//----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // utilities //----------------------------------------------------------------------------- #include "util.h" #define UTIL_BUFFER_SIZE_SPRINT 4097 // global client debug variable uint8_t g_debugMode = 0; #ifdef _WIN32 #include #endif #define MAX_BIN_BREAK_LENGTH (3072+384+1) #ifndef _WIN32 #include #include #include #include int ukbhit(void) { int cnt = 0; int error; static struct termios Otty, Ntty; if (tcgetattr(STDIN_FILENO, &Otty) == -1) return -1; Ntty = Otty; Ntty.c_iflag = 0x0000; // input mode Ntty.c_oflag = 0x0000; // output mode Ntty.c_lflag &= ~ICANON; // control mode = raw Ntty.c_cc[VMIN] = 1; // return if at least 1 character is in the queue Ntty.c_cc[VTIME] = 0; // no timeout. Wait forever if (0 == (error = tcsetattr(STDIN_FILENO, TCSANOW, &Ntty))) { // set new attributes error += ioctl(STDIN_FILENO, FIONREAD, &cnt); // get number of characters available error += tcsetattr(STDIN_FILENO, TCSANOW, &Otty); // reset attributes } return (error == 0 ? cnt : -1); } #else #include int ukbhit(void) { return kbhit(); } #endif // log files functions // open, appped and close logfile void AddLogLine(const char *fn, const char *data, const char *c) { FILE *f = NULL; char filename[FILE_PATH_SIZE] = {0x00}; int len = 0; len = strlen(fn); if (len > FILE_PATH_SIZE) len = FILE_PATH_SIZE; memcpy(filename, fn, len); f = fopen(filename, "a"); if (!f) { printf("Could not append log file %s", filename); return; } fprintf(f, "%s", data); fprintf(f, "%s\n", c); fflush(f); fclose(f); } void AddLogHex(const char *fn, const char *extData, const uint8_t *data, const size_t len) { AddLogLine(fn, extData, sprint_hex(data, len)); } void AddLogUint64(const char *fn, const char *data, const uint64_t value) { char buf[20] = {0}; memset(buf, 0x00, sizeof(buf)); sprintf(buf, "%016" PRIx64 "", value); AddLogLine(fn, data, buf); } void AddLogCurrentDT(const char *fn) { char buf[20]; memset(buf, 0x00, sizeof(buf)); struct tm *curTime; time_t now = time(0); curTime = gmtime(&now); strftime(buf, sizeof(buf), "%Y-%m-%d %H:%M:%S", curTime); AddLogLine(fn, "\nanticollision: ", buf); } // create filename on hex uid. // param *fn - pointer to filename char array // param *uid - pointer to uid byte array // param *ext - ".log" // param uidlen - length of uid array. void FillFileNameByUID(char *filenamePrefix, const uint8_t *uid, const char *ext, const int uidlen) { if (filenamePrefix == NULL || uid == NULL || ext == NULL) { printf("[!] error parameter is NULL\n"); return; } int len = 0; len = strlen(filenamePrefix); //memset(fn, 0x00, FILE_PATH_SIZE); for (int j = 0; j < uidlen; j++) sprintf(filenamePrefix + len + j * 2, "%02X", uid[j]); strcat(filenamePrefix, ext); } // fill buffer from structure [{uint8_t data, size_t length},...] int FillBuffer(uint8_t *data, size_t maxDataLength, size_t *dataLength, ...) { *dataLength = 0; va_list valist; va_start(valist, dataLength); uint8_t *vdata = NULL; do { vdata = va_arg(valist, uint8_t *); if (!vdata) break; size_t vlength = va_arg(valist, size_t); if (*dataLength + vlength > maxDataLength) { va_end(valist); return 1; } memcpy(&data[*dataLength], vdata, vlength); *dataLength += vlength; } while (vdata); va_end(valist); return 0; } bool CheckStringIsHEXValue(const char *value) { for (int i = 0; i < strlen(value); i++) if (!isxdigit(value[i])) return false; if (strlen(value) % 2) return false; return true; } void hex_to_buffer(const uint8_t *buf, const uint8_t *hex_data, const size_t hex_len, const size_t hex_max_len, const size_t min_str_len, const size_t spaces_between, bool uppercase) { char *tmp = (char *)buf; size_t i; memset(tmp, 0x00, hex_max_len); int maxLen = (hex_len > hex_max_len) ? hex_max_len : hex_len; for (i = 0; i < maxLen; ++i, tmp += 2 + spaces_between) { sprintf(tmp, (uppercase) ? "%02X" : "%02x", (unsigned int) hex_data[i]); for (int j = 0; j < spaces_between; j++) sprintf(tmp + 2 + j, " "); } i *= (2 + spaces_between); int minStrLen = min_str_len > i ? min_str_len : 0; if (minStrLen > hex_max_len) minStrLen = hex_max_len; for (; i < minStrLen; i++, tmp += 1) sprintf(tmp, " "); return; } // printing and converting functions void print_hex(const uint8_t *data, const size_t len) { size_t i; for (i = 0; i < len; i++) printf("%02x ", data[i]); printf("\n"); } void print_hex_break(const uint8_t *data, const size_t len, uint8_t breaks) { int rownum = 0; printf("[%02d] | ", rownum); for (int i = 0; i < len; ++i) { printf("%02X ", data[i]); // check if a line break is needed if (breaks > 0 && !((i + 1) % breaks) && (i + 1 < len)) { ++rownum; printf("\n[%02d] | ", rownum); } } printf("\n"); } char *sprint_hex(const uint8_t *data, const size_t len) { static char buf[UTIL_BUFFER_SIZE_SPRINT - 3] = {0}; hex_to_buffer((uint8_t *)buf, data, len, sizeof(buf) - 1, 0, 1, true); return buf; } char *sprint_hex_inrow_ex(const uint8_t *data, const size_t len, const size_t min_str_len) { static char buf[UTIL_BUFFER_SIZE_SPRINT] = {0}; hex_to_buffer((uint8_t *)buf, data, len, sizeof(buf) - 1, min_str_len, 0, true); return buf; } char *sprint_hex_inrow(const uint8_t *data, const size_t len) { return sprint_hex_inrow_ex(data, len, 0); } char *sprint_hex_inrow_spaces(const uint8_t *data, const size_t len, size_t spaces_between) { static char buf[UTIL_BUFFER_SIZE_SPRINT] = {0}; hex_to_buffer((uint8_t *)buf, data, len, sizeof(buf) - 1, 0, spaces_between, true); return buf; } char *sprint_bin_break(const uint8_t *data, const size_t len, const uint8_t breaks) { // make sure we don't go beyond our char array memory size_t in_index = 0, out_index = 0; int rowlen = (len > MAX_BIN_BREAK_LENGTH) ? MAX_BIN_BREAK_LENGTH : len; if (breaks > 0 && len % breaks != 0) rowlen = (len + (len / breaks) > MAX_BIN_BREAK_LENGTH) ? MAX_BIN_BREAK_LENGTH : len + (len / breaks); //printf("(sprint_bin_break) rowlen %d\n", rowlen); static char buf[MAX_BIN_BREAK_LENGTH]; // 3072 + end of line characters if broken at 8 bits //clear memory memset(buf, 0x00, sizeof(buf)); char *tmp = buf; // loop through the out_index to make sure we don't go too far for (out_index = 0; out_index < rowlen; out_index++) { // set character if (data[in_index] == 7) // Manchester wrong bit marker sprintf(tmp++, "."); else sprintf(tmp++, "%u", data[in_index]); // check if a line break is needed and we have room to print it in our array if ((breaks > 0) && !((in_index + 1) % breaks) && (out_index + 1 != rowlen)) { sprintf(tmp++, "%s", "\n"); } in_index++; } return buf; } /* void sprint_bin_break_ex(uint8_t *src, size_t srclen, char *dest , uint8_t breaks) { if ( src == NULL ) return; if ( srclen < 1 ) return; // make sure we don't go beyond our char array memory size_t in_index = 0, out_index = 0; int rowlen; if (breaks==0) rowlen = ( len > MAX_BIN_BREAK_LENGTH ) ? MAX_BIN_BREAK_LENGTH : len; else rowlen = ( len+(len/breaks) > MAX_BIN_BREAK_LENGTH ) ? MAX_BIN_BREAK_LENGTH : len+(len/breaks); printf("(sprint_bin_break) rowlen %d\n", rowlen); // 3072 + end of line characters if broken at 8 bits dest = (char *)calloc(MAX_BIN_BREAK_LENGTH, sizeof(uint8_t)); if (dest == NULL) return; //clear memory memset(dest, 0x00, sizeof(dest)); // loop through the out_index to make sure we don't go too far for (out_index=0; out_index < rowlen-1; out_index++) { // set character sprintf(dest++, "%u", src[in_index]); // check if a line break is needed and we have room to print it in our array if ( (breaks > 0) && !((in_index+1) % breaks) && (out_index+1 != rowlen) ) { // increment and print line break out_index++; sprintf(dest++, "%s","\n"); } in_index++; } // last char. sprintf(dest++, "%u", src[in_index]); } */ char *sprint_bin(const uint8_t *data, const size_t len) { return sprint_bin_break(data, len, 0); } char *sprint_hex_ascii(const uint8_t *data, const size_t len) { static char buf[UTIL_BUFFER_SIZE_SPRINT]; char *tmp = buf; memset(buf, 0x00, UTIL_BUFFER_SIZE_SPRINT); size_t max_len = (len > 1010) ? 1010 : len; snprintf(tmp, UTIL_BUFFER_SIZE_SPRINT, "%s| ", sprint_hex(data, max_len)); size_t i = 0; size_t pos = (max_len * 3) + 2; while (i < max_len) { char c = data[i]; if ((c < 32) || (c == 127)) c = '.'; sprintf(tmp + pos + i, "%c", c); ++i; } return buf; } char *sprint_ascii_ex(const uint8_t *data, const size_t len, const size_t min_str_len) { static char buf[UTIL_BUFFER_SIZE_SPRINT]; char *tmp = buf; memset(buf, 0x00, UTIL_BUFFER_SIZE_SPRINT); size_t max_len = (len > 1010) ? 1010 : len; size_t i = 0; while (i < max_len) { char c = data[i]; tmp[i] = ((c < 32) || (c == 127)) ? '.' : c; ++i; } int m = min_str_len > i ? min_str_len : 0; for (; i < m; ++i) tmp[i] = ' '; return buf; } char *sprint_ascii(const uint8_t *data, const size_t len) { return sprint_ascii_ex(data, len, 0); } void print_blocks(uint32_t *data, size_t len) { PrintAndLogEx(NORMAL, "Blk | Data "); PrintAndLogEx(NORMAL, "----+------------"); if (!data) { PrintAndLogEx(ERR, "..empty data"); } else { for (uint8_t i = 0; i < len; i++) PrintAndLogEx(NORMAL, "%02d | 0x%08X", i, data[i]); } } void num_to_bytes(uint64_t n, size_t len, uint8_t *dest) { while (len--) { dest[len] = n & 0xFF; n >>= 8; } } uint64_t bytes_to_num(uint8_t *src, size_t len) { uint64_t num = 0; while (len--) { num = (num << 8) | (*src); src++; } return num; } // takes a number (uint64_t) and creates a binarray in dest. void num_to_bytebits(uint64_t n, size_t len, uint8_t *dest) { while (len--) { dest[len] = n & 1; n >>= 1; } } //least significant bit first void num_to_bytebitsLSBF(uint64_t n, size_t len, uint8_t *dest) { for (int i = 0 ; i < len ; ++i) { dest[i] = n & 1; n >>= 1; } } // aa,bb,cc,dd,ee,ff,gg,hh, ii,jj,kk,ll,mm,nn,oo,pp // to // hh,gg,ff,ee,dd,cc,bb,aa, pp,oo,nn,mm,ll,kk,jj,ii // up to 64 bytes or 512 bits uint8_t *SwapEndian64(const uint8_t *src, const size_t len, const uint8_t blockSize) { static uint8_t buf[64]; memset(buf, 0x00, 64); uint8_t *tmp = buf; for (uint8_t block = 0; block < (uint8_t)(len / blockSize); block++) { for (size_t i = 0; i < blockSize; i++) { tmp[i + (blockSize * block)] = src[(blockSize - 1 - i) + (blockSize * block)]; } } return buf; } // takes a uint8_t src array, for len items and reverses the byte order in blocksizes (8,16,32,64), // returns: the dest array contains the reordered src array. void SwapEndian64ex(const uint8_t *src, const size_t len, const uint8_t blockSize, uint8_t *dest) { for (uint8_t block = 0; block < (uint8_t)(len / blockSize); block++) { for (size_t i = 0; i < blockSize; i++) { dest[i + (blockSize * block)] = src[(blockSize - 1 - i) + (blockSize * block)]; } } } // ------------------------------------------------------------------------- // string parameters lib // ------------------------------------------------------------------------- // ------------------------------------------------------------------------- // line - param line // bg, en - symbol numbers in param line of beginning and ending parameter // paramnum - param number (from 0) // ------------------------------------------------------------------------- int param_getptr(const char *line, int *bg, int *en, int paramnum) { int i; int len = strlen(line); *bg = 0; *en = 0; // skip spaces while (line[*bg] == ' ' || line[*bg] == '\t')(*bg)++; if (*bg >= len) { return 1; } for (i = 0; i < paramnum; i++) { while (line[*bg] != ' ' && line[*bg] != '\t' && line[*bg] != '\0')(*bg)++; while (line[*bg] == ' ' || line[*bg] == '\t')(*bg)++; if (line[*bg] == '\0') return 1; } *en = *bg; while (line[*en] != ' ' && line[*en] != '\t' && line[*en] != '\0')(*en)++; (*en)--; return 0; } int param_getlength(const char *line, int paramnum) { int bg, en; if (param_getptr(line, &bg, &en, paramnum)) return 0; return en - bg + 1; } char param_getchar(const char *line, int paramnum) { return param_getchar_indx(line, 0, paramnum); } char param_getchar_indx(const char *line, int indx, int paramnum) { int bg, en; if (param_getptr(line, &bg, &en, paramnum)) return 0x00; if (bg + indx > en) return '\0'; return line[bg + indx]; } uint8_t param_get8(const char *line, int paramnum) { return param_get8ex(line, paramnum, 0, 10); } /** * @brief Reads a decimal integer (actually, 0-254, not 255) * @param line * @param paramnum * @return -1 if error */ uint8_t param_getdec(const char *line, int paramnum, uint8_t *destination) { uint8_t val = param_get8ex(line, paramnum, 255, 10); if ((int8_t) val == -1) return 1; (*destination) = val; return 0; } /** * @brief Checks if param is decimal * @param line * @param paramnum * @return */ uint8_t param_isdec(const char *line, int paramnum) { int bg, en; //TODO, check more thorougly if (!param_getptr(line, &bg, &en, paramnum)) return 1; // return strtoul(&line[bg], NULL, 10) & 0xff; return 0; } uint8_t param_get8ex(const char *line, int paramnum, int deflt, int base) { int bg, en; if (!param_getptr(line, &bg, &en, paramnum)) return strtoul(&line[bg], NULL, base) & 0xff; else return deflt; } uint32_t param_get32ex(const char *line, int paramnum, int deflt, int base) { int bg, en; if (!param_getptr(line, &bg, &en, paramnum)) return strtoul(&line[bg], NULL, base); else return deflt; } uint64_t param_get64ex(const char *line, int paramnum, int deflt, int base) { int bg, en; if (!param_getptr(line, &bg, &en, paramnum)) return strtoull(&line[bg], NULL, base); else return deflt; } int param_gethex(const char *line, int paramnum, uint8_t *data, int hexcnt) { int bg, en, i; uint32_t temp; if (hexcnt & 1) return 1; if (param_getptr(line, &bg, &en, paramnum)) return 1; if (en - bg + 1 != hexcnt) return 1; for (i = 0; i < hexcnt; i += 2) { if (!(isxdigit(line[bg + i]) && isxdigit(line[bg + i + 1]))) return 1; sscanf((char[]) {line[bg + i], line[bg + i + 1], 0}, "%X", &temp); data[i / 2] = temp & 0xff; } return 0; } int param_gethex_ex(const char *line, int paramnum, uint8_t *data, int *hexcnt) { int bg, en, i; uint32_t temp; if (param_getptr(line, &bg, &en, paramnum)) return 1; *hexcnt = en - bg + 1; if (*hexcnt % 2) //error if not complete hex bytes return 1; for (i = 0; i < *hexcnt; i += 2) { if (!(isxdigit(line[bg + i]) && isxdigit(line[bg + i + 1]))) return 1; sscanf((char[]) {line[bg + i], line[bg + i + 1], 0}, "%X", &temp); data[i / 2] = temp & 0xff; } return 0; } int param_gethex_to_eol(const char *line, int paramnum, uint8_t *data, int maxdatalen, int *datalen) { int bg, en; uint32_t temp; char buf[5] = {0}; if (param_getptr(line, &bg, &en, paramnum)) return 1; *datalen = 0; int indx = bg; while (line[indx]) { if (line[indx] == '\t' || line[indx] == ' ') { indx++; continue; } if (isxdigit(line[indx])) { buf[strlen(buf) + 1] = 0x00; buf[strlen(buf)] = line[indx]; } else { // if we have symbols other than spaces and hex return 1; } if (*datalen >= maxdatalen) { // if we dont have space in buffer and have symbols to translate return 2; } if (strlen(buf) >= 2) { sscanf(buf, "%x", &temp); data[*datalen] = (uint8_t)(temp & 0xff); *buf = 0; (*datalen)++; } indx++; } if (strlen(buf) > 0) //error when not completed hex bytes return 3; return 0; } int param_getstr(const char *line, int paramnum, char *str, size_t buffersize) { int bg, en; if (param_getptr(line, &bg, &en, paramnum)) { return 0; } // Prevent out of bounds errors if (en - bg + 1 >= buffersize) { printf("out of bounds error: want %d bytes have %zu bytes\n", en - bg + 1 + 1, buffersize); return 0; } memcpy(str, line + bg, en - bg + 1); str[en - bg + 1] = 0; return en - bg + 1; } /* The following methods comes from Rfidler sourcecode. https://github.com/ApertureLabsLtd/RFIDler/blob/master/firmware/Pic32/RFIDler.X/src/ */ // convert hex to sequence of 0/1 bit values // returns number of bits converted int hextobinarray(char *target, char *source) { int length, i, count = 0; char *start = source; length = strlen(source); // process 4 bits (1 hex digit) at a time while (length--) { char x = *(source++); // capitalize if (x >= 'a' && x <= 'f') x -= 32; // convert to numeric value if (x >= '0' && x <= '9') x -= '0'; else if (x >= 'A' && x <= 'F') x -= 'A' - 10; else { printf("Discovered unknown character %c %d at idx %d of %s\n", x, x, (int16_t)(source - start), start); return 0; } // output for (i = 0 ; i < 4 ; ++i, ++count) *(target++) = (x >> (3 - i)) & 1; } return count; } // convert hex to human readable binary string int hextobinstring(char *target, char *source) { int length; if (!(length = hextobinarray(target, source))) return 0; binarraytobinstring(target, target, length); return length; } // convert binary array of 0x00/0x01 values to hex // return number of bits converted int binarraytohex(char *target, const size_t targetlen, char *source, size_t srclen) { uint8_t i = 0, x = 0; uint32_t t = 0; // written target chars uint32_t r = 0; // consumed bits uint8_t w = 0; // wrong bits separator printed for (size_t s = 0 ; s < srclen; s++) { if ((source[s] == 0) || (source[s] == 1)) { w = 0; x += (source[s] << (3 - i)); i++; if (i == 4) { if (t >= targetlen - 2) return r; sprintf(target + t, "%X", x); t++; r += 4; x = 0; i = 0; } } else { if (i > 0) { if (t >= targetlen - 5) return r; w = 0; sprintf(target + t, "%X[%i]", x, i); t += 4; r += i; x = 0; i = 0; } if (w == 0) { if (t >= targetlen - 2) return r; sprintf(target + t, " "); t++; } r++; } } return r; } // convert binary array to human readable binary void binarraytobinstring(char *target, char *source, int length) { int i; for (i = 0 ; i < length ; ++i) *(target++) = *(source++) + '0'; *target = '\0'; } // return parity bit required to match type uint8_t GetParity(uint8_t *bits, uint8_t type, int length) { int x; for (x = 0 ; length > 0 ; --length) x += bits[length - 1]; x %= 2; return x ^ type; } // add HID parity to binary array: EVEN prefix for 1st half of ID, ODD suffix for 2nd half void wiegand_add_parity(uint8_t *target, uint8_t *source, uint8_t length) { *(target++) = GetParity(source, EVEN, length / 2); memcpy(target, source, length); target += length; *(target) = GetParity(source + length / 2, ODD, length / 2); } // add HID parity to binary array: ODD prefix for 1st half of ID, EVEN suffix for 2nd half void wiegand_add_parity_swapped(uint8_t *target, uint8_t *source, uint8_t length) { *(target++) = GetParity(source, ODD, length / 2); memcpy(target, source, length); target += length; *(target) = GetParity(source + length / 2, EVEN, length / 2); } // xor two arrays together for len items. The dst array contains the new xored values. void xor(unsigned char *dst, unsigned char *src, size_t len) { for (; len > 0; len--, dst++, src++) *dst ^= *src; } int32_t le24toh(uint8_t data[3]) { return (data[2] << 16) | (data[1] << 8) | data[0]; } // Pack a bitarray into a uint32_t. uint32_t PackBits(uint8_t start, uint8_t len, uint8_t *bits) { if (len > 32) return 0; int i = start; int j = len - 1; uint32_t tmp = 0; for (; j >= 0; --j, ++i) tmp |= bits[i] << j; return tmp; } // RotateLeft - Ultralight, Desfire, works on byte level // 00-01-02 >> 01-02-00 void rol(uint8_t *data, const size_t len) { uint8_t first = data[0]; for (size_t i = 0; i < len - 1; i++) { data[i] = data[i + 1]; } data[len - 1] = first; } /* uint8_t pw_rev_A(uint8_t b) { b = (b & 0xF0) >> 4 | (b & 0x0F) << 4; b = (b & 0xCC) >> 2 | (b & 0x33) << 2; b = (b & 0xAA) >> 1 | (b & 0x55) << 1; return b; } */ uint8_t reflect8(uint8_t b) { return ((b * 0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32; } uint16_t reflect16(uint16_t b) { uint16_t v = 0; v |= (b & 0x8000) >> 15; v |= (b & 0x4000) >> 13; v |= (b & 0x2000) >> 11; v |= (b & 0x1000) >> 9; v |= (b & 0x0800) >> 7; v |= (b & 0x0400) >> 5; v |= (b & 0x0200) >> 3; v |= (b & 0x0100) >> 1; v |= (b & 0x0080) << 1; v |= (b & 0x0040) << 3; v |= (b & 0x0020) << 5; v |= (b & 0x0010) << 7; v |= (b & 0x0008) << 9; v |= (b & 0x0004) << 11; v |= (b & 0x0002) << 13; v |= (b & 0x0001) << 15; return v; } /* ref http://www.csm.ornl.gov/~dunigan/crc.html Returns the value v with the bottom b [0,32] bits reflected. Example: reflect(0x3e23L,3) == 0x3e26 */ uint32_t reflect(uint32_t v, int b) { uint32_t t = v; for (int i = 0; i < b; ++i) { if (t & 1) v |= BITMASK((b - 1) - i); else v &= ~BITMASK((b - 1) - i); t >>= 1; } return v; } uint64_t HornerScheme(uint64_t num, uint64_t divider, uint64_t factor) { uint64_t remaind = 0, quotient = 0, result = 0; remaind = num % divider; quotient = num / divider; if (!(quotient == 0 && remaind == 0)) result += HornerScheme(quotient, divider, factor) * factor + remaind; return result; } // determine number of logical CPU cores (use for multithreaded functions) extern int num_CPUs(void) { #if defined(_WIN32) #include SYSTEM_INFO sysinfo; GetSystemInfo(&sysinfo); return sysinfo.dwNumberOfProcessors; #elif defined(__linux__) || defined(__APPLE__) #include return sysconf(_SC_NPROCESSORS_ONLN); #else return 1; #endif } extern void str_lower(char *s) { for (int i = 0; i < strlen(s); i++) s[i] = tolower(s[i]); } extern bool str_startswith(const char *s, const char *pre) { return strncmp(pre, s, strlen(pre)) == 0; } // Replace unprintable characters with a dot in char buffer extern void clean_ascii(unsigned char *buf, size_t len) { for (size_t i = 0; i < len; i++) { if (!isprint(buf[i])) buf[i] = '.'; } } // replace \r \n to \0 extern void strcleanrn(char *buf, size_t len) { strcreplace(buf, len, '\n', '\0'); strcreplace(buf, len, '\r', '\0'); } // replace char in buffer extern void strcreplace(char *buf, size_t len, char from, char to) { for (size_t i = 0; i < len; i++) { if (buf[i] == from) buf[i] = to; } } extern char *strmcopy(char *buf) { char *str = (char *) calloc(strlen(buf) + 1, sizeof(uint8_t)); if (str != NULL) { memset(str, 0, strlen(buf) + 1); strcpy(str, buf); } return str; }