//----------------------------------------------------------------------------- // Copyright (C) 2016 iceman // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Analyse bytes commands //----------------------------------------------------------------------------- #include "cmdanalyse.h" #include "nonce2key/nonce2key.h" static int CmdHelp(const char *Cmd); int usage_analyse_lcr(void) { PrintAndLog("Specifying the bytes of a UID with a known LRC will find the last byte value"); PrintAndLog("needed to generate that LRC with a rolling XOR. All bytes should be specified in HEX."); PrintAndLog(""); PrintAndLog("Usage: analyse lcr [h] "); PrintAndLog("Options:"); PrintAndLog(" h This help"); PrintAndLog(" bytes to calc missing XOR in a LCR"); PrintAndLog(""); PrintAndLog("Samples:"); PrintAndLog(" analyse lcr 04008064BA"); PrintAndLog("expected output: Target (BA) requires final LRC XOR byte value: 5A"); return 0; } int usage_analyse_checksum(void) { PrintAndLog("The bytes will be added with eachother and than limited with the applied mask"); PrintAndLog("Finally compute ones' complement of the least significant bytes"); PrintAndLog(""); PrintAndLog("Usage: analyse chksum [h] [v] b m "); PrintAndLog("Options:"); PrintAndLog(" h This help"); PrintAndLog(" v supress header"); PrintAndLog(" b bytes to calc missing XOR in a LCR"); PrintAndLog(" m bit mask to limit the outpuyt"); PrintAndLog(""); PrintAndLog("Samples:"); PrintAndLog(" analyse chksum b 137AF00A0A0D m FF"); PrintAndLog("expected output: 0x61"); return 0; } int usage_analyse_crc(void){ PrintAndLog("A stub method to test different crc implementations inside the PM3 sourcecode. Just because you figured out the poly, doesn't mean you get the desired output"); PrintAndLog(""); PrintAndLog("Usage: analyse crc [h] "); PrintAndLog("Options:"); PrintAndLog(" h This help"); PrintAndLog(" bytes to calc crc"); PrintAndLog(""); PrintAndLog("Samples:"); PrintAndLog(" analyse crc 137AF00A0A0D"); return 0; } int usage_analyse_hid(void){ PrintAndLog("Permute function from 'heart of darkness' paper."); PrintAndLog(""); PrintAndLog("Usage: analyse hid [h] "); PrintAndLog("Options:"); PrintAndLog(" h This help"); PrintAndLog(" r reverse permuted key"); PrintAndLog(" f permute key"); PrintAndLog(" input bytes"); PrintAndLog(""); PrintAndLog("Samples:"); PrintAndLog(" analyse hid r 0123456789abcdef"); return 0; } int usage_analyse_nuid(void){ PrintAndLog("Generate 4byte NUID from 7byte UID"); PrintAndLog(""); PrintAndLog("Usage: analyse hid [h] "); PrintAndLog("Options:"); PrintAndLog(" h This help"); PrintAndLog(" input bytes (14 hexsymbols)"); PrintAndLog(""); PrintAndLog("Samples:"); PrintAndLog(" analyse nuid 11223344556677"); return 0; } static uint8_t calculateLRC( uint8_t* bytes, uint8_t len) { uint8_t LRC = 0; for (uint8_t i = 0; i < len; i++) LRC ^= bytes[i]; return LRC; } static uint16_t calcSumCrumbAdd( uint8_t* bytes, uint8_t len, uint32_t mask) { uint8_t sum = 0; for (uint8_t i = 0; i < len; i++) { sum += CRUMB(bytes[i], 0); sum += CRUMB(bytes[i], 2); sum += CRUMB(bytes[i], 4); sum += CRUMB(bytes[i], 6); } sum &= mask; return sum; } static uint16_t calcSumCrumbAddOnes( uint8_t* bytes, uint8_t len, uint32_t mask) { return (~calcSumCrumbAdd(bytes, len, mask) & mask); } static