = 0, n1 = 0; // PrintAndLogEx(NORMAL, " (0xFF >> offset) == %s |\n", pb( (0xFF >> offset)) ); //PrintAndLogEx(NORMAL, "~(0xFF >> (8-offset)) == %s |\n", pb( (uint8_t)(~(0xFF >> (8-offset))) ) ); //PrintAndLogEx(NORMAL, " rev & xxx == %s\n\n", pb( (rev & (uint8_t)(~(0xFF << offset))) )); } return 0; // from A -- x bits into B and the rest into C. for ( uint8_t i=0; i<8; i++){ PrintAndLogEx(NORMAL, "%u | %02X %s | %02X %s |\n", i, a, pb(a), b, pb(b) ); b = a & (a & (0xFF >> (8-i))); a >>=1; } */ return 0; // 14443-A uint8_t u14_c[] = {0x09, 0x78, 0x00, 0x92, 0x02, 0x54, 0x13, 0x02, 0x04, 0x2d, 0xe8 }; // atqs w crc uint8_t u14_w[] = {0x09, 0x78, 0x00, 0x92, 0x02, 0x54, 0x13, 0x02, 0x04, 0x2d, 0xe7 }; // atqs w crc PrintAndLogEx(FAILED, "14a check wrong crc | %s\n", (check_crc(CRC_14443_A, u14_w, sizeof(u14_w))) ? "YES": "NO" ); PrintAndLogEx(SUCCESS, "14a check correct crc | %s\n", (check_crc(CRC_14443_A, u14_c, sizeof(u14_c))) ? "YES": "NO" ); // 14443-B uint8_t u14b[] = {0x05,0x00,0x08,0x39,0x73}; PrintAndLogEx(NORMAL, "14b check crc | %s\n", (check_crc(CRC_14443_B, u14b, sizeof(u14b))) ? "YES": "NO"); // 15693 test uint8_t u15_c[] = {0x05,0x00,0x08,0x39,0x73}; // correct uint8_t u15_w[] = {0x05,0x00,0x08,0x39,0x72}; // wrong PrintAndLogEx(FAILED, "15 check wrong crc | %s\n", (check_crc(CRC_15693, u15_w, sizeof(u15_w))) ? "YES": "NO"); PrintAndLogEx(SUCCESS, "15 check correct crc | %s\n", (check_crc(CRC_15693, u15_c, sizeof(u15_c))) ? "YES": "NO"); // iCLASS test - wrong crc , swapped bytes. uint8_t iclass_w[] = { 0x40, 0xe1, 0xe1, 0xff, 0xfe, 0x5f, 0x02, 0x3c, 0x01, 0x43}; uint8_t iclass_c[] = { 0x40, 0xe1, 0xe1, 0xff, 0xfe, 0x5f, 0x02, 0x3c, 0x43, 0x01}; PrintAndLogEx(FAILED, "iCLASS check wrong crc | %s\n", (check_crc(CRC_ICLASS, iclass_w, sizeof(iclass_w))) ? "YES": "NO"); PrintAndLogEx(SUCCESS, "iCLASS check correct crc | %s\n", (check_crc(CRC_ICLASS, iclass_c, sizeof(iclass_c))) ? "YES": "NO"); // FeliCa test uint8_t felica_w[] = {0x12,0x01,0x01,0x2e,0x3d,0x17,0x26,0x47,0x80, 0x95,0x00,0xf1,0x00,0x00,0x00,0x01,0x43,0x00,0xb3,0x7e}; uint8_t felica_c[] = {0x12,0x01,0x01,0x2e,0x3d,0x17,0x26,0x47,0x80, 0x95,0x00,0xf1,0x00,0x00,0x00,0x01,0x43,0x00,0xb3,0x7f}; PrintAndLogEx(FAILED, "FeliCa check wrong crc | %s\n", (check_crc(CRC_FELICA, felica_w, sizeof(felica_w))) ? "YES": "NO"); PrintAndLogEx(SUCCESS, "FeliCa check correct crc | %s\n", (check_crc(CRC_FELICA, felica_c, sizeof(felica_c))) ? "YES": "NO"); PrintAndLogEx(NORMAL, "\n\n"); return 0; /* bool term = !isatty(STDIN_FILENO); if (!term) { char star[4]; star[0] = '-'; star[1] = '\\'; star[2] = '|'; star[3] = '/'; for (uint8_t k=0; k<4; k = (k+1) % 4 ) { PrintAndLogEx(NORMAL, "\e[s%c\e[u", star[k]); fflush(stdout); if (ukbhit()) { int gc = getchar(); (void)gc; break; } } } */ //piwi // uid(2e086b1a) nt(230736f6) ks(0b0008000804000e) nr(000000000) // uid(2e086b1a) nt(230736f6) ks(0e0b0e0b090c0d02) nr(000000001) // uid(2e086b1a) nt(230736f6) ks(0e05060e01080b08) nr(000000002) //uint64_t d1[] = {0x2e086b1a, 0x230736f6, 0x0000001, 0x0e0b0e0b090c0d02}; //uint64_t d2[] = {0x2e086b1a, 0x230736f6, 0x0000002, 0x0e05060e01080b08}; // uid(17758822) nt(c0c69e59) ks(080105020705040e) nr(00000001) // uid(17758822) nt(c0c69e59) ks(01070a05050c0705) nr(00000002) //uint64_t d1[] = {0x17758822, 0xc0c69e59, 0x0000001, 0x080105020705040e}; //uint64_t d2[] = {0x17758822, 0xc0c69e59, 0x0000002, 0x01070a05050c0705}; // uid(6e442129) nt(8f699195) ks(090d0b0305020f02) nr(00000001) // uid(6e442129) nt(8f699195) ks(03030508030b0c0e) nr(00000002) // uid(6e442129) nt(8f699195) ks(02010f030c0d050d) nr(00000003) // uid(6e442129) nt(8f699195) ks(00040f0f0305030e) nr(00000004) //uint64_t d1[] = {0x6e442129, 0x8f699195, 0x0000001, 0x090d0b0305020f02}; //uint64_t d2[] = {0x6e442129, 0x8f699195, 0x0000004, 0x00040f0f0305030e}; /* uid(3e172b29) nt(039b7bd2) ks(0c0e0f0505080800) nr(00000001) uid(3e172b29) nt(039b7bd2) ks(0e06090d03000b0f) nr(00000002) */ uint64_t *keylistA = NULL, *keylistB = NULL; uint32_t keycountA = 0, keycountB = 0; // uint64_t d1[] = {0x3e172b29, 0x039b7bd2, 0x0000001, 0, 0x0c0e0f0505080800}; // uint64_t d2[] = {0x3e172b29, 0x039b7bd2, 0x0000002, 0, 0x0e06090d03000b0f}; uint64_t d1[] = {0x6e442129, 0x8f699195, 0x0000001, 0, 0x090d0b0305020f02}; uint64_t d2[] = {0x6e442129, 0x8f699195, 0x0000004, 0, 0x00040f0f0305030e}; keycountA = nonce2key(d1[0], d1[1], d1[2], 0, d1[3], d1[4] ,&keylistA); keycountB = nonce2key(d2[0], d2[1], d2[2], 0, d2[3], d2[4], &keylistB); switch (keycountA) { case 0: PrintAndLogEx(FAILED, "Key test A failed\n"); break; case 1: PrintAndLogEx(SUCCESS, "KEY A | %012" PRIX64 " ", keylistA[0]); break; } switch (keycountB) { case 0: PrintAndLogEx(FAILED, "Key test B failed\n"); break; case 1: PrintAndLogEx(SUCCESS, "KEY B | %012" PRIX64 " ", keylistB[0]); break; } free(keylistA); free(keylistB); // qsort(keylist, keycount, sizeof(*keylist), compare_uint64); // keycount = intersection(last_keylist, keylist); /* uint64_t keys[] = { 0x7b5b8144a32f, 0x76b46ccc461e, 0x03c3c36ea7a2, 0x171414d31961, 0xe2bfc7153eea, 0x48023d1d1985, 0xff7e1a410953, 0x49a3110249d3, 0xe3515546d015, 0x667c2ac86f85, 0x5774a8d5d6a9, 0xe401c2ca602c, 0x3be7e5020a7e, 0x66dbec3cf90b, 0x4e13f1534605, 0x5c172e1e78c9, 0xeafe51411fbf, 0xc579f0fcdd8f, 0x2146a0d745c3, 0xab31ca60171a, 0x3169130a5035, 0xde5e11ea4923, 0x96fe2aeb9924, 0x828b61e6fcba, 0x8211b0607367, 0xe2936b320f76, 0xaff501e84378, 0x82b31cedb21b, 0xb725d31d4cd3, 0x3b984145b2f1, 0x3b4adb3e82ba, 0x8779075210fe }; uint64_t keya[] = { 0x7b5b8144a32f, 0x76b46ccc461e, 0x03c3c36ea7a2, 0x171414d31961, 0xe2bfc7153eea, 0x48023d1d1985, 0xff7e1a410953, 0x49a3110249d3, 0xe3515546d015, 0x667c2ac86f85, 0x5774a8d5d6a9, 0xe401c2ca602c, 0x3be7e5020a7e, 0x66dbec3cf90b, 0x4e13f1534605, 0x5c172e1e78c9 }; uint64_t keyb[] = { 0xeafe51411fbf, 0xc579f0fcdd8f, 0x2146a0d745c3, 0xab31ca60171a, 0x3169130a5035, 0xde5e11ea4923, 0x96fe2aeb9924, 0x828b61e6fcba, 0x8211b0607367, 0xe2936b320f76, 0xaff501e84378, 0x82b31cedb21b, 0xb725d31d4cd3, 0x3b984145b2f1, 0x3b4adb3e82ba, 0x8779075210fe }; */ /* uint64_t xor[] = { 0x0DEFED88E531, 0x7577AFA2E1BC, 0x14D7D7BDBEC3, 0xF5ABD3C6278B, 0xAABDFA08276F, 0xB77C275C10D6, 0xB6DD0B434080, 0xAAF2444499C6, 0x852D7F8EBF90, 0x3108821DB92C, 0xB3756A1FB685, 0xDFE627C86A52, 0x5D3C093EF375, 0x28C81D6FBF0E, 0x1204DF4D3ECC, 0xB6E97F5F6776, 0x2F87A1BDC230, 0xE43F502B984C, 0x8A776AB752D9, 0x9A58D96A472F, 0xEF3702E01916, 0x48A03B01D007, 0x14754B0D659E, 0x009AD1868FDD, 0x6082DB527C11, 0x4D666ADA4C0E, 0x2D461D05F163, 0x3596CFF0FEC8, 0x8CBD9258FE22, 0x00D29A7B304B, 0xBC33DC6C9244 }; uint64_t xorA[] = { 0x0DEFED88E531, 0x7577AFA2E1BC, 0x14D7D7BDBEC3, 0xF5ABD3C6278B, 0xAABDFA08276F, 0xB77C275C10D6, 0xB6DD0B434080, 0xAAF2444499C6, 0x852D7F8EBF90, 0x3108821DB92C, 0xB3756A1FB685, 0xDFE627C86A52, 0x5D3C093EF375, 0x28C81D6FBF0E, 0x1204DF4D3ECC }; uint64_t xorB[] = { 0x2F87A1BDC230, 0xE43F502B984C, 0x8A776AB752D9, 0x9A58D96A472F, 0xEF3702E01916, 0x48A03B01D007, 0x14754B0D659E, 0x009AD1868FDD, 0x6082DB527C11, 0x4D666ADA4C0E, 0x2D461D05F163, 0x3596CFF0FEC8, 0x8CBD9258FE22, 0x00D29A7B304B, 0xBC33DC6C9244 }; */ /* // xor key A | xor key B 1 | 0DEFED88E531 | 2F87A1BDC230 2 | 7577AFA2E1BC | E43F502B984C 3 | 14D7D7BDBEC3 | 8A776AB752D9 4 | F5ABD3C6278B | 9A58D96A472F 5 | AABDFA08276F | EF3702E01916 6 | B77C275C10D6 | 48A03B01D007 7 | B6DD0B434080 | 14754B0D659E 8 | AAF2444499C6 | 009AD1868FDD 9 | 852D7F8EBF90 | 6082DB527C11 10 | 3108821DB92C | 4D666ADA4C0E 11 | B3756A1FB685 | 2D461D05F163 12 | DFE627C86A52 | 3596CFF0FEC8 13 | 5D3C093EF375 | 8CBD9258FE22 14 | 28C81D6FBF0E | 00D29A7B304B 15 | 1204DF4D3ECC | BC33DC6C9244 */ // generate xor table :) /* for (uint8_t i=0; i<31; i++){ uint64_t a = keys[i] ^ keys[i+1]; PrintAndLogEx(NORMAL, "%u | %012" PRIX64 " | \n", i, a); } */ /* uint32_t id = param_get32ex(Cmd, 0, 0x93290142, 16); uint8_t uid[6] = {0}; num_to_bytes(id,4,uid); uint8_t key_s0a[] = { uid[1] ^ uid[2] ^ uid[3] ^ 0x11, uid[1] ^ 0x72, uid[2] ^ 0x80, (uid[0] + uid[1] + uid[2] + uid[3] ) ^ uid[3] ^ 0x19, 0xA3, 0x2F }; PrintAndLogEx(NORMAL, "UID | %s\n", sprint_hex(uid,4 )); PrintAndLogEx(NORMAL, "KEY A | %s\n", sprint_hex(key_s0a, 6)); // arrays w all keys uint64_t foo[32] = {0}; //A foo[0] = bytes_to_num(key_s0a, 6); //B //foo[16] = 0xcafe71411fbf; foo[16] = 0xeafe51411fbf; for (uint8_t i=0; i<15; i++){ foo[i+1] = foo[i] ^ xorA[i]; foo[i+16+1] = foo[i+16] ^ xorB[i]; } for (uint8_t i=0; i<15; i++){ uint64_t a = foo[i]; uint64_t b = foo[i+16]; PrintAndLogEx(NORMAL, "%02u | %012" PRIX64 " %s | %012" PRIX64 " %s\n", i, a, ( a == keya[i])?"ok":"err", b, ( b == keyb[i])?"ok":"err" ); } */ return 0; } void generate4bNUID(uint8_t *uid, uint8_t *nuid){ uint16_t crc; uint8_t b1, b2; compute_crc(CRC_14443_A, uid, 3, &b1, &b2); nuid[0] |= (b2 & 0xE0) | 0xF; nuid[1] = b1; crc = b1; crc |= b2 << 8; crc = update_crc16(uid[3], crc); crc = update_crc16(uid[4], crc); crc = update_crc16(uid[5], crc); crc = update_crc16(uid[6], crc); nuid[2] = (crc >> 8) & 0xFF ; nuid[3] = crc & 0xFF; } int CmdAnalyseNuid(const char *Cmd){ uint8_t nuid[4] = {0}; uint8_t uid[7] = {0}; int len = 0; char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) == 0|| cmdp == 'h' || cmdp == 'H') return usage_analyse_nuid(); /* selftest UID 040D681AB52281 -> NUID 8F430FEF */ if (cmdp == 't' || cmdp == 'T') { memcpy(uid, "\x04\x0d\x68\x1a\xb5\x22\x81", 7); generate4bNUID(uid, nuid); if ( 0 == memcmp(nuid, "\x8f\x43\x0f\xef", 4)) PrintAndLogEx(SUCCESS, "Selftest OK\n"); else PrintAndLogEx(FAILED, "Selftest Failed\n"); return 0; } param_gethex_ex(Cmd, 0, uid, &len); if ( len%2 || len != 14) return usage_analyse_nuid(); generate4bNUID(uid, nuid); PrintAndLogEx(NORMAL, "UID | %s \n", sprint_hex(uid, 7)); PrintAndLogEx(NORMAL, "NUID | %s \n", sprint_hex(nuid, 4)); return 0; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"lcr", CmdAnalyseLCR, 1, "Generate final byte for XOR LRC"}, {"crc", CmdAnalyseCRC, 1, "Stub method for CRC evaluations"}, {"chksum", CmdAnalyseCHKSUM, 1, "Checksum with adding, masking and one's complement"}, {"dates", CmdAnalyseDates, 1, "Look for datestamps in a given array of bytes"}, {"tea", CmdAnalyseTEASelfTest, 1, "Crypto TEA test"}, {"lfsr", CmdAnalyseLfsr, 1, "LFSR tests"}, {"a", CmdAnalyseA, 1, "num bits test"}, {"nuid", CmdAnalyseNuid, 1, "create NUID from 7byte UID"}, {NULL, NULL, 0, NULL} }; int CmdAnalyse(const char *Cmd) { clearCommandBuffer(); CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }