//----------------------------------------------------------------------------- // Jonathan Westhues, split Nov 2006 // Modified by Greg Jones, Jan 2009 // Modified by Adrian Dabrowski "atrox", Mar-Sept 2010,Oct 2011 // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Routines to support ISO 15693. This includes both the reader software and // the `fake tag' modes, but at the moment I've implemented only the reader // stuff, and that barely. // Modified to perform modulation onboard in arm rather than on PC // Also added additional reader commands (SELECT, READ etc.) //----------------------------------------------------------------------------- // The ISO 15693 describes two transmission modes from reader to tag, and 4 // transmission modes from tag to reader. As of Mar 2010 this code only // supports one of each: "1of4" mode from reader to tag, and the highspeed // variant with one subcarrier from card to reader. // As long, as the card fully support ISO 15693 this is no problem, since the // reader chooses both data rates, but some non-standard tags do not. Further for // the simulation to work, we will need to support all data rates. // // VCD (reader) -> VICC (tag) // 1 out of 256: // data rate: 1,66 kbit/s (fc/8192) // used for long range // 1 out of 4: // data rate: 26,48 kbit/s (fc/512) // used for short range, high speed // // VICC (tag) -> VCD (reader) // Modulation: // ASK / one subcarrier (423,75 khz) // FSK / two subcarriers (423,75 khz && 484,28 khz) // Data Rates / Modes: // low ASK: 6,62 kbit/s // low FSK: 6.67 kbit/s // high ASK: 26,48 kbit/s // high FSK: 26,69 kbit/s //----------------------------------------------------------------------------- // added "1 out of 256" mode (for VCD->PICC) - atrox 20100911 // Random Remarks: // *) UID is always used "transmission order" (LSB), which is reverse to display order // TODO / BUGS / ISSUES: // *) writing to tags takes longer: we miss the answer from the tag in most cases // -> tweak the read-timeout times // *) signal decoding from the card is still a bit shaky. // *) signal decoding is unable to detect collissions. // *) add anti-collission support for inventory-commands // *) read security status of a block // *) sniffing and simulation do only support one transmission mode. need to support // all 8 transmission combinations // *) remove or refactor code under "depricated" // *) document all the functions #include "proxmark3.h" #include "util.h" #include "apps.h" #include "string.h" #include "iso15693tools.h" #include "cmd.h" #define arraylen(x) (sizeof(x)/sizeof((x)[0])) /////////////////////////////////////////////////////////////////////// // ISO 15693 Part 2 - Air Interface // This section basicly contains transmission and receiving of bits /////////////////////////////////////////////////////////////////////// #define FrameSOF Iso15693FrameSOF #define Logic0 Iso15693Logic0 #define Logic1 Iso15693Logic1 #define FrameEOF Iso15693FrameEOF #define Crc(data,datalen) Iso15693Crc(data,datalen) #define AddCrc(data,datalen) Iso15693AddCrc(data,datalen) #define sprintUID(target,uid) Iso15693sprintUID(target,uid) int DEBUG=0; // --------------------------- // Signal Processing // --------------------------- // prepare data using "1 out of 4" code for later transmission // resulting data rate is 26,48 kbit/s (fc/512) // cmd ... data // n ... length of data static void CodeIso15693AsReader(uint8_t *cmd, int n) { int i, j; ToSendReset(); // Give it a bit of slack at the beginning for(i = 0; i < 24; i++) { ToSendStuffBit(1); } // SOF for 1of4 ToSendStuffBit(0); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(0); ToSendStuffBit(1); ToSendStuffBit(1); for(i = 0; i < n; i++) { for(j = 0; j < 8; j += 2) { int these = (cmd[i] >> j) & 3; switch(these) { case 0: ToSendStuffBit(1); ToSendStuffBit(0); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); break; case 1: ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(0); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); break; case 2: ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(0); ToSendStuffBit(1); ToSendStuffBit(1); break; case 3: ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(0); break; } } } // EOF ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(0); ToSendStuffBit(1); // And slack at the end, too. for(i = 0; i < 24; i++) { ToSendStuffBit(1); } } // encode data using "1 out of 256" sheme // data rate is 1,66 kbit/s (fc/8192) // is designed for more robust communication over longer distances static void CodeIso15693AsReader256(uint8_t *cmd, int n) { int i, j; ToSendReset(); // Give it a bit of slack at the beginning for(i = 0; i < 24; i++) { ToSendStuffBit(1); } // SOF for 1of256 ToSendStuffBit(0); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(0); for(i = 0; i < n; i++) { for (j = 0; j<=255; j++) { if (cmd[i]==j) { ToSendStuffBit(1); ToSendStuffBit(0); } else { ToSendStuffBit(1); ToSendStuffBit(1); } } } // EOF ToSendStuffBit(1); ToSendStuffBit(1); ToSendStuffBit(0); ToSendStuffBit(1); // And slack at the end, too. for(i = 0; i < 24; i++) { ToSendStuffBit(1); } } // Transmit the command (to the tag) that was placed in ToSend[]. static void TransmitTo15693Tag(const uint8_t *cmd, int len, int *samples, int *wait) { int c; // FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX); if(*wait < 10) { *wait = 10; } // for(c = 0; c < *wait;) { // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { // AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! // c++; // } // if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { // volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; // (void)r; // } // WDT_HIT(); // } c = 0; for(;;) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = cmd[c]; c++; if(c >= len) { break; } } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; (void)r; } WDT_HIT(); } *samples = (c + *wait) << 3; } //----------------------------------------------------------------------------- // Transmit the command (to the reader) that was placed in ToSend[]. //----------------------------------------------------------------------------- static void TransmitTo15693Reader(const uint8_t *cmd, int len, int *samples, int *wait) { int c; // FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR); // No requirement to energise my coils if(*wait < 10) { *wait = 10; } c = 0; for(;;) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = cmd[c]; c++; if(c >= len) { break; } } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; (void)r; } WDT_HIT(); } *samples = (c + *wait) << 3; } // Read from Tag // Parameters: // receivedResponse // maxLen // samples // elapsed // returns: // number of decoded bytes static int GetIso15693AnswerFromTag(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) { int c = 0; uint8_t *dest = (uint8_t *)BigBuf; int getNext = 0; int8_t prev = 0; // NOW READ RESPONSE FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); //spindelay(60); // greg - experiment to get rid of some of the 0 byte/failed reads c = 0; getNext = FALSE; for(;;) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = 0x43; } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { int8_t b; b = (int8_t)AT91C_BASE_SSC->SSC_RHR; // The samples are correlations against I and Q versions of the // tone that the tag AM-modulates, so every other sample is I, // every other is Q. We just want power, so abs(I) + abs(Q) is // close to what we want. if(getNext) { int8_t r; if(b < 0) { r = -b; } else { r = b; } if(prev < 0) { r -= prev; } else { r += prev; } dest[c++] = (uint8_t)r; if(c >= 2000) { break; } } else { prev = b; } getNext = !getNext; } } ////////////////////////////////////////// /////////// DEMODULATE /////////////////// ////////////////////////////////////////// int i, j; int max = 0, maxPos=0; int skip = 4; // if(GraphTraceLen < 1000) return; // THIS CHECKS FOR A BUFFER TO SMALL // First, correlate for SOF for(i = 0; i < 100; i++) { int corr = 0; for(j = 0; j < arraylen(FrameSOF); j += skip) { corr += FrameSOF[j]*dest[i+(j/skip)]; } if(corr > max) { max = corr; maxPos = i; } } // DbpString("SOF at %d, correlation %d", maxPos,max/(arraylen(FrameSOF)/skip)); int k = 0; // this will be our return value // greg - If correlation is less than 1 then there's little point in continuing if ((max/(arraylen(FrameSOF)/skip)) >= 1) { i = maxPos + arraylen(FrameSOF)/skip; uint8_t outBuf[20]; memset(outBuf, 0, sizeof(outBuf)); uint8_t mask = 0x01; for(;;) { int corr0 = 0, corr1 = 0, corrEOF = 0; for(j = 0; j < arraylen(Logic0); j += skip) { corr0 += Logic0[j]*dest[i+(j/skip)]; } for(j = 0; j < arraylen(Logic1); j += skip) { corr1 += Logic1[j]*dest[i+(j/skip)]; } for(j = 0; j < arraylen(FrameEOF); j += skip) { corrEOF += FrameEOF[j]*dest[i+(j/skip)]; } // Even things out by the length of the target waveform. corr0 *= 4; corr1 *= 4; if(corrEOF > corr1 && corrEOF > corr0) { // DbpString("EOF at %d", i); break; } else if(corr1 > corr0) { i += arraylen(Logic1)/skip; outBuf[k] |= mask; } else { i += arraylen(Logic0)/skip; } mask <<= 1; if(mask == 0) { k++; mask = 0x01; } if((i+(int)arraylen(FrameEOF)) >= 2000) { DbpString("ran off end!"); break; } } if(mask != 0x01) { // this happens, when we miss the EOF // TODO: for some reason this happens quite often if (DEBUG) Dbprintf("error, uneven octet! (extra bits!) mask=%02x", mask); if (mask<0x08) k--; // discard the last uneven octet; // 0x08 is an assumption - but works quite often } // uint8_t str1 [8]; // itoa(k,str1); // strncat(str1," octets read",8); // DbpString( str1); // DbpString("%d octets", k); // for(i = 0; i < k; i+=3) { // //DbpString("# %2d: %02x ", i, outBuf[i]); // DbpIntegers(outBuf[i],outBuf[i+1],outBuf[i+2]); // } for(i = 0; i < k; i++) { receivedResponse[i] = outBuf[i]; } } // "end if correlation > 0" (max/(arraylen(FrameSOF)/skip)) return k; // return the number of bytes demodulated /// DbpString("CRC=%04x", Iso15693Crc(outBuf, k-2)); } // Now the GetISO15693 message from sniffing command static int GetIso15693AnswerFromSniff(uint8_t *receivedResponse, int maxLen, int *samples, int *elapsed) { int c = 0; uint8_t *dest = (uint8_t *)BigBuf; int getNext = 0; int8_t prev = 0; // NOW READ RESPONSE FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); //spindelay(60); // greg - experiment to get rid of some of the 0 byte/failed reads c = 0; getNext = FALSE; for(;;) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = 0x43; } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { int8_t b; b = (int8_t)AT91C_BASE_SSC->SSC_RHR; // The samples are correlations against I and Q versions of the // tone that the tag AM-modulates, so every other sample is I, // every other is Q. We just want power, so abs(I) + abs(Q) is // close to what we want. if(getNext) { int8_t r; if(b < 0) { r = -b; } else { r = b; } if(prev < 0) { r -= prev; } else { r += prev; } dest[c++] = (uint8_t)r; if(c >= 20000) { break; } } else { prev = b; } getNext = !getNext; } } ////////////////////////////////////////// /////////// DEMODULATE /////////////////// ////////////////////////////////////////// int i, j; int max = 0, maxPos=0; int skip = 4; // if(GraphTraceLen < 1000) return; // THIS CHECKS FOR A BUFFER TO SMALL // First, correlate for SOF for(i = 0; i < 19000; i++) { int corr = 0; for(j = 0; j < arraylen(FrameSOF); j += skip) { corr += FrameSOF[j]*dest[i+(j/skip)]; } if(corr > max) { max = corr; maxPos = i; } } // DbpString("SOF at %d, correlation %d", maxPos,max/(arraylen(FrameSOF)/skip)); int k = 0; // this will be our return value // greg - If correlation is less than 1 then there's little point in continuing if ((max/(arraylen(FrameSOF)/skip)) >= 1) // THIS SHOULD BE 1 { i = maxPos + arraylen(FrameSOF)/skip; uint8_t outBuf[20]; memset(outBuf, 0, sizeof(outBuf)); uint8_t mask = 0x01; for(;;) { int corr0 = 0, corr1 = 0, corrEOF = 0; for(j = 0; j < arraylen(Logic0); j += skip) { corr0 += Logic0[j]*dest[i+(j/skip)]; } for(j = 0; j < arraylen(Logic1); j += skip) { corr1 += Logic1[j]*dest[i+(j/skip)]; } for(j = 0; j < arraylen(FrameEOF); j += skip) { corrEOF += FrameEOF[j]*dest[i+(j/skip)]; } // Even things out by the length of the target waveform. corr0 *= 4; corr1 *= 4; if(corrEOF > corr1 && corrEOF > corr0) { // DbpString("EOF at %d", i); break; } else if(corr1 > corr0) { i += arraylen(Logic1)/skip; outBuf[k] |= mask; } else { i += arraylen(Logic0)/skip; } mask <<= 1; if(mask == 0) { k++; mask = 0x01; } if((i+(int)arraylen(FrameEOF)) >= 2000) { DbpString("ran off end!"); break; } } if(mask != 0x01) { DbpString("sniff: error, uneven octet! (discard extra bits!)"); /// DbpString(" mask=%02x", mask); } // uint8_t str1 [8]; // itoa(k,str1); // strncat(str1," octets read",8); // DbpString( str1); // DbpString("%d octets", k); // for(i = 0; i < k; i+=3) { // //DbpString("# %2d: %02x ", i, outBuf[i]); // DbpIntegers(outBuf[i],outBuf[i+1],outBuf[i+2]); // } for(i = 0; i < k; i++) { receivedResponse[i] = outBuf[i]; } } // "end if correlation > 0" (max/(arraylen(FrameSOF)/skip)) return k; // return the number of bytes demodulated /// DbpString("CRC=%04x", Iso15693Crc(outBuf, k-2)); } static void BuildIdentifyRequest(void); //----------------------------------------------------------------------------- // Start to read an ISO 15693 tag. We send an identify request, then wait // for the response. The response is not demodulated, just left in the buffer // so that it can be downloaded to a PC and processed there. //----------------------------------------------------------------------------- void AcquireRawAdcSamplesIso15693(void) { int c = 0; uint8_t *dest = (uint8_t *)BigBuf; int getNext = 0; int8_t prev = 0; FpgaDownloadAndGo(FPGA_BITSTREAM_HF); BuildIdentifyRequest(); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); // Give the tags time to energize FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); SpinDelay(100); // Now send the command FpgaSetupSsc(); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_TX); c = 0; for(;;) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = ToSend[c]; c++; if(c == ToSendMax+3) { break; } } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { volatile uint32_t r = AT91C_BASE_SSC->SSC_RHR; (void)r; } WDT_HIT(); } FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); c = 0; getNext = FALSE; for(;;) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = 0x43; } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { int8_t b; b = (int8_t)AT91C_BASE_SSC->SSC_RHR; // The samples are correlations against I and Q versions of the // tone that the tag AM-modulates, so every other sample is I, // every other is Q. We just want power, so abs(I) + abs(Q) is // close to what we want. if(getNext) { int8_t r; if(b < 0) { r = -b; } else { r = b; } if(prev < 0) { r -= prev; } else { r += prev; } dest[c++] = (uint8_t)r; if(c >= 2000) { break; } } else { prev = b; } getNext = !getNext; } } } void RecordRawAdcSamplesIso15693(void) { int c = 0; uint8_t *dest = (uint8_t *)BigBuf; int getNext = 0; int8_t prev = 0; FpgaDownloadAndGo(FPGA_BITSTREAM_HF); // Setup SSC FpgaSetupSsc(); // Start from off (no field generated) FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(200); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); SpinDelay(100); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); c = 0; getNext = FALSE; for(;;) { if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = 0x43; } if(AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { int8_t b; b = (int8_t)AT91C_BASE_SSC->SSC_RHR; // The samples are correlations against I and Q versions of the // tone that the tag AM-modulates, so every other sample is I, // every other is Q. We just want power, so abs(I) + abs(Q) is // close to what we want. if(getNext) { int8_t r; if(b < 0) { r = -b; } else { r = b; } if(prev < 0) { r -= prev; } else { r += prev; } dest[c++] = (uint8_t)r; if(c >= 7000) { break; } } else { prev = b; } getNext = !getNext; WDT_HIT(); } } Dbprintf("fin record"); } // Initialize the proxmark as iso15k reader // (this might produces glitches that confuse some tags void Iso15693InitReader() { LED_A_ON(); LED_B_ON(); LED_C_OFF(); LED_D_OFF(); FpgaDownloadAndGo(FPGA_BITSTREAM_HF); // Setup SSC // FpgaSetupSsc(); // Start from off (no field generated) FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(10); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); FpgaSetupSsc(); // Give the tags time to energize FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); SpinDelay(250); LED_A_ON(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF(); } /////////////////////////////////////////////////////////////////////// // ISO 15693 Part 3 - Air Interface // This section basicly contains transmission and receiving of bits /////////////////////////////////////////////////////////////////////// // Encode (into the ToSend buffers) an identify request, which is the first // thing that you must send to a tag to get a response. static void BuildIdentifyRequest(void) { uint8_t cmd[5]; uint16_t crc; // one sub-carrier, inventory, 1 slot, fast rate // AFI is at bit 5 (1<<4) when doing an INVENTORY cmd[0] = (1 << 2) | (1 << 5) | (1 << 1); // inventory command code cmd[1] = 0x01; // no mask cmd[2] = 0x00; //Now the CRC crc = Crc(cmd, 3); cmd[3] = crc & 0xff; cmd[4] = crc >> 8; CodeIso15693AsReader(cmd, sizeof(cmd)); } // uid is in transmission order (which is reverse of display order) static void BuildReadBlockRequest(uint8_t *uid, uint8_t blockNumber ) { uint8_t cmd[13]; uint16_t crc; // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block // followed by teh block data // one sub-carrier, inventory, 1 slot, fast rate cmd[0] = (1 << 6)| (1 << 5) | (1 << 1); // no SELECT bit, ADDR bit, OPTION bit // READ BLOCK command code cmd[1] = 0x20; // UID may be optionally specified here // 64-bit UID cmd[2] = uid[0]; cmd[3] = uid[1]; cmd[4] = uid[2]; cmd[5] = uid[3]; cmd[6] = uid[4]; cmd[7] = uid[5]; cmd[8] = uid[6]; cmd[9] = uid[7]; // 0xe0; // always e0 (not exactly unique) // Block number to read cmd[10] = blockNumber;//0x00; //Now the CRC crc = Crc(cmd, 11); // the crc needs to be calculated over 12 bytes cmd[11] = crc & 0xff; cmd[12] = crc >> 8; CodeIso15693AsReader(cmd, sizeof(cmd)); } // Now the VICC>VCD responses when we are simulating a tag static void BuildInventoryResponse(void) { uint8_t cmd[12]; uint16_t crc; // one sub-carrier, inventory, 1 slot, fast rate // AFI is at bit 5 (1<<4) when doing an INVENTORY cmd[0] = 0; //(1 << 2) | (1 << 5) | (1 << 1); cmd[1] = 0; // 64-bit UID cmd[2] = 0x32; cmd[3]= 0x4b; cmd[4] = 0x03; cmd[5] = 0x01; cmd[6] = 0x00; cmd[7] = 0x10; cmd[8] = 0x05; cmd[9]= 0xe0; //Now the CRC crc = Crc(cmd, 10); cmd[10] = crc & 0xff; cmd[11] = crc >> 8; CodeIso15693AsReader(cmd, sizeof(cmd)); } // Universal Method for sending to and recv bytes from a tag // init ... should we initialize the reader? // speed ... 0 low speed, 1 hi speed // **recv will return you a pointer to the received data // If you do not need the answer use NULL for *recv[] // return: lenght of received data int SendDataTag(uint8_t *send, int sendlen, int init, int speed, uint8_t **recv) { int samples = 0; int tsamples = 0; int wait = 0; int elapsed = 0; LED_A_ON(); LED_B_ON(); LED_C_OFF(); LED_D_OFF(); int answerLen=0; uint8_t *answer = (((uint8_t *)BigBuf) + 3660); if (recv!=NULL) memset(BigBuf + 3660, 0, 100); if (init) Iso15693InitReader(); if (!speed) { // low speed (1 out of 256) CodeIso15693AsReader256(send, sendlen); } else { // high speed (1 out of 4) CodeIso15693AsReader(send, sendlen); } LED_A_ON(); LED_B_OFF(); TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); // Now wait for a response if (recv!=NULL) { LED_A_OFF(); LED_B_ON(); answerLen = GetIso15693AnswerFromTag(answer, 100, &samples, &elapsed) ; *recv=answer; } LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF(); return answerLen; } // -------------------------------------------------------------------- // Debug Functions // -------------------------------------------------------------------- // Decodes a message from a tag and displays its metadata and content #define DBD15STATLEN 48 void DbdecodeIso15693Answer(int len, uint8_t *d) { char status[DBD15STATLEN+1]={0}; uint16_t crc; if (len>3) { if (d[0]&(1<<3)) strncat(status,"ProtExt ",DBD15STATLEN); if (d[0]&1) { // error strncat(status,"Error ",DBD15STATLEN); switch (d[1]) { case 0x01: strncat(status,"01:notSupp",DBD15STATLEN); break; case 0x02: strncat(status,"02:notRecog",DBD15STATLEN); break; case 0x03: strncat(status,"03:optNotSupp",DBD15STATLEN); break; case 0x0f: strncat(status,"0f:noInfo",DBD15STATLEN); break; case 0x10: strncat(status,"10:dontExist",DBD15STATLEN); break; case 0x11: strncat(status,"11:lockAgain",DBD15STATLEN); break; case 0x12: strncat(status,"12:locked",DBD15STATLEN); break; case 0x13: strncat(status,"13:progErr",DBD15STATLEN); break; case 0x14: strncat(status,"14:lockErr",DBD15STATLEN); break; default: strncat(status,"unknownErr",DBD15STATLEN); } strncat(status," ",DBD15STATLEN); } else { strncat(status,"NoErr ",DBD15STATLEN); } crc=Crc(d,len-2); if ( (( crc & 0xff ) == d[len-2]) && (( crc >> 8 ) == d[len-1]) ) strncat(status,"CrcOK",DBD15STATLEN); else strncat(status,"CrcFail!",DBD15STATLEN); Dbprintf("%s",status); } } /////////////////////////////////////////////////////////////////////// // Functions called via USB/Client /////////////////////////////////////////////////////////////////////// void SetDebugIso15693(uint32_t debug) { DEBUG=debug; Dbprintf("Iso15693 Debug is now %s",DEBUG?"on":"off"); return; } //----------------------------------------------------------------------------- // Simulate an ISO15693 reader, perform anti-collision and then attempt to read a sector // all demodulation performed in arm rather than host. - greg //----------------------------------------------------------------------------- void ReaderIso15693(uint32_t parameter) { LED_A_ON(); LED_B_ON(); LED_C_OFF(); LED_D_OFF(); //DbpString(parameter); //uint8_t *answer0 = (((uint8_t *)BigBuf) + 3560); // allow 100 bytes per reponse (way too much) uint8_t *answer1 = (((uint8_t *)BigBuf) + 3660); // uint8_t *answer2 = (((uint8_t *)BigBuf) + 3760); uint8_t *answer3 = (((uint8_t *)BigBuf) + 3860); //uint8_t *TagUID= (((uint8_t *)BigBuf) + 3960); // where we hold the uid for hi15reader // int answerLen0 = 0; int answerLen1 = 0; int answerLen2 = 0; int answerLen3 = 0; int i=0; // counter // Blank arrays memset(BigBuf + 3660, 0, 300); FpgaDownloadAndGo(FPGA_BITSTREAM_HF); // Setup SSC FpgaSetupSsc(); // Start from off (no field generated) FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(200); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); FpgaSetupSsc(); // Give the tags time to energize FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); SpinDelay(200); LED_A_ON(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF(); int samples = 0; int tsamples = 0; int wait = 0; int elapsed = 0; // FIRST WE RUN AN INVENTORY TO GET THE TAG UID // THIS MEANS WE CAN PRE-BUILD REQUESTS TO SAVE CPU TIME uint8_t TagUID[8] = {0, 0, 0, 0, 0, 0, 0, 0}; // where we hold the uid for hi15reader // BuildIdentifyRequest(); // //TransmitTo15693Tag(ToSend,ToSendMax+3,&tsamples, &wait); // TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); // No longer ToSendMax+3 // // Now wait for a response // responseLen0 = GetIso15693AnswerFromTag(receivedAnswer0, 100, &samples, &elapsed) ; // if (responseLen0 >=12) // we should do a better check than this // { // // really we should check it is a valid mesg // // but for now just grab what we think is the uid // TagUID[0] = receivedAnswer0[2]; // TagUID[1] = receivedAnswer0[3]; // TagUID[2] = receivedAnswer0[4]; // TagUID[3] = receivedAnswer0[5]; // TagUID[4] = receivedAnswer0[6]; // TagUID[5] = receivedAnswer0[7]; // TagUID[6] = receivedAnswer0[8]; // IC Manufacturer code // DbpIntegers(TagUID[6],TagUID[5],TagUID[4]); //} // Now send the IDENTIFY command BuildIdentifyRequest(); //TransmitTo15693Tag(ToSend,ToSendMax+3,&tsamples, &wait); TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); // No longer ToSendMax+3 // Now wait for a response answerLen1 = GetIso15693AnswerFromTag(answer1, 100, &samples, &elapsed) ; if (answerLen1 >=12) // we should do a better check than this { TagUID[0] = answer1[2]; TagUID[1] = answer1[3]; TagUID[2] = answer1[4]; TagUID[3] = answer1[5]; TagUID[4] = answer1[6]; TagUID[5] = answer1[7]; TagUID[6] = answer1[8]; // IC Manufacturer code TagUID[7] = answer1[9]; // always E0 // Now send the SELECT command // since the SELECT command is optional, we should not rely on it. //// BuildSelectRequest(TagUID); // TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); // No longer ToSendMax+3 // Now wait for a response /// answerLen2 = GetIso15693AnswerFromTag(answer2, 100, &samples, &elapsed); // Now send the MULTI READ command // BuildArbitraryRequest(*TagUID,parameter); /// BuildArbitraryCustomRequest(TagUID,parameter); // BuildReadBlockRequest(*TagUID,parameter); // BuildSysInfoRequest(*TagUID); //TransmitTo15693Tag(ToSend,ToSendMax+3,&tsamples, &wait); /// TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); // No longer ToSendMax+3 // Now wait for a response /// answerLen3 = GetIso15693AnswerFromTag(answer3, 100, &samples, &elapsed) ; } Dbprintf("%d octets read from IDENTIFY request:", answerLen1); DbdecodeIso15693Answer(answerLen1,answer1); Dbhexdump(answerLen1,answer1,true); // UID is reverse if (answerLen1>=12) //Dbprintf("UID = %*D",8,TagUID," "); Dbprintf("UID = %02hX%02hX%02hX%02hX%02hX%02hX%02hX%02hX",TagUID[7],TagUID[6],TagUID[5], TagUID[4],TagUID[3],TagUID[2],TagUID[1],TagUID[0]); Dbprintf("%d octets read from SELECT request:", answerLen2); DbdecodeIso15693Answer(answerLen2,answer2); Dbhexdump(answerLen2,answer2,true); Dbprintf("%d octets read from XXX request:", answerLen3); DbdecodeIso15693Answer(answerLen3,answer3); Dbhexdump(answerLen3,answer3,true); // read all pages if (answerLen1>=12 && DEBUG) { i=0; while (i<32) { // sanity check, assume max 32 pages BuildReadBlockRequest(TagUID,i); TransmitTo15693Tag(ToSend,ToSendMax,&tsamples, &wait); answerLen2 = GetIso15693AnswerFromTag(answer2, 100, &samples, &elapsed); if (answerLen2>0) { Dbprintf("READ SINGLE BLOCK %d returned %d octets:",i,answerLen2); DbdecodeIso15693Answer(answerLen2,answer2); Dbhexdump(answerLen2,answer2,true); if ( *((uint32_t*) answer2) == 0x07160101 ) break; // exit on NoPageErr } i++; } } // str2[0]=0; // for(i = 0; i < responseLen3; i++) { // itoa(str1,receivedAnswer3[i]); // strncat(str2,str1,8); // } // DbpString(str2); LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF(); } // Simulate an ISO15693 TAG, perform anti-collision and then print any reader commands // all demodulation performed in arm rather than host. - greg void SimTagIso15693(uint32_t parameter) { LED_A_ON(); LED_B_ON(); LED_C_OFF(); LED_D_OFF(); uint8_t *answer1 = (((uint8_t *)BigBuf) + 3660); // int answerLen1 = 0; // Blank arrays memset(answer1, 0, 100); FpgaDownloadAndGo(FPGA_BITSTREAM_HF); // Setup SSC FpgaSetupSsc(); // Start from off (no field generated) FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); SpinDelay(200); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); FpgaSetupSsc(); // Give the tags time to energize // FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_READER_RX_XCORR); // NO GOOD FOR SIM TAG!!!! SpinDelay(200); LED_A_OFF(); LED_B_OFF(); LED_C_ON(); LED_D_OFF(); int samples = 0; int tsamples = 0; int wait = 0; int elapsed = 0; answerLen1 = GetIso15693AnswerFromSniff(answer1, 100, &samples, &elapsed) ; if (answerLen1 >=1) // we should do a better check than this { // Build a suitable reponse to the reader INVENTORY cocmmand BuildInventoryResponse(); TransmitTo15693Reader(ToSend,ToSendMax, &tsamples, &wait); } Dbprintf("%d octets read from reader command: %x %x %x %x %x %x %x %x %x", answerLen1, answer1[0], answer1[1], answer1[2], answer1[3], answer1[4], answer1[5], answer1[6], answer1[7], answer1[8]); LED_A_OFF(); LED_B_OFF(); LED_C_OFF(); LED_D_OFF(); } // Since there is no standardized way of reading the AFI out of a tag, we will brute force it // (some manufactures offer a way to read the AFI, though) void BruteforceIso15693Afi(uint32_t speed) { uint8_t data[20]; uint8_t *recv=data; int datalen=0, recvlen=0; Iso15693InitReader(); // first without AFI // Tags should respond wihtout AFI and with AFI=0 even when AFI is active data[0]=ISO15_REQ_SUBCARRIER_SINGLE | ISO15_REQ_DATARATE_HIGH | ISO15_REQ_INVENTORY | ISO15_REQINV_SLOT1; data[1]=ISO15_CMD_INVENTORY; data[2]=0; // mask length datalen=AddCrc(data,3); recvlen=SendDataTag(data,datalen,0,speed,&recv); WDT_HIT(); if (recvlen>=12) { Dbprintf("NoAFI UID=%s",sprintUID(NULL,&recv[2])); } // now with AFI data[0]=ISO15_REQ_SUBCARRIER_SINGLE | ISO15_REQ_DATARATE_HIGH | ISO15_REQ_INVENTORY | ISO15_REQINV_AFI | ISO15_REQINV_SLOT1; data[1]=ISO15_CMD_INVENTORY; data[2]=0; // AFI data[3]=0; // mask length for (int i=0;i<256;i++) { data[2]=i & 0xFF; datalen=AddCrc(data,4); recvlen=SendDataTag(data,datalen,0,speed,&recv); WDT_HIT(); if (recvlen>=12) { Dbprintf("AFI=%i UID=%s",i,sprintUID(NULL,&recv[2])); } } Dbprintf("AFI Bruteforcing done."); } // Allows to directly send commands to the tag via the client void DirectTag15693Command(uint32_t datalen,uint32_t speed, uint32_t recv, uint8_t data[]) { int recvlen=0; uint8_t *recvbuf=(uint8_t *)BigBuf; // UsbCommand n; if (DEBUG) { Dbprintf("SEND"); Dbhexdump(datalen,data,true); } recvlen=SendDataTag(data,datalen,1,speed,(recv?&recvbuf:NULL)); if (recv) { // n.cmd=/* CMD_ISO_15693_COMMAND_DONE */ CMD_ACK; // n.arg[0]=recvlen>48?48:recvlen; // memcpy(n.d.asBytes, recvbuf, 48); LED_B_ON(); cmd_send(CMD_ACK,recvlen>48?48:recvlen,0,0,recvbuf,48); // UsbSendPacket((uint8_t *)&n, sizeof(n)); LED_B_OFF(); if (DEBUG) { Dbprintf("RECV"); DbdecodeIso15693Answer(recvlen,recvbuf); Dbhexdump(recvlen,recvbuf,true); } } } // -------------------------------------------------------------------- // -- Misc & deprecated functions // -------------------------------------------------------------------- /* // do not use; has a fix UID static void __attribute__((unused)) BuildSysInfoRequest(uint8_t *uid) { uint8_t cmd[12]; uint16_t crc; // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block // followed by teh block data // one sub-carrier, inventory, 1 slot, fast rate cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit // System Information command code cmd[1] = 0x2B; // UID may be optionally specified here // 64-bit UID cmd[2] = 0x32; cmd[3]= 0x4b; cmd[4] = 0x03; cmd[5] = 0x01; cmd[6] = 0x00; cmd[7] = 0x10; cmd[8] = 0x05; cmd[9]= 0xe0; // always e0 (not exactly unique) //Now the CRC crc = Crc(cmd, 10); // the crc needs to be calculated over 2 bytes cmd[10] = crc & 0xff; cmd[11] = crc >> 8; CodeIso15693AsReader(cmd, sizeof(cmd)); } // do not use; has a fix UID static void __attribute__((unused)) BuildReadMultiBlockRequest(uint8_t *uid) { uint8_t cmd[14]; uint16_t crc; // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block // followed by teh block data // one sub-carrier, inventory, 1 slot, fast rate cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit // READ Multi BLOCK command code cmd[1] = 0x23; // UID may be optionally specified here // 64-bit UID cmd[2] = 0x32; cmd[3]= 0x4b; cmd[4] = 0x03; cmd[5] = 0x01; cmd[6] = 0x00; cmd[7] = 0x10; cmd[8] = 0x05; cmd[9]= 0xe0; // always e0 (not exactly unique) // First Block number to read cmd[10] = 0x00; // Number of Blocks to read cmd[11] = 0x2f; // read quite a few //Now the CRC crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes cmd[12] = crc & 0xff; cmd[13] = crc >> 8; CodeIso15693AsReader(cmd, sizeof(cmd)); } // do not use; has a fix UID static void __attribute__((unused)) BuildArbitraryRequest(uint8_t *uid,uint8_t CmdCode) { uint8_t cmd[14]; uint16_t crc; // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block // followed by teh block data // one sub-carrier, inventory, 1 slot, fast rate cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit // READ BLOCK command code cmd[1] = CmdCode; // UID may be optionally specified here // 64-bit UID cmd[2] = 0x32; cmd[3]= 0x4b; cmd[4] = 0x03; cmd[5] = 0x01; cmd[6] = 0x00; cmd[7] = 0x10; cmd[8] = 0x05; cmd[9]= 0xe0; // always e0 (not exactly unique) // Parameter cmd[10] = 0x00; cmd[11] = 0x0a; // cmd[12] = 0x00; // cmd[13] = 0x00; //Now the CRC crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes cmd[12] = crc & 0xff; cmd[13] = crc >> 8; CodeIso15693AsReader(cmd, sizeof(cmd)); } // do not use; has a fix UID static void __attribute__((unused)) BuildArbitraryCustomRequest(uint8_t uid[], uint8_t CmdCode) { uint8_t cmd[14]; uint16_t crc; // If we set the Option_Flag in this request, the VICC will respond with the secuirty status of the block // followed by teh block data // one sub-carrier, inventory, 1 slot, fast rate cmd[0] = (1 << 5) | (1 << 1); // no SELECT bit // READ BLOCK command code cmd[1] = CmdCode; // UID may be optionally specified here // 64-bit UID cmd[2] = 0x32; cmd[3]= 0x4b; cmd[4] = 0x03; cmd[5] = 0x01; cmd[6] = 0x00; cmd[7] = 0x10; cmd[8] = 0x05; cmd[9]= 0xe0; // always e0 (not exactly unique) // Parameter cmd[10] = 0x05; // for custom codes this must be manufcturer code cmd[11] = 0x00; // cmd[12] = 0x00; // cmd[13] = 0x00; //Now the CRC crc = Crc(cmd, 12); // the crc needs to be calculated over 2 bytes cmd[12] = crc & 0xff; cmd[13] = crc >> 8; CodeIso15693AsReader(cmd, sizeof(cmd)); } */