uint16_t calcSumNibbleAdd( uint8_t* bytes, uint8_t len, uint32_t mask) { uint8_t sum = 0; for (uint8_t i = 0; i < len; i++) { sum += NIBBLE_LOW(bytes[i]); sum += NIBBLE_HIGH(bytes[i]); } sum &= mask; return sum; } static uint16_t calcSumNibbleAddOnes( uint8_t* bytes, uint8_t len, uint32_t mask){ return (~calcSumNibbleAdd(bytes, len, mask) & mask); } static uint16_t calcSumCrumbXor( uint8_t* bytes, uint8_t len, uint32_t mask) { uint8_t sum = 0; for (uint8_t i = 0; i < len; i++) { sum ^= CRUMB(bytes[i], 0); sum ^= CRUMB(bytes[i], 2); sum ^= CRUMB(bytes[i], 4); sum ^= CRUMB(bytes[i], 6); } sum &= mask; return sum; } static uint16_t calcSumNibbleXor( uint8_t* bytes, uint8_t len, uint32_t mask) { uint8_t sum = 0; for (uint8_t i = 0; i < len; i++) { sum ^= NIBBLE_LOW(bytes[i]); sum ^= NIBBLE_HIGH(bytes[i]); } sum &= mask; return sum; } static uint16_t calcSumByteXor( uint8_t* bytes, uint8_t len, uint32_t mask) { uint8_t sum = 0; for (uint8_t i = 0; i < len; i++) sum ^= bytes[i]; sum &= mask; return sum; } static uint16_t calcSumByteAdd( uint8_t* bytes, uint8_t len, uint32_t mask) { uint8_t sum = 0; for (uint8_t i = 0; i < len; i++) sum += bytes[i]; sum &= mask; return sum; } // Ones complement static uint16_t calcSumByteAddOnes( uint8_t* bytes, uint8_t len, uint32_t mask) { return (~calcSumByteAdd(bytes, len, mask) & mask); } static uint16_t calcSumByteSub( uint8_t* bytes, uint8_t len, uint32_t mask) { uint8_t sum = 0; for (uint8_t i = 0; i < len; i++) sum -= bytes[i]; sum &= mask; return sum; } static uint16_t calcSumByteSubOnes( uint8_t* bytes, uint8_t len, uint32_t mask){ return (~calcSumByteSub(bytes, len, mask) & mask); } static uint16_t calcSumNibbleSub( uint8_t* bytes, uint8_t len, uint32_t mask) { uint8_t sum = 0; for (uint8_t i = 0; i < len; i++) { sum -= NIBBLE_LOW(bytes[i]); sum -= NIBBLE_HIGH(bytes[i]); } sum &= mask; return sum; } static uint16_t calcSumNibbleSubOnes( uint8_t* bytes, uint8_t len, uint32_t mask) { return (~calcSumNibbleSub(bytes, len, mask) & mask); } // BSD shift checksum 8bit version static uint16_t calcBSDchecksum8( uint8_t* bytes, uint8_t len, uint32_t mask){ uint16_t sum = 0; for(uint8_t i = 0; i < len; i++){ sum = ((sum & 0xFF) >> 1) | ((sum & 0x1) << 7); // rotate accumulator sum += bytes[i]; // add next byte sum &= 0xFF; // } sum &= mask; return sum; } // BSD shift checksum 4bit version static uint16_t calcBSDchecksum4( uint8_t* bytes, uint8_t len, uint32_t mask){ uint16_t sum = 0; for(uint8_t i = 0; i < len; i++){ sum = ((sum & 0xF) >> 1) | ((sum & 0x1) << 3); // rotate accumulator sum += NIBBLE_HIGH(bytes[i]); // add high nibble sum &= 0xF; // sum = ((sum & 0xF) >> 1) | ((sum & 0x1) << 3); // rotate accumulator sum += NIBBLE_LOW(bytes[i]); // add low nibble sum &= 0xF; // } sum &= mask; return sum; } // measuring LFSR maximum length int CmdAnalyseLfsr(const char *Cmd){ uint16_t start_state = 0; /* Any nonzero start state will work. */ uint16_t lfsr = start_state; //uint32_t period = 0; uint8_t iv = param_get8ex(Cmd, 0, 0, 16); uint8_t find = param_get8ex(Cmd, 1, 0, 16); printf("LEGIC LFSR IV 0x%02X: \n", iv); printf(" bit# | lfsr | ^0x40 | 0x%02X ^ lfsr \n",find); for (uint8_t i = 0x01; i < 0x30; i += 1) { //period = 0; legic_prng_init(iv); legic_prng_forward(i); lfsr = legic_prng_get_bits(12); printf(" %02X | %03X | %03X | %03X \n",i, lfsr, 0x40 ^ lfsr, find ^ lfsr); } return 0; } int CmdAnalyseLCR(const char *Cmd) { uint8_t data[50]; char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) == 0|| cmdp == 'h' || cmdp == 'H') return usage_analyse_lcr(); int len = 0; param_gethex_ex(Cmd, 0, data, &len); if ( len%2 ) return usage_analyse_lcr(); len >>= 1; uint8_t finalXor = calculateLRC(data, len); PrintAndLog("Target [%02X] requires final LRC XOR byte value: 0x%02X",data[len-1] ,finalXor); return 0; } int CmdAnalyseCRC(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) == 0 || cmdp == 'h' || cmdp == 'H') return usage_analyse_crc(); int len = strlen(Cmd); if ( len & 1 ) return usage_analyse_crc(); // add 1 for null terminator. uint8_t *data = malloc(len+1); if ( data == NULL ) return 1; if ( param_gethex(Cmd, 0, data, len)) { free(data); return usage_analyse_crc(); } len >>= 1; //PrintAndLog("\nTests with '%s' hex bytes", sprint_hex(data, len)); PrintAndLog("\nTests of reflection. Two current methods in source code"); PrintAndLog(" reflect(0x3e23L,3) is %04X == 0x3e26", reflect(0x3e23L,3) ); PrintAndLog(" SwapBits(0x3e23L,3) is %04X == 0x3e26", SwapBits(0x3e23L,3) ); PrintAndLog(" 0xB400 == %04X", reflect( (1 << 16 | 0xb400),16) ); // // Test of CRC16, '123456789' string. // PrintAndLog("\nTests with '123456789' string"); uint8_t dataStr[] = { 0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39 }; uint8_t legic8 = CRC8Legic(dataStr, sizeof(dataStr)); PrintAndLog("LEGIC: CRC16: %X", CRC16Legic(dataStr, sizeof(dataStr), legic8)); //these below has been tested OK. PrintAndLog("Confirmed CRC Implementations"); PrintAndLog("LEGIC: CRC8 : %X (0xC6 expected)", legic8); PrintAndLog("MAXIM: CRC8 : %X (0xA1 expected)", CRC8Maxim(dataStr, sizeof(dataStr))); PrintAndLog("DNP : CRC16: %X (0x82EA expected)", CRC16_DNP(dataStr, sizeof(dataStr))); PrintAndLog("CCITT: CRC16: %X (0xE5CC expected)", CRC16_CCITT(dataStr, sizeof(dataStr))); PrintAndLog("ICLASS org: CRC16: %X (0x expected)",iclass_crc16( (char*)dataStr, sizeof(dataStr))); PrintAndLog("ICLASS ice: CRC16: %X (0x expected)",CRC16_ICLASS(dataStr, sizeof(dataStr))); uint8_t dataStr1234[] = { 0x1,0x2,0x3,0x4}; PrintAndLog("ISO15693 org: : CRC16: %X (0xF0B8 expected)", Iso15693Crc(dataStr1234, sizeof(dataStr1234))); PrintAndLog("ISO15693 ice: : CRC16: %X (0xF0B8 expected)", CRC16_Iso15693(dataStr1234, sizeof(dataStr1234))); free(data); return 0; } int CmdAnalyseCHKSUM(const char *Cmd){ uint8_t data[50]; uint8_t cmdp = 0; uint32_t mask = 0xFFFF; bool errors = false; bool useHeader = false; int len = 0; memset(data, 0x0, sizeof(data)); while(param_getchar(Cmd, cmdp) != 0x00) { switch(param_getchar(Cmd, cmdp)) { case 'b': case 'B': param_gethex_ex(Cmd, cmdp+1, data, &len); if ( len%2 ) errors = true; len >>= 1; cmdp += 2; break; case 'm': case 'M': mask = param_get32ex(Cmd, cmdp+1, 0, 16); cmdp += 2; break; case 'v': case 'V': useHeader = true; cmdp++; break; case 'h': case 'H': return usage_analyse_checksum(); default: PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } if(errors) break; } //Validations if(errors) return usage_analyse_checksum(); if (useHeader) { PrintAndLog(" add | sub | add 1's compl | sub 1's compl | xor"); PrintAndLog("byte nibble crumb | byte nibble | byte nibble cumb | byte nibble | byte nibble cumb | BSD |"); PrintAndLog("------------------+-------------+------------------+-----------------+--------------------"); } PrintAndLog("0x%X 0x%X 0x%X | 0x%X 0x%X | 0x%X 0x%X 0x%X | 0x%X 0x%X | 0x%X 0x%X 0x%X | 0x%X 0x%X |\n", calcSumByteAdd(data, len, mask) , calcSumNibbleAdd(data, len, mask) , calcSumCrumbAdd(data, len, mask) , calcSumByteSub(data, len, mask) , calcSumNibbleSub(data, len, mask) , calcSumByteAddOnes(data, len, mask) , calcSumNibbleAddOnes(data, len, mask) , calcSumCrumbAddOnes(data, len, mask) , calcSumByteSubOnes(data, len, mask) , calcSumNibbleSubOnes(data, len, mask) , calcSumByteXor(data, len, mask) , calcSumNibbleXor(data, len, mask) , calcSumCrumbXor(data, len, mask) , calcBSDchecksum8(data, len, mask) , calcBSDchecksum4(data, len, mask) ); return 0; } int CmdAnalyseDates(const char *Cmd){ // look for datestamps in a given array of bytes PrintAndLog("To be implemented. Feel free to contribute!"); return 0; } int CmdAnalyseTEASelfTest(const char *Cmd){ uint8_t v[8], v_le[8]; memset(v, 0x00, sizeof(v)); memset(v_le, 0x00, sizeof(v_le)); uint8_t* v_ptr = v_le; uint8_t cmdlen = strlen(Cmd); cmdlen = ( sizeof(v)<<2 < cmdlen ) ? sizeof(v)<<2 : cmdlen; if ( param_gethex(Cmd, 0, v, cmdlen) > 0 ){ PrintAndLog("can't read hex chars, uneven? :: %u", cmdlen); return 1; } SwapEndian64ex(v , 8, 4, v_ptr); // ENCRYPTION KEY: uint8_t key[16] = {0x55,0xFE,0xF6,0x30,0x62,0xBF,0x0B,0xC1,0xC9,0xB3,0x7C,0x34,0x97,0x3E,0x29,0xFB }; uint8_t keyle[16]; uint8_t* key_ptr = keyle; SwapEndian64ex(key , sizeof(key), 4, key_ptr); PrintAndLog("TEST LE enc| %s", sprint_hex(v_ptr, 8)); tea_decrypt(v_ptr, key_ptr); PrintAndLog("TEST LE dec | %s", sprint_hex_ascii(v_ptr, 8)); tea_encrypt(v_ptr, key_ptr); tea_encrypt(v_ptr, key_ptr); PrintAndLog("TEST enc2 | %s", sprint_hex_ascii(v_ptr, 8)); return 0; } int CmdAnalyseA(const char *Cmd){ /* piwi // uid(2e086b1a) nt(230736f6) ks(0b0008000804000e) nr(000000000) // uid(2e086b1a) nt(230736f6) ks(0e0b0e0b090c0d02) nr(000000001) // uid(2e086b1a) nt(230736f6) ks(0e05060e01080b08) nr(000000002) uint64_t d1[] = {0x2e086b1a, 0x230736f6, 0x0000001, 0x0e0b0e0b090c0d02}; uint64_t d2[] = {0x2e086b1a, 0x230736f6, 0x0000002, 0x0e05060e01080b08}; // uid(17758822) nt(c0c69e59) ks(080105020705040e) nr(00000001) // uid(17758822) nt(c0c69e59) ks(01070a05050c0705) nr(00000002) uint64_t d1[] = {0x17758822, 0xc0c69e59, 0x0000001, 0x080105020705040e}; uint64_t d2[] = {0x17758822, 0xc0c69e59, 0x0000002, 0x01070a05050c0705}; // uid(6e442129) nt(8f699195) ks(090d0b0305020f02) nr(00000001) // uid(6e442129) nt(8f699195) ks(03030508030b0c0e) nr(00000002) // uid(6e442129) nt(8f699195) ks(02010f030c0d050d) nr(00000003) // uid(6e442129) nt(8f699195) ks(00040f0f0305030e) nr(00000004) uint64_t d1[] = {0x6e442129, 0x8f699195, 0x0000001, 0x090d0b0305020f02}; uint64_t d2[] = {0x6e442129, 0x8f699195, 0x0000004, 0x00040f0f0305030e}; uid(3e172b29) nt(039b7bd2) ks(0c0e0f0505080800) nr(00000001) uid(3e172b29) nt(039b7bd2) ks(0e06090d03000b0f) nr(00000002) */ uint64_t key = 0; uint64_t d1[] = {0x3e172b29, 0x039b7bd2, 0x0000001, 0x0c0e0f0505080800}; uint64_t d2[] = {0x3e172b29, 0x039b7bd2, 0x0000002, 0x0e06090d03000b0f}; nonce2key_ex(0, 0 , d1[0], d1[1], d1[2], d1[3], &key); nonce2key_ex(0, 0 , d2[0], d2[1], d2[2], d2[3], &key); return 0; } static void permute(uint8_t *data, uint8_t len, uint8_t *output){ #define KEY_SIZE 8 if ( len > KEY_SIZE ) { for(uint8_t m = 0; m < len; m += KEY_SIZE){ permute(data+m, KEY_SIZE, output+m); } return; } if ( len != KEY_SIZE ) { printf("wrong key size\n"); return; } uint8_t i,j,p, mask; for( i=0; i < KEY_SIZE; ++i){ p = 0; mask = 0x80 >> i; for( j=0; j < KEY_SIZE; ++j){ p >>= 1; if (data[j] & mask) p |= 0x80; } output[i] = p; } } static void permute_rev(uint8_t *data, uint8_t len, uint8_t *output){ permute(data, len, output); permute(output, len, data); permute(data, len, output); } static void simple_crc(uint8_t *data, uint8_t len, uint8_t *output){ uint8_t crc = 0; for( uint8_t i=0; i < len; ++i){ // seventh byte contains the crc. if ( (i & 0x7) == 0x7 ) { output[i] = crc ^ 0xFF; crc = 0; } else { output[i] = data[i]; crc ^= data[i]; } } } // DES doesn't use the MSB. static void shave(uint8_t *data, uint8_t len){ for (uint8_t i=0; i>= 1; memcpy(key, data, 8); if ( isReverse ) { generate_rev(data, len); permutekey_rev(key, key_std_format); printf(" holiman iclass key | %s \n", sprint_hex(key_std_format, 8)); } else { generate(data, len); permutekey(key, key_iclass_format); printf(" holiman std key | %s \n", sprint_hex(key_iclass_format, 8)); } return 0; } void generate4bNUID(uint8_t *uid, uint8_t *nuid){ uint16_t crc; uint8_t first, second; ComputeCrc14443(CRC_14443_A, uid, 3, &first, &second); nuid[0] |= (second & 0xE0) | 0xF; nuid[1] = first; crc = first; crc |= second << 8; UpdateCrc14443(uid[3], &crc); UpdateCrc14443(uid[4], &crc); UpdateCrc14443(uid[5], &crc); UpdateCrc14443(uid[6], &crc); nuid[2] = (crc >> 8) & 0xFF ; nuid[3] = crc & 0xFF; } int CmdAnalyseNuid(const char *Cmd){ uint8_t nuid[4] = {0}; uint8_t uid[7] = {0}; int len = 0; char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) == 0|| cmdp == 'h' || cmdp == 'H') return usage_analyse_nuid(); /* selftest UID 040D681AB52281 -> NUID 8F430FEF */ if (cmdp == 't' || cmdp == 'T') { memcpy(uid, "\x04\x0d\x68\x1a\xb5\x22\x81", 7); generate4bNUID(uid, nuid); if ( 0 == memcmp(nuid, "\x8f\x43\x0f\xef", 4)) printf("Selftest OK\n"); else printf("Selftest Failed\n"); return 0; } param_gethex_ex(Cmd, 0, uid, &len); if ( len%2 || len != 14) return usage_analyse_nuid(); generate4bNUID(uid, nuid); printf("UID | %s \n", sprint_hex(uid, 7)); printf("NUID | %s \n", sprint_hex(nuid, 4)); return 0; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"lcr", CmdAnalyseLCR, 1, "Generate final byte for XOR LRC"}, {"crc", CmdAnalyseCRC, 1, "Stub method for CRC evaluations"}, {"chksum", CmdAnalyseCHKSUM, 1, "Checksum with adding, masking and one's complement"}, {"dates", CmdAnalyseDates, 1, "Look for datestamps in a given array of bytes"}, {"tea", CmdAnalyseTEASelfTest, 1, "Crypto TEA test"}, {"lfsr", CmdAnalyseLfsr, 1, "LFSR tests"}, {"a", CmdAnalyseA, 1, "num bits test"}, {"hid", CmdAnalyseHid, 1, "Permute function from 'heart of darkness' paper"}, {"nuid", CmdAnalyseNuid, 1, "create NUID from 7byte UID"}, {NULL, NULL, 0, NULL} }; int CmdAnalyse(const char *Cmd) { clearCommandBuffer(); CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }