//----------------------------------------------------------------------------- // Copyright (C) 2011,2012 Merlok // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // High frequency MIFARE commands //----------------------------------------------------------------------------- #include "cmdhfmf.h" static int CmdHelp(const char *Cmd); int usage_hf14_mifare(void){ PrintAndLog("Usage: hf mf mifare [h] "); PrintAndLog("options:"); PrintAndLog(" h this help"); PrintAndLog(" (Optional) target other block"); PrintAndLog(" (optional) target key type"); PrintAndLog("samples:"); PrintAndLog(" hf mf mifare"); PrintAndLog(" hf mf mifare 16"); PrintAndLog(" hf mf mifare 16 B"); return 0; } int usage_hf14_mf1ksim(void){ PrintAndLog("Usage: hf mf sim [h] u n [i] [x] [e] [v]"); PrintAndLog("options:"); PrintAndLog(" h this help"); PrintAndLog(" u (Optional) UID 4,7 or 10bytes. If not specified, the UID 4b from emulator memory will be used"); PrintAndLog(" n (Optional) Automatically exit simulation after blocks have been read by reader. 0 = infinite"); PrintAndLog(" i (Optional) Interactive, means that console will not be returned until simulation finishes or is aborted"); PrintAndLog(" x (Optional) Crack, performs the 'reader attack', nr/ar attack against a reader"); PrintAndLog(" e (Optional) Fill simulator keys from found keys"); PrintAndLog(" v (Optional) Verbose"); PrintAndLog("samples:"); PrintAndLog(" hf mf sim u 0a0a0a0a"); PrintAndLog(" hf mf sim u 11223344556677"); PrintAndLog(" hf mf sim u 112233445566778899AA"); PrintAndLog(" hf mf sim u 11223344 i x"); return 0; } int usage_hf14_dbg(void){ PrintAndLog("Usage: hf mf dbg [h] "); PrintAndLog("options:"); PrintAndLog(" h this help"); PrintAndLog(" (Optional) see list for valid levels"); PrintAndLog(" 0 - no debug messages"); PrintAndLog(" 1 - error messages"); PrintAndLog(" 2 - plus information messages"); PrintAndLog(" 3 - plus debug messages"); PrintAndLog(" 4 - print even debug messages in timing critical functions"); PrintAndLog(" Note: this option therefore may cause malfunction itself"); PrintAndLog("samples:"); PrintAndLog(" hf mf dbg 3"); return 0; } int usage_hf14_sniff(void){ PrintAndLog("It continuously gets data from the field and saves it to: log, emulator, emulator file."); PrintAndLog("Usage: hf mf sniff [h] [l] [d] [f]"); PrintAndLog("options:"); PrintAndLog(" h this help"); PrintAndLog(" l save encrypted sequence to logfile `uid.log`"); PrintAndLog(" d decrypt sequence and put it to log file `uid.log`"); // PrintAndLog(" n/a e decrypt sequence, collect read and write commands and save the result of the sequence to emulator memory"); PrintAndLog(" f decrypt sequence, collect read and write commands and save the result of the sequence to emulator dump file `uid.eml`"); PrintAndLog("sample:"); PrintAndLog(" hf mf sniff l d f"); return 0; } int usage_hf14_nested(void){ PrintAndLog("Usage:"); PrintAndLog(" all sectors: hf mf nested [t,d]"); PrintAndLog(" one sector: hf mf nested o "); PrintAndLog(" [t]"); PrintAndLog("options:"); PrintAndLog(" h this help"); PrintAndLog(" card memory - 0 - MINI(320 bytes), 1 - 1K, 2 - 2K, 4 - 4K, - 1K"); PrintAndLog(" t transfer keys into emulator memory"); PrintAndLog(" d write keys to binary file"); PrintAndLog(" "); PrintAndLog("samples:"); PrintAndLog(" hf mf nested 1 0 A FFFFFFFFFFFF "); PrintAndLog(" hf mf nested 1 0 A FFFFFFFFFFFF t "); PrintAndLog(" hf mf nested 1 0 A FFFFFFFFFFFF d "); PrintAndLog(" hf mf nested o 0 A FFFFFFFFFFFF 4 A"); return 0; } int usage_hf14_hardnested(void){ PrintAndLog("Usage:"); PrintAndLog(" hf mf hardnested "); PrintAndLog(" [known target key (12 hex symbols)] [w] [s]"); PrintAndLog(" or hf mf hardnested r [known target key]"); PrintAndLog(" "); PrintAndLog("options:"); PrintAndLog(" h this help"); PrintAndLog(" w acquire nonces and write them to binary file nonces.bin"); PrintAndLog(" s slower acquisition (required by some non standard cards)"); PrintAndLog(" r read nonces.bin and start attack"); PrintAndLog(" t tests?"); PrintAndLog(" "); PrintAndLog("samples:"); PrintAndLog(" hf mf hardnested 0 A FFFFFFFFFFFF 4 A"); PrintAndLog(" hf mf hardnested 0 A FFFFFFFFFFFF 4 A w"); PrintAndLog(" hf mf hardnested 0 A FFFFFFFFFFFF 4 A w s"); PrintAndLog(" hf mf hardnested r"); PrintAndLog(" hf mf hardnested r a0a1a2a3a4a5"); PrintAndLog(" "); PrintAndLog("Add the known target key to check if it is present in the remaining key space:"); PrintAndLog(" sample5: hf mf hardnested 0 A A0A1A2A3A4A5 4 A FFFFFFFFFFFF"); return 0; } int usage_hf14_chk(void){ PrintAndLog("Usage: hf mf chk |<*card memory> [t|d] [] []"); PrintAndLog("options:"); PrintAndLog(" h this help"); PrintAndLog(" * all sectors based on card memory, other values then below defaults to 1k"); PrintAndLog(" 0 - MINI(320 bytes)"); PrintAndLog(" 1 - 1K"); PrintAndLog(" 2 - 2K"); PrintAndLog(" 4 - 4K"); PrintAndLog(" d write keys to binary file"); PrintAndLog(" t write keys to emulator memory\n"); PrintAndLog(" "); PrintAndLog("samples:"); PrintAndLog(" hf mf chk 0 A 1234567890ab keys.dic -- target block 0, Key A"); PrintAndLog(" hf mf chk *1 ? t -- target all blocks, all keys, 1K, write to emul"); PrintAndLog(" hf mf chk *1 ? d -- target all blocks, all keys, 1K, write to file"); return 0; } int usage_hf14_keybrute(void){ PrintAndLog("J_Run's 2nd phase of multiple sector nested authentication key recovery"); PrintAndLog("You have a known 4 last bytes of a key recovered with mf_nonce_brute tool."); PrintAndLog("First 2 bytes of key will be bruteforced"); PrintAndLog(""); PrintAndLog("Usage: hf mf keybrute [h] "); PrintAndLog("options:"); PrintAndLog(" h this help"); PrintAndLog(" target block number"); PrintAndLog(" target key type"); PrintAndLog(" candidate key from mf_nonce_brute tool"); PrintAndLog("samples:"); PrintAndLog(" hf mf keybrute 1 A 000011223344"); return 0; } int CmdHF14AMifare(const char *Cmd) { uint32_t uid = 0; uint32_t nt = 0, nr = 0; uint64_t par_list = 0, ks_list = 0, r_key = 0; int16_t isOK = 0; int tmpchar; uint8_t blockNo = 0, keytype = MIFARE_AUTH_KEYA; char cmdp = param_getchar(Cmd, 0); if ( cmdp == 'H' || cmdp == 'h') return usage_hf14_mifare(); blockNo = param_get8(Cmd, 0); cmdp = param_getchar(Cmd, 1); if (cmdp == 'B' || cmdp == 'b') keytype = MIFARE_AUTH_KEYB; UsbCommand c = {CMD_READER_MIFARE, {true, blockNo, keytype}}; // message printf("-------------------------------------------------------------------------\n"); printf("Executing darkside attack. Expected execution time: 25sec on average :-)\n"); printf("Press button on the proxmark3 device to abort both proxmark3 and client.\n"); printf("-------------------------------------------------------------------------\n"); clock_t t1 = clock(); time_t start, end; time(&start); start: clearCommandBuffer(); SendCommand(&c); //flush queue while (ukbhit()) { tmpchar = getchar(); (void)tmpchar; } // wait cycle while (true) { printf("."); fflush(stdout); if (ukbhit()) { tmpchar = getchar(); (void)tmpchar; printf("\naborted via keyboard!\n"); break; } UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK, &resp, 1500)) { isOK = resp.arg[0]; printf("\n"); uid = (uint32_t)bytes_to_num(resp.d.asBytes + 0, 4); nt = (uint32_t)bytes_to_num(resp.d.asBytes + 4, 4); par_list = bytes_to_num(resp.d.asBytes + 8, 8); ks_list = bytes_to_num(resp.d.asBytes + 16, 8); nr = bytes_to_num(resp.d.asBytes + 24, 4); switch (isOK) { case -1 : PrintAndLog("Button pressed. Aborted.\n"); break; case -2 : PrintAndLog("Card isn't vulnerable to Darkside attack (doesn't send NACK on authentication requests).\n"); break; case -3 : PrintAndLog("Card isn't vulnerable to Darkside attack (its random number generator is not predictable).\n"); break; case -4 : PrintAndLog("Card isn't vulnerable to Darkside attack (its random number generator seems to be based on the wellknown"); PrintAndLog("generating polynomial with 16 effective bits only, but shows unexpected behaviour.\n"); break; default: ; } break; } } printf("\n"); // error if (isOK != 1) return 1; if (par_list == 0 && ks_list != 0) { // this special attack when parities is zero, uses checkkeys. Which now with block/keytype option also needs. // but it uses 0|1 instead of 0x60|0x61... if (nonce2key_ex(blockNo, keytype - 0x60 , uid, nt, nr, ks_list, &r_key) ){ PrintAndLog("Trying again with a different reader nonce..."); c.arg[0] = false; goto start; } else { PrintAndLog("Found valid key: %012" PRIx64 " \n", r_key); goto END; } } // execute original function from util nonce2key if (nonce2key(uid, nt, nr, par_list, ks_list, &r_key)) { isOK = 2; PrintAndLog("Key not found (lfsr_common_prefix list is null). Nt=%08x", nt); PrintAndLog("Failing is expected to happen in 25%% of all cases. Trying again with a different reader nonce..."); c.arg[0] = false; goto start; } else { // nonce2key found a candidate key. Lets verify it. uint8_t keyblock[] = {0,0,0,0,0,0}; num_to_bytes(r_key, 6, keyblock); uint64_t key64 = 0; int res = mfCheckKeys(blockNo, keytype - 0x60 , false, 1, keyblock, &key64); if ( res > 0 ) { PrintAndLog("Candidate Key found (%012" PRIx64 ") - Test authentication failed. [%d] Restarting darkside attack", r_key, res); goto start; } PrintAndLog("Found valid key: %012" PRIx64 " \n", r_key); } END: t1 = clock() - t1; time(&end); unsigned long elapsed_time = difftime(end, start); if ( t1 > 0 ) PrintAndLog("Time in darkside: %.0f ticks %u seconds\n", (float)t1, elapsed_time); return 0; } int CmdHF14AMfWrBl(const char *Cmd) { uint8_t blockNo = 0; uint8_t keyType = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; uint8_t bldata[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; char cmdp = 0x00; if (strlen(Cmd)<3) { PrintAndLog("Usage: hf mf wrbl "); PrintAndLog(" sample: hf mf wrbl 0 A FFFFFFFFFFFF 000102030405060708090A0B0C0D0E0F"); return 0; } blockNo = param_get8(Cmd, 0); cmdp = param_getchar(Cmd, 1); if (cmdp == 0x00) { PrintAndLog("Key type must be A or B"); return 1; } if (cmdp != 'A' && cmdp != 'a') keyType = 1; if (param_gethex(Cmd, 2, key, 12)) { PrintAndLog("Key must include 12 HEX symbols"); return 1; } if (param_gethex(Cmd, 3, bldata, 32)) { PrintAndLog("Block data must include 32 HEX symbols"); return 1; } PrintAndLog("--block no:%d, key type:%c, key:%s", blockNo, keyType?'B':'A', sprint_hex(key, 6)); PrintAndLog("--data: %s", sprint_hex(bldata, 16)); UsbCommand c = {CMD_MIFARE_WRITEBL, {blockNo, keyType, 0}}; memcpy(c.d.asBytes, key, 6); memcpy(c.d.asBytes + 10, bldata, 16); clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { uint8_t isOK = resp.arg[0] & 0xff; PrintAndLog("isOk:%02x", isOK); } else { PrintAndLog("Command execute timeout"); } return 0; } int CmdHF14AMfRdBl(const char *Cmd) { uint8_t blockNo = 0; uint8_t keyType = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; char cmdp = 0x00; if (strlen(Cmd)<3) { PrintAndLog("Usage: hf mf rdbl "); PrintAndLog(" sample: hf mf rdbl 0 A FFFFFFFFFFFF "); return 0; } blockNo = param_get8(Cmd, 0); cmdp = param_getchar(Cmd, 1); if (cmdp == 0x00) { PrintAndLog("Key type must be A or B"); return 1; } if (cmdp != 'A' && cmdp != 'a') keyType = 1; if (param_gethex(Cmd, 2, key, 12)) { PrintAndLog("Key must include 12 HEX symbols"); return 1; } PrintAndLog("--block no:%d, key type:%c, key:%s ", blockNo, keyType?'B':'A', sprint_hex(key, 6)); UsbCommand c = {CMD_MIFARE_READBL, {blockNo, keyType, 0}}; memcpy(c.d.asBytes, key, 6); clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { uint8_t isOK = resp.arg[0] & 0xff; uint8_t *data = resp.d.asBytes; if (isOK) PrintAndLog("isOk:%02x data:%s", isOK, sprint_hex(data, 16)); else PrintAndLog("isOk:%02x", isOK); } else { PrintAndLog("Command execute timeout"); } return 0; } int CmdHF14AMfRdSc(const char *Cmd) { int i; uint8_t sectorNo = 0; uint8_t keyType = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; uint8_t isOK = 0; uint8_t *data = NULL; char cmdp = 0x00; if (strlen(Cmd)<3) { PrintAndLog("Usage: hf mf rdsc "); PrintAndLog(" sample: hf mf rdsc 0 A FFFFFFFFFFFF "); return 0; } sectorNo = param_get8(Cmd, 0); if (sectorNo > 39) { PrintAndLog("Sector number must be less than 40"); return 1; } cmdp = param_getchar(Cmd, 1); if (cmdp != 'a' && cmdp != 'A' && cmdp != 'b' && cmdp != 'B') { PrintAndLog("Key type must be A or B"); return 1; } if (cmdp != 'A' && cmdp != 'a') keyType = 1; if (param_gethex(Cmd, 2, key, 12)) { PrintAndLog("Key must include 12 HEX symbols"); return 1; } PrintAndLog("--sector no:%d key type:%c key:%s ", sectorNo, keyType?'B':'A', sprint_hex(key, 6)); UsbCommand c = {CMD_MIFARE_READSC, {sectorNo, keyType, 0}}; memcpy(c.d.asBytes, key, 6); clearCommandBuffer(); SendCommand(&c); PrintAndLog(" "); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { isOK = resp.arg[0] & 0xff; data = resp.d.asBytes; PrintAndLog("isOk:%02x", isOK); if (isOK) { for (i = 0; i < (sectorNo<32?3:15); i++) { PrintAndLog("data : %s", sprint_hex(data + i * 16, 16)); } PrintAndLog("trailer: %s", sprint_hex(data + (sectorNo<32?3:15) * 16, 16)); } } else { PrintAndLog("Command execute timeout"); } return 0; } uint8_t FirstBlockOfSector(uint8_t sectorNo) { if (sectorNo < 32) { return sectorNo * 4; } else { return 32 * 4 + (sectorNo - 32) * 16; } } uint8_t NumBlocksPerSector(uint8_t sectorNo) { if (sectorNo < 32) { return 4; } else { return 16; } } int CmdHF14AMfDump(const char *Cmd) { uint8_t sectorNo, blockNo; uint8_t keyA[40][6]; uint8_t keyB[40][6]; uint8_t rights[40][4]; uint8_t carddata[256][16]; uint8_t numSectors = 16; FILE *fin; FILE *fout; UsbCommand resp; char cmdp = param_getchar(Cmd, 0); switch (cmdp) { case '0' : numSectors = 5; break; case '1' : case '\0': numSectors = 16; break; case '2' : numSectors = 32; break; case '4' : numSectors = 40; break; default: numSectors = 16; } if (strlen(Cmd) > 1 || cmdp == 'h' || cmdp == 'H') { PrintAndLog("Usage: hf mf dump [card memory]"); PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLog(""); PrintAndLog("Samples: hf mf dump"); PrintAndLog(" hf mf dump 4"); return 0; } if ((fin = fopen("dumpkeys.bin","rb")) == NULL) { PrintAndLog("Could not find file dumpkeys.bin"); return 1; } // Read keys A from file size_t bytes_read; for (sectorNo=0; sectorNo>2) | ((data[8] & 0x1)<<1) | ((data[8] & 0x10)>>4); // C1C2C3 for data area 0 rights[sectorNo][1] = ((data[7] & 0x20)>>3) | ((data[8] & 0x2)<<0) | ((data[8] & 0x20)>>5); // C1C2C3 for data area 1 rights[sectorNo][2] = ((data[7] & 0x40)>>4) | ((data[8] & 0x4)>>1) | ((data[8] & 0x40)>>6); // C1C2C3 for data area 2 rights[sectorNo][3] = ((data[7] & 0x80)>>5) | ((data[8] & 0x8)>>2) | ((data[8] & 0x80)>>7); // C1C2C3 for sector trailer } else { PrintAndLog("Could not get access rights for sector %2d. Trying with defaults...", sectorNo); rights[sectorNo][0] = rights[sectorNo][1] = rights[sectorNo][2] = 0x00; rights[sectorNo][3] = 0x01; } } else { PrintAndLog("Command execute timeout when trying to read access rights for sector %2d. Trying with defaults...", sectorNo); rights[sectorNo][0] = rights[sectorNo][1] = rights[sectorNo][2] = 0x00; rights[sectorNo][3] = 0x01; } } PrintAndLog("|-----------------------------------------|"); PrintAndLog("|----- Dumping all blocks to file... -----|"); PrintAndLog("|-----------------------------------------|"); bool isOK = true; for (sectorNo = 0; isOK && sectorNo < numSectors; sectorNo++) { for (blockNo = 0; isOK && blockNo < NumBlocksPerSector(sectorNo); blockNo++) { bool received = false; if (blockNo == NumBlocksPerSector(sectorNo) - 1) { // sector trailer. At least the Access Conditions can always be read with key A. UsbCommand c = {CMD_MIFARE_READBL, {FirstBlockOfSector(sectorNo) + blockNo, 0, 0}}; memcpy(c.d.asBytes, keyA[sectorNo], 6); clearCommandBuffer(); SendCommand(&c); received = WaitForResponseTimeout(CMD_ACK,&resp,1500); } else { // data block. Check if it can be read with key A or key B uint8_t data_area = sectorNo<32?blockNo:blockNo/5; if ((rights[sectorNo][data_area] == 0x03) || (rights[sectorNo][data_area] == 0x05)) { // only key B would work UsbCommand c = {CMD_MIFARE_READBL, {FirstBlockOfSector(sectorNo) + blockNo, 1, 0}}; memcpy(c.d.asBytes, keyB[sectorNo], 6); SendCommand(&c); received = WaitForResponseTimeout(CMD_ACK,&resp,1500); } else if (rights[sectorNo][data_area] == 0x07) { // no key would work isOK = false; PrintAndLog("Access rights do not allow reading of sector %2d block %3d", sectorNo, blockNo); } else { // key A would work UsbCommand c = {CMD_MIFARE_READBL, {FirstBlockOfSector(sectorNo) + blockNo, 0, 0}}; memcpy(c.d.asBytes, keyA[sectorNo], 6); clearCommandBuffer(); SendCommand(&c); received = WaitForResponseTimeout(CMD_ACK,&resp,1500); } } if (received) { isOK = resp.arg[0] & 0xff; uint8_t *data = resp.d.asBytes; if (blockNo == NumBlocksPerSector(sectorNo) - 1) { // sector trailer. Fill in the keys. data[0] = (keyA[sectorNo][0]); data[1] = (keyA[sectorNo][1]); data[2] = (keyA[sectorNo][2]); data[3] = (keyA[sectorNo][3]); data[4] = (keyA[sectorNo][4]); data[5] = (keyA[sectorNo][5]); data[10] = (keyB[sectorNo][0]); data[11] = (keyB[sectorNo][1]); data[12] = (keyB[sectorNo][2]); data[13] = (keyB[sectorNo][3]); data[14] = (keyB[sectorNo][4]); data[15] = (keyB[sectorNo][5]); } if (isOK) { memcpy(carddata[FirstBlockOfSector(sectorNo) + blockNo], data, 16); PrintAndLog("Successfully read block %2d of sector %2d.", blockNo, sectorNo); } else { PrintAndLog("Could not read block %2d of sector %2d", blockNo, sectorNo); break; } } else { isOK = false; PrintAndLog("Command execute timeout when trying to read block %2d of sector %2d.", blockNo, sectorNo); break; } } } if (isOK) { if ((fout = fopen("dumpdata.bin","wb")) == NULL) { PrintAndLog("Could not create file name dumpdata.bin"); return 1; } uint16_t numblocks = FirstBlockOfSector(numSectors - 1) + NumBlocksPerSector(numSectors - 1); fwrite(carddata, 1, 16*numblocks, fout); fclose(fout); fout = NULL; PrintAndLog("Dumped %d blocks (%d bytes) to file dumpdata.bin", numblocks, 16*numblocks); } return 0; } int CmdHF14AMfRestore(const char *Cmd) { uint8_t sectorNo,blockNo; uint8_t keyType = 0; uint8_t key[6] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF}; uint8_t bldata[16] = {0x00}; uint8_t keyA[40][6]; uint8_t keyB[40][6]; uint8_t numSectors; FILE *fdump; FILE *fkeys; char cmdp = param_getchar(Cmd, 0); switch (cmdp) { case '0' : numSectors = 5; break; case '1' : case '\0': numSectors = 16; break; case '2' : numSectors = 32; break; case '4' : numSectors = 40; break; default: numSectors = 16; } if (strlen(Cmd) > 1 || cmdp == 'h' || cmdp == 'H') { PrintAndLog("Usage: hf mf restore [card memory]"); PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLog(""); PrintAndLog("Samples: hf mf restore"); PrintAndLog(" hf mf restore 4"); return 0; } if ((fkeys = fopen("dumpkeys.bin","rb")) == NULL) { PrintAndLog("Could not find file dumpkeys.bin"); return 1; } size_t bytes_read; for (sectorNo = 0; sectorNo < numSectors; sectorNo++) { bytes_read = fread( keyA[sectorNo], 1, 6, fkeys ); if ( bytes_read != 6) { PrintAndLog("File reading error (dumpkeys.bin)."); fclose(fkeys); return 2; } } for (sectorNo = 0; sectorNo < numSectors; sectorNo++) { bytes_read = fread( keyB[sectorNo], 1, 6, fkeys ); if ( bytes_read != 6) { PrintAndLog("File reading error (dumpkeys.bin)."); fclose(fkeys); return 2; } } fclose(fkeys); if ((fdump = fopen("dumpdata.bin","rb")) == NULL) { PrintAndLog("Could not find file dumpdata.bin"); return 1; } PrintAndLog("Restoring dumpdata.bin to card"); for (sectorNo = 0; sectorNo < numSectors; sectorNo++) { for(blockNo = 0; blockNo < NumBlocksPerSector(sectorNo); blockNo++) { UsbCommand c = {CMD_MIFARE_WRITEBL, {FirstBlockOfSector(sectorNo) + blockNo, keyType, 0}}; memcpy(c.d.asBytes, key, 6); bytes_read = fread(bldata, 1, 16, fdump); if ( bytes_read != 16) { PrintAndLog("File reading error (dumpdata.bin)."); fclose(fdump); fdump = NULL; return 2; } if (blockNo == NumBlocksPerSector(sectorNo) - 1) { // sector trailer bldata[0] = (keyA[sectorNo][0]); bldata[1] = (keyA[sectorNo][1]); bldata[2] = (keyA[sectorNo][2]); bldata[3] = (keyA[sectorNo][3]); bldata[4] = (keyA[sectorNo][4]); bldata[5] = (keyA[sectorNo][5]); bldata[10] = (keyB[sectorNo][0]); bldata[11] = (keyB[sectorNo][1]); bldata[12] = (keyB[sectorNo][2]); bldata[13] = (keyB[sectorNo][3]); bldata[14] = (keyB[sectorNo][4]); bldata[15] = (keyB[sectorNo][5]); } PrintAndLog("Writing to block %3d: %s", FirstBlockOfSector(sectorNo) + blockNo, sprint_hex(bldata, 16)); memcpy(c.d.asBytes + 10, bldata, 16); clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK,&resp,1500)) { uint8_t isOK = resp.arg[0] & 0xff; PrintAndLog("isOk:%02x", isOK); } else { PrintAndLog("Command execute timeout"); } } } fclose(fdump); return 0; } int CmdHF14AMfNested(const char *Cmd) { int i, j, res, iterations; sector *e_sector = NULL; uint8_t blockNo = 0; uint8_t keyType = 0; uint8_t trgBlockNo = 0; uint8_t trgKeyType = 0; uint8_t SectorsCnt = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; uint8_t keyBlock[6*6]; uint64_t key64 = 0; bool transferToEml = false; bool createDumpFile = false; FILE *fkeys; uint8_t standart[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; uint8_t tempkey[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}; if (strlen(Cmd)<3) return usage_hf14_nested(); char cmdp, ctmp; cmdp = param_getchar(Cmd, 0); blockNo = param_get8(Cmd, 1); ctmp = param_getchar(Cmd, 2); if (ctmp != 'a' && ctmp != 'A' && ctmp != 'b' && ctmp != 'B') { PrintAndLog("Key type must be A or B"); return 1; } if (ctmp != 'A' && ctmp != 'a') keyType = 1; if (param_gethex(Cmd, 3, key, 12)) { PrintAndLog("Key must include 12 HEX symbols"); return 1; } if (cmdp == 'o' || cmdp == 'O') { cmdp = 'o'; trgBlockNo = param_get8(Cmd, 4); ctmp = param_getchar(Cmd, 5); if (ctmp != 'a' && ctmp != 'A' && ctmp != 'b' && ctmp != 'B') { PrintAndLog("Target key type must be A or B"); return 1; } if (ctmp != 'A' && ctmp != 'a') trgKeyType = 1; } else { switch (cmdp) { case '0': SectorsCnt = 05; break; case '1': SectorsCnt = 16; break; case '2': SectorsCnt = 32; break; case '4': SectorsCnt = 40; break; default: SectorsCnt = 16; } } ctmp = param_getchar(Cmd, 4); if (ctmp == 't' || ctmp == 'T') transferToEml = true; else if (ctmp == 'd' || ctmp == 'D') createDumpFile = true; ctmp = param_getchar(Cmd, 6); transferToEml |= (ctmp == 't' || ctmp == 'T'); transferToEml |= (ctmp == 'd' || ctmp == 'D'); if (cmdp == 'o') { int16_t isOK = mfnested(blockNo, keyType, key, trgBlockNo, trgKeyType, keyBlock, true); switch (isOK) { case -1 : PrintAndLog("Error: No response from Proxmark.\n"); break; case -2 : PrintAndLog("Button pressed. Aborted.\n"); break; case -3 : PrintAndLog("Tag isn't vulnerable to Nested Attack (random number generator is not predictable).\n"); break; case -4 : PrintAndLog("No valid key found"); break; case -5 : key64 = bytes_to_num(keyBlock, 6); // transfer key to the emulator if (transferToEml) { uint8_t sectortrailer; if (trgBlockNo < 32*4) { // 4 block sector sectortrailer = (trgBlockNo & 0x03) + 3; } else { // 16 block sector sectortrailer = (trgBlockNo & 0x0f) + 15; } mfEmlGetMem(keyBlock, sectortrailer, 1); if (!trgKeyType) num_to_bytes(key64, 6, keyBlock); else num_to_bytes(key64, 6, &keyBlock[10]); mfEmlSetMem(keyBlock, sectortrailer, 1); } return 0; default : PrintAndLog("Unknown Error.\n"); } return 2; } else { // ------------------------------------ multiple sectors working clock_t t1 = clock(); unsigned long elapsed_time; time_t start, end; time(&start); e_sector = calloc(SectorsCnt, sizeof(sector)); if (e_sector == NULL) return 1; //test current key and additional standard keys first memcpy(keyBlock, key, 6); num_to_bytes(0xffffffffffff, 6, (uint8_t*)(keyBlock + 1 * 6)); num_to_bytes(0x000000000000, 6, (uint8_t*)(keyBlock + 2 * 6)); num_to_bytes(0xa0a1a2a3a4a5, 6, (uint8_t*)(keyBlock + 3 * 6)); num_to_bytes(0xb0b1b2b3b4b5, 6, (uint8_t*)(keyBlock + 4 * 6)); num_to_bytes(0xaabbccddeeff, 6, (uint8_t*)(keyBlock + 5 * 6)); PrintAndLog("Testing known keys. Sector count=%d", SectorsCnt); for (i = 0; i < SectorsCnt; i++) { for (j = 0; j < 2; j++) { if (e_sector[i].foundKey[j]) continue; res = mfCheckKeys(FirstBlockOfSector(i), j, true, 6, keyBlock, &key64); if (!res) { e_sector[i].Key[j] = key64; e_sector[i].foundKey[j] = TRUE; } } } clock_t t2 = clock() - t1; time(&end); elapsed_time = difftime(end, start); if ( t2 > 0 ) PrintAndLog("Time to check 6 known keys: %.0f ticks %u seconds\n", (float)t2 , elapsed_time); PrintAndLog("enter nested..."); // nested sectors iterations = 0; bool calibrate = true; for (i = 0; i < NESTED_SECTOR_RETRY; i++) { for (uint8_t sectorNo = 0; sectorNo < SectorsCnt; ++sectorNo) { for (trgKeyType = 0; trgKeyType < 2; ++trgKeyType) { if (e_sector[sectorNo].foundKey[trgKeyType]) continue; int16_t isOK = mfnested(blockNo, keyType, key, FirstBlockOfSector(sectorNo), trgKeyType, keyBlock, calibrate); switch (isOK) { case -1 : PrintAndLog("Error: No response from Proxmark.\n"); break; case -2 : PrintAndLog("Button pressed. Aborted.\n"); break; case -3 : PrintAndLog("Tag isn't vulnerable to Nested Attack (its random number generator is not predictable).\n"); break; case -4 : //key not found calibrate = false; iterations++; continue; case -5 : calibrate = false; iterations++; e_sector[sectorNo].foundKey[trgKeyType] = 1; e_sector[sectorNo].Key[trgKeyType] = bytes_to_num(keyBlock, 6); continue; default : PrintAndLog("Unknown Error.\n"); } free(e_sector); return 2; } } } t1 = clock() - t1; time(&end); elapsed_time = difftime(end, start); if ( t1 > 0 ) PrintAndLog("Time in nested: %.0f ticks %u seconds\n", (float)t1, elapsed_time); // 20160116 If Sector A is found, but not Sector B, try just reading it of the tag? PrintAndLog("trying to read key B..."); for (i = 0; i < SectorsCnt; i++) { // KEY A but not KEY B if ( e_sector[i].foundKey[0] && !e_sector[i].foundKey[1] ) { uint8_t sectrail = (FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1); PrintAndLog("Reading block %d", sectrail); UsbCommand c = {CMD_MIFARE_READBL, {sectrail, 0, 0}}; num_to_bytes(e_sector[i].Key[0], 6, c.d.asBytes); // KEY A clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if ( !WaitForResponseTimeout(CMD_ACK,&resp,1500)) continue; uint8_t isOK = resp.arg[0] & 0xff; if (!isOK) continue; uint8_t *data = resp.d.asBytes; key64 = bytes_to_num(data+10, 6); if (key64) { PrintAndLog("Data:%s", sprint_hex(data+10, 6)); e_sector[i].foundKey[1] = TRUE; e_sector[i].Key[1] = key64; } } } //print them printKeyTable( SectorsCnt, e_sector ); // transfer them to the emulator if (transferToEml) { for (i = 0; i < SectorsCnt; i++) { mfEmlGetMem(keyBlock, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1); if (e_sector[i].foundKey[0]) num_to_bytes(e_sector[i].Key[0], 6, keyBlock); if (e_sector[i].foundKey[1]) num_to_bytes(e_sector[i].Key[1], 6, &keyBlock[10]); mfEmlSetMem(keyBlock, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1); } } // Create dump file if (createDumpFile) { if ((fkeys = fopen("dumpkeys.bin","wb")) == NULL) { PrintAndLog("Could not create file dumpkeys.bin"); free(e_sector); return 1; } PrintAndLog("Printing keys to binary file dumpkeys.bin..."); for(i=0; i= FILE_PATH_SIZE ) { PrintAndLog("File name too long"); free(keyBlock); return 2; } if ( (f = fopen( filename , "r")) ) { while( fgets(buf, sizeof(buf), f) ){ if (strlen(buf) < 12 || buf[11] == '\n') continue; while (fgetc(f) != '\n' && !feof(f)) ; //goto next line if( buf[0]=='#' ) continue; //The line start with # is comment, skip if (!isxdigit(buf[0])){ PrintAndLog("File content error. '%s' must include 12 HEX symbols",buf); continue; } buf[12] = 0; if ( stKeyBlock - keycnt < 2) { p = realloc(keyBlock, 6*(stKeyBlock+=10)); if (!p) { PrintAndLog("Cannot allocate memory for defKeys"); free(keyBlock); fclose(f); return 2; } keyBlock = p; } memset(keyBlock + 6 * keycnt, 0, 6); num_to_bytes(strtoll(buf, NULL, 16), 6, keyBlock + 6*keycnt); PrintAndLog("check key[%2d] %012" PRIx64, keycnt, bytes_to_num(keyBlock + 6*keycnt, 6)); keycnt++; memset(buf, 0, sizeof(buf)); } fclose(f); } else { PrintAndLog("File: %s: not found or locked.", filename); free(keyBlock); return 1; } } } if (keycnt == 0) { PrintAndLog("No key specified, trying default keys"); for (;keycnt < defaultKeysSize; keycnt++) PrintAndLog("key[%2d] %02x%02x%02x%02x%02x%02x", keycnt, (keyBlock + 6*keycnt)[0],(keyBlock + 6*keycnt)[1], (keyBlock + 6*keycnt)[2], (keyBlock + 6*keycnt)[3], (keyBlock + 6*keycnt)[4], (keyBlock + 6*keycnt)[5], 6); } // initialize storage for found keys e_sector = calloc(SectorsCnt, sizeof(sector)); if (e_sector == NULL) { free(keyBlock); return 1; } // empty e_sector for(int i = 0; i < SectorsCnt; ++i){ e_sector[i].Key[0] = 0xffffffffffff; e_sector[i].Key[1] = 0xffffffffffff; e_sector[i].foundKey[0] = FALSE; e_sector[i].foundKey[1] = FALSE; } uint8_t trgKeyType = 0; uint32_t max_keys = keycnt > (USB_CMD_DATA_SIZE/6) ? (USB_CMD_DATA_SIZE/6) : keycnt; // time clock_t t1 = clock(); time_t start, end; time(&start); // check keys. for (trgKeyType = !keyType; trgKeyType < 2; (keyType==2) ? (++trgKeyType) : (trgKeyType=2) ) { int b = blockNo; for (int i = 0; i < SectorsCnt; ++i) { // skip already found keys. if (e_sector[i].foundKey[trgKeyType]) continue; for (uint32_t c = 0; c < keycnt; c += max_keys) { printf("."); fflush(stdout); uint32_t size = keycnt-c > max_keys ? max_keys : keycnt-c; res = mfCheckKeys(b, trgKeyType, true, size, &keyBlock[6*c], &key64); if (!res) { e_sector[i].Key[trgKeyType] = key64; e_sector[i].foundKey[trgKeyType] = TRUE; break; } } b < 127 ? ( b +=4 ) : ( b += 16 ); } } t1 = clock() - t1; time(&end); unsigned long elapsed_time = difftime(end, start); if ( t1 > 0 ) PrintAndLog("\nTime in checkkeys: %.0f ticks %u seconds\n", (float)t1, elapsed_time); // 20160116 If Sector A is found, but not Sector B, try just reading it of the tag? if ( keyType != 1 ) { PrintAndLog("testing to read key B..."); for (i = 0; i < SectorsCnt; i++) { // KEY A but not KEY B if ( e_sector[i].foundKey[0] && !e_sector[i].foundKey[1] ) { uint8_t sectrail = (FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1); PrintAndLog("Reading block %d", sectrail); UsbCommand c = {CMD_MIFARE_READBL, {sectrail, 0, 0}}; num_to_bytes(e_sector[i].Key[0], 6, c.d.asBytes); // KEY A clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if ( !WaitForResponseTimeout(CMD_ACK,&resp,1500)) continue; uint8_t isOK = resp.arg[0] & 0xff; if (!isOK) continue; uint8_t *data = resp.d.asBytes; key64 = bytes_to_num(data+10, 6); if (key64) { PrintAndLog("Data:%s", sprint_hex(data+10, 6)); e_sector[i].foundKey[1] = 1; e_sector[i].Key[1] = key64; } } } } //print them printKeyTable( SectorsCnt, e_sector ); if (transferToEml) { uint8_t block[16] = {0x00}; for (uint8_t i = 0; i < SectorsCnt; ++i ) { mfEmlGetMem(block, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1); if (e_sector[i].foundKey[0]) num_to_bytes(e_sector[i].Key[0], 6, block); if (e_sector[i].foundKey[1]) num_to_bytes(e_sector[i].Key[1], 6, block+10); mfEmlSetMem(block, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1); } PrintAndLog("Found keys have been transferred to the emulator memory"); } if (createDumpFile) { FILE *fkeys = fopen("dumpkeys.bin","wb"); if (fkeys == NULL) { PrintAndLog("Could not create file dumpkeys.bin"); free(keyBlock); free(e_sector); return 1; } PrintAndLog("Printing keys to binary file dumpkeys.bin..."); for( i=0; i>1) , exitAfterNReads , flags , flags); UsbCommand c = {CMD_SIMULATE_MIFARE_CARD, {flags, exitAfterNReads, 0}}; memcpy(c.d.asBytes, uid, sizeof(uid)); clearCommandBuffer(); SendCommand(&c); UsbCommand resp; if(flags & FLAG_INTERACTIVE) { PrintAndLog("Press pm3-button or send another cmd to abort simulation"); while( !ukbhit() ){ if (!WaitForResponseTimeout(CMD_ACK, &resp, 1500) ) continue; if ( !(flags & FLAG_NR_AR_ATTACK) ) break; if ( (resp.arg[0] & 0xffff) != CMD_SIMULATE_MIFARE_CARD ) break; memcpy(data, resp.d.asBytes, sizeof(data)); readerAttack(data[0], setEmulatorMem, verbose); } showSectorTable(); } return 0; } int CmdHF14AMfSniff(const char *Cmd){ bool wantLogToFile = FALSE; bool wantDecrypt = FALSE; //bool wantSaveToEml = FALSE; TODO bool wantSaveToEmlFile = FALSE; //var int tmpchar; int res = 0; int len = 0; int blockLen = 0; int pckNum = 0; int num = 0; uint8_t uid[10]; uint8_t uid_len = 0; uint8_t atqa[2] = {0x00, 0x00}; uint8_t sak = 0; bool isTag = FALSE; uint8_t *buf = NULL; uint16_t bufsize = 0; uint8_t *bufPtr = NULL; uint16_t traceLen = 0; memset(uid, 0x00, sizeof(uid)); char ctmp = param_getchar(Cmd, 0); if ( ctmp == 'h' || ctmp == 'H' ) return usage_hf14_sniff(); for (int i = 0; i < 4; i++) { ctmp = param_getchar(Cmd, i); if (ctmp == 'l' || ctmp == 'L') wantLogToFile = true; if (ctmp == 'd' || ctmp == 'D') wantDecrypt = true; //if (ctmp == 'e' || ctmp == 'E') wantSaveToEml = true; TODO if (ctmp == 'f' || ctmp == 'F') wantSaveToEmlFile = true; } printf("-------------------------------------------------------------------------\n"); printf("Executing mifare sniffing command. \n"); printf("Press the key on the proxmark3 device to abort both proxmark3 and client.\n"); printf("Press the key on pc keyboard to abort the client.\n"); printf("-------------------------------------------------------------------------\n"); UsbCommand c = {CMD_MIFARE_SNIFFER, {0, 0, 0}}; clearCommandBuffer(); SendCommand(&c); // wait cycle while (true) { printf("."); fflush(stdout); if (ukbhit()) { tmpchar = getchar(); (void)tmpchar; printf("\naborted via keyboard!\n"); break; } UsbCommand resp; if (WaitForResponseTimeout(CMD_ACK, &resp, 2000)) { res = resp.arg[0] & 0xff; traceLen = resp.arg[1]; len = resp.arg[2]; // we are done? if (res == 0) { free(buf); return 0; } if (res == 1) { // there is (more) data to be transferred if (pckNum == 0) { // first packet, (re)allocate necessary buffer if (traceLen > bufsize || buf == NULL) { uint8_t *p; if (buf == NULL) // not yet allocated p = malloc(traceLen); else // need more memory p = realloc(buf, traceLen); if (p == NULL) { PrintAndLog("Cannot allocate memory for trace"); free(buf); return 2; } buf = p; } bufPtr = buf; bufsize = traceLen; memset(buf, 0x00, traceLen); } if (bufPtr == NULL) { PrintAndLog("Cannot allocate memory for trace"); free(buf); return 2; } // what happens if LEN is bigger then TRACELEN --iceman memcpy(bufPtr, resp.d.asBytes, len); bufPtr += len; pckNum++; } if (res == 2) { // received all data, start displaying blockLen = bufPtr - buf; bufPtr = buf; printf(">\n"); PrintAndLog("received trace len: %d packages: %d", blockLen, pckNum); while (bufPtr - buf < blockLen) { bufPtr += 6; // skip (void) timing information len = *((uint16_t *)bufPtr); if(len & 0x8000) { isTag = true; len &= 0x7fff; } else { isTag = false; } bufPtr += 2; if ((len == 17) && (bufPtr[0] == 0xff) && (bufPtr[1] == 0xff) && (bufPtr[15] == 0xff) && (bufPtr[16] == 0xff)) { memcpy(uid, bufPtr + 2, 10); memcpy(atqa, bufPtr + 2 + 10, 2); switch (atqa[0] & 0xC0) { case 0x80: uid_len = 10; break; case 0x40: uid_len = 7; break; default: uid_len = 4; break; } sak = bufPtr[14]; PrintAndLog("tag select uid| %s atqa:0x%02x%02x sak:0x%02x", sprint_hex(uid, uid_len), atqa[1], atqa[0], sak); if (wantLogToFile || wantDecrypt) { FillFileNameByUID(logHexFileName, uid, ".log", uid_len); AddLogCurrentDT(logHexFileName); } if (wantDecrypt) mfTraceInit(uid, uid_len, atqa, sak, wantSaveToEmlFile); } else { PrintAndLog("%03d| %s |%s", num, isTag ? "TAG" : "RDR", sprint_hex(bufPtr, len)); if (wantLogToFile) AddLogHex(logHexFileName, isTag ? "TAG| ":"RDR| ", bufPtr, len); if (wantDecrypt) mfTraceDecode(bufPtr, len, wantSaveToEmlFile); num++; } bufPtr += len; bufPtr += ((len-1)/8+1); // ignore parity } pckNum = 0; } } // resp not NULL } // while (true) free(buf); return 0; } int CmdHF14AMfDbg(const char *Cmd) { char ctmp = param_getchar(Cmd, 0); if (strlen(Cmd) < 1 || ctmp == 'h' || ctmp == 'H') return usage_hf14_dbg(); uint8_t dbgMode = param_get8ex(Cmd, 0, 0, 10); if (dbgMode > 4) return usage_hf14_dbg(); UsbCommand c = {CMD_MIFARE_SET_DBGMODE, {dbgMode, 0, 0}}; SendCommand(&c); return 0; } int CmdHF14AMfKeyBrute(const char *Cmd) { uint8_t blockNo = 0, keytype = 0; uint8_t key[6] = {0, 0, 0, 0, 0, 0}; uint64_t foundkey = 0; char cmdp = param_getchar(Cmd, 0); if ( cmdp == 'H' || cmdp == 'h') return usage_hf14_keybrute(); // block number blockNo = param_get8(Cmd, 0); // keytype cmdp = param_getchar(Cmd, 1); if (cmdp == 'B' || cmdp == 'b') keytype = 1; // key if (param_gethex(Cmd, 2, key, 12)) return usage_hf14_keybrute(); clock_t t1 = clock(); time_t start, end; time(&start); if (mfKeyBrute( blockNo, keytype, key, &foundkey)) PrintAndLog("Found valid key: %012" PRIx64 " \n", foundkey); else PrintAndLog("Key not found"); t1 = clock() - t1; time(&end); unsigned long elapsed_time = difftime(end, start); if ( t1 > 0 ) PrintAndLog("\nTime in keybrute: %.0f ticks %u seconds\n", (float)t1, elapsed_time); return 0; } void printKeyTable( uint8_t sectorscnt, sector *e_sector ){ PrintAndLog("|---|----------------|---|----------------|---|"); PrintAndLog("|sec|key A |res|key B |res|"); PrintAndLog("|---|----------------|---|----------------|---|"); for (uint8_t i = 0; i < sectorscnt; ++i) { PrintAndLog("|%03d| %012" PRIx64 " | %d | %012" PRIx64 " | %d |", i, e_sector[i].Key[0], e_sector[i].foundKey[0], e_sector[i].Key[1], e_sector[i].foundKey[1] ); } PrintAndLog("|---|----------------|---|----------------|---|"); } // EMULATOR COMMANDS int CmdHF14AMfEGet(const char *Cmd) { uint8_t blockNo = 0; uint8_t data[16] = {0x00}; if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf eget "); PrintAndLog(" sample: hf mf eget 0 "); return 0; } blockNo = param_get8(Cmd, 0); PrintAndLog(""); if (!mfEmlGetMem(data, blockNo, 1)) { PrintAndLog("data[%3d]:%s", blockNo, sprint_hex(data, 16)); } else { PrintAndLog("Command execute timeout"); } return 0; } int CmdHF14AMfEClear(const char *Cmd) { if (param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf eclr"); PrintAndLog("It set card emulator memory to empty data blocks and key A/B FFFFFFFFFFFF \n"); return 0; } UsbCommand c = {CMD_MIFARE_EML_MEMCLR, {0, 0, 0}}; SendCommand(&c); return 0; } int CmdHF14AMfESet(const char *Cmd) { uint8_t memBlock[16]; uint8_t blockNo = 0; memset(memBlock, 0x00, sizeof(memBlock)); if (strlen(Cmd) < 3 || param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf eset "); PrintAndLog(" sample: hf mf eset 1 000102030405060708090a0b0c0d0e0f "); return 0; } blockNo = param_get8(Cmd, 0); if (param_gethex(Cmd, 1, memBlock, 32)) { PrintAndLog("block data must include 32 HEX symbols"); return 1; } // 1 - blocks count UsbCommand c = {CMD_MIFARE_EML_MEMSET, {blockNo, 1, 0}}; memcpy(c.d.asBytes, memBlock, 16); SendCommand(&c); return 0; } int CmdHF14AMfELoad(const char *Cmd) { FILE * f; char filename[FILE_PATH_SIZE]; char *fnameptr = filename; char buf[64] = {0x00}; uint8_t buf8[64] = {0x00}; int i, len, blockNum, numBlocks; int nameParamNo = 1; uint8_t blockWidth = 32; char ctmp = param_getchar(Cmd, 0); if ( ctmp == 'h' || ctmp == 'H' || ctmp == 0x00) { PrintAndLog("It loads emul dump from the file `filename.eml`"); PrintAndLog("Usage: hf mf eload [card memory] [numblocks]"); PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K, u = UL"); PrintAndLog(""); PrintAndLog(" sample: hf mf eload filename"); PrintAndLog(" hf mf eload 4 filename"); return 0; } switch (ctmp) { case '0' : numBlocks = 5*4; break; case '1' : case '\0': numBlocks = 16*4; break; case '2' : numBlocks = 32*4; break; case '4' : numBlocks = 256; break; case 'U' : // fall through case 'u' : numBlocks = 255; blockWidth = 8; break; default: { numBlocks = 16*4; nameParamNo = 0; } } uint32_t numblk2 = param_get32ex(Cmd,2,0,10); if (numblk2 > 0) numBlocks = numblk2; len = param_getstr(Cmd,nameParamNo,filename); if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5; fnameptr += len; sprintf(fnameptr, ".eml"); // open file f = fopen(filename, "r"); if (f == NULL) { PrintAndLog("File %s not found or locked", filename); return 1; } blockNum = 0; while(!feof(f)){ memset(buf, 0, sizeof(buf)); if (fgets(buf, sizeof(buf), f) == NULL) { if (blockNum >= numBlocks) break; PrintAndLog("File reading error."); fclose(f); return 2; } if (strlen(buf) < blockWidth){ if(strlen(buf) && feof(f)) break; PrintAndLog("File content error. Block data must include %d HEX symbols", blockWidth); fclose(f); return 2; } for (i = 0; i < blockWidth; i += 2) { sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]); } if (mfEmlSetMem_xt(buf8, blockNum, 1, blockWidth/2)) { PrintAndLog("Cant set emul block: %3d", blockNum); fclose(f); return 3; } printf("."); blockNum++; if (blockNum >= numBlocks) break; } fclose(f); printf("\n"); if ((blockNum != numBlocks)) { PrintAndLog("File content error. Got %d must be %d blocks.",blockNum, numBlocks); return 4; } PrintAndLog("Loaded %d blocks from file: %s", blockNum, filename); return 0; } int CmdHF14AMfESave(const char *Cmd) { FILE * f; char filename[FILE_PATH_SIZE]; char * fnameptr = filename; uint8_t buf[64]; int i, j, len, numBlocks; int nameParamNo = 1; memset(filename, 0, sizeof(filename)); memset(buf, 0, sizeof(buf)); char ctmp = param_getchar(Cmd, 0); if ( ctmp == 'h' || ctmp == 'H') { PrintAndLog("It saves emul dump into the file `filename.eml` or `cardID.eml`"); PrintAndLog(" Usage: hf mf esave [card memory] [file name w/o `.eml`]"); PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLog(""); PrintAndLog(" sample: hf mf esave "); PrintAndLog(" hf mf esave 4"); PrintAndLog(" hf mf esave 4 filename"); return 0; } switch (ctmp) { case '0' : numBlocks = 5*4; break; case '1' : case '\0': numBlocks = 16*4; break; case '2' : numBlocks = 32*4; break; case '4' : numBlocks = 256; break; default: { numBlocks = 16*4; nameParamNo = 0; } } len = param_getstr(Cmd,nameParamNo,filename); if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5; // user supplied filename? if (len < 1) { // get filename (UID from memory) if (mfEmlGetMem(buf, 0, 1)) { PrintAndLog("Can\'t get UID from block: %d", 0); len = sprintf(fnameptr, "dump"); fnameptr += len; } else { for (j = 0; j < 7; j++, fnameptr += 2) sprintf(fnameptr, "%02X", buf[j]); } } else { fnameptr += len; } // add file extension sprintf(fnameptr, ".eml"); // open file f = fopen(filename, "w+"); if ( !f ) { PrintAndLog("Can't open file %s ", filename); return 1; } // put hex for (i = 0; i < numBlocks; i++) { if (mfEmlGetMem(buf, i, 1)) { PrintAndLog("Cant get block: %d", i); break; } for (j = 0; j < 16; j++) fprintf(f, "%02X", buf[j]); fprintf(f,"\n"); } fclose(f); PrintAndLog("Saved %d blocks to file: %s", numBlocks, filename); return 0; } int CmdHF14AMfECFill(const char *Cmd) { uint8_t keyType = 0; uint8_t numSectors = 16; if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf ecfill [card memory]"); PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLog(""); PrintAndLog("samples: hf mf ecfill A"); PrintAndLog(" hf mf ecfill A 4"); PrintAndLog("Read card and transfer its data to emulator memory."); PrintAndLog("Keys must be laid in the emulator memory. \n"); return 0; } char ctmp = param_getchar(Cmd, 0); if (ctmp != 'a' && ctmp != 'A' && ctmp != 'b' && ctmp != 'B') { PrintAndLog("Key type must be A or B"); return 1; } if (ctmp != 'A' && ctmp != 'a') keyType = 1; ctmp = param_getchar(Cmd, 1); switch (ctmp) { case '0' : numSectors = 5; break; case '1' : case '\0': numSectors = 16; break; case '2' : numSectors = 32; break; case '4' : numSectors = 40; break; default: numSectors = 16; } printf("--params: numSectors: %d, keyType:%d", numSectors, keyType); UsbCommand c = {CMD_MIFARE_EML_CARDLOAD, {numSectors, keyType, 0}}; SendCommand(&c); return 0; } int CmdHF14AMfEKeyPrn(const char *Cmd) { int i; uint8_t numSectors; uint8_t data[16]; uint64_t keyA, keyB; char cmdp = param_getchar(Cmd, 0); if ( cmdp == 'h' || cmdp == 'H' ) { PrintAndLog("It prints the keys loaded in the emulator memory"); PrintAndLog("Usage: hf mf ekeyprn [card memory]"); PrintAndLog(" [card memory]: 0 = 320 bytes (Mifare Mini), 1 = 1K (default), 2 = 2K, 4 = 4K"); PrintAndLog(""); PrintAndLog(" sample: hf mf ekeyprn 1"); return 0; } switch (cmdp) { case '0' : numSectors = 5; break; case '1' : case '\0': numSectors = 16; break; case '2' : numSectors = 32; break; case '4' : numSectors = 40; break; default: numSectors = 16; } PrintAndLog("|---|----------------|----------------|"); PrintAndLog("|sec|key A |key B |"); PrintAndLog("|---|----------------|----------------|"); for (i = 0; i < numSectors; i++) { if (mfEmlGetMem(data, FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1, 1)) { PrintAndLog("error get block %d", FirstBlockOfSector(i) + NumBlocksPerSector(i) - 1); break; } keyA = bytes_to_num(data, 6); keyB = bytes_to_num(data + 10, 6); PrintAndLog("|%03d| %012" PRIx64 " | %012" PRIx64 " |", i, keyA, keyB); } PrintAndLog("|---|----------------|----------------|"); return 0; } // CHINESE MAGIC COMMANDS int CmdHF14AMfCSetUID(const char *Cmd) { uint8_t wipeCard = 0; uint8_t uid[8] = {0x00}; uint8_t oldUid[8] = {0x00}; uint8_t atqa[2] = {0x00}; uint8_t sak[1] = {0x00}; uint8_t atqaPresent = 1; int res; char ctmp; int argi=0; if (strlen(Cmd) < 1 || param_getchar(Cmd, argi) == 'h') { PrintAndLog("Set UID, ATQA, and SAK for magic Chinese card (only works with such cards)"); PrintAndLog("If you also want to wipe the card then add 'w' at the end of the command line."); PrintAndLog(""); PrintAndLog("Usage: hf mf csetuid [ATQA 4 hex symbols SAK 2 hex symbols] [w]"); PrintAndLog(""); PrintAndLog("sample: hf mf csetuid 01020304"); PrintAndLog(" hf mf csetuid 01020304 0004 08 w"); return 0; } if (param_getchar(Cmd, argi) && param_gethex(Cmd, argi, uid, 8)) { PrintAndLog("UID must include 8 HEX symbols"); return 1; } argi++; ctmp = param_getchar(Cmd, argi); if (ctmp == 'w' || ctmp == 'W') { wipeCard = 1; atqaPresent = 0; } if (atqaPresent) { if (param_getchar(Cmd, argi)) { if (param_gethex(Cmd, argi, atqa, 4)) { PrintAndLog("ATQA must include 4 HEX symbols"); return 1; } argi++; if (!param_getchar(Cmd, argi) || param_gethex(Cmd, argi, sak, 2)) { PrintAndLog("SAK must include 2 HEX symbols"); return 1; } argi++; } else atqaPresent = 0; } if(!wipeCard) { ctmp = param_getchar(Cmd, argi); if (ctmp == 'w' || ctmp == 'W') { wipeCard = 1; } } PrintAndLog("--wipe card:%s uid:%s", (wipeCard)?"YES":"NO", sprint_hex(uid, 4)); res = mfCSetUID(uid, (atqaPresent) ? atqa : NULL, (atqaPresent) ? sak : NULL, oldUid, wipeCard); if (res) { PrintAndLog("Can't set UID. error=%d", res); return 1; } PrintAndLog("old UID:%s", sprint_hex(oldUid, 4)); PrintAndLog("new UID:%s", sprint_hex(uid, 4)); return 0; } int CmdHF14AMfCSetBlk(const char *Cmd) { uint8_t block[16] = {0x00}; uint8_t blockNo = 0; uint8_t params = MAGIC_SINGLE; int res; if (strlen(Cmd) < 1 || param_getchar(Cmd, 0) == 'h') { PrintAndLog("Usage: hf mf csetblk [w]"); PrintAndLog("sample: hf mf csetblk 1 01020304050607080910111213141516"); PrintAndLog("Set block data for magic Chinese card (only works with such cards)"); PrintAndLog("If you also want wipe the card then add 'w' at the end of the command line"); return 0; } blockNo = param_get8(Cmd, 0); if (param_gethex(Cmd, 1, block, 32)) { PrintAndLog("block data must include 32 HEX symbols"); return 1; } char ctmp = param_getchar(Cmd, 2); if (ctmp == 'w' || ctmp == 'W') params |= MAGIC_WIPE; PrintAndLog("--block number:%2d data:%s", blockNo, sprint_hex(block, 16)); res = mfCSetBlock(blockNo, block, NULL, params); if (res) { PrintAndLog("Can't write block. error=%d", res); return 1; } return 0; } int CmdHF14AMfCLoad(const char *Cmd) { FILE * f; char filename[FILE_PATH_SIZE]; char * fnameptr = filename; char buf[64] = {0x00}; uint8_t buf8[64] = {0x00}; uint8_t fillFromEmulator = 0; int i, len, blockNum, flags=0; memset(filename, 0, sizeof(filename)); char ctmp = param_getchar(Cmd, 0); if (ctmp == 'h' || ctmp == 'H' || ctmp == 0x00) { PrintAndLog("It loads magic Chinese card from the file `filename.eml`"); PrintAndLog("or from emulator memory (option `e`)"); PrintAndLog("Usage: hf mf cload "); PrintAndLog(" or: hf mf cload e "); PrintAndLog(" sample: hf mf cload filename"); return 0; } if (ctmp == 'e' || ctmp == 'E') fillFromEmulator = 1; if (fillFromEmulator) { for (blockNum = 0; blockNum < 16 * 4; blockNum += 1) { if (mfEmlGetMem(buf8, blockNum, 1)) { PrintAndLog("Cant get block: %d", blockNum); return 2; } if (blockNum == 0) flags = MAGIC_INIT + MAGIC_WUPC; // switch on field and send magic sequence if (blockNum == 1) flags = 0; // just write if (blockNum == 16 * 4 - 1) flags = MAGIC_HALT + MAGIC_OFF; // Done. Magic Halt and switch off field. if (mfCSetBlock(blockNum, buf8, NULL, flags)) { PrintAndLog("Cant set magic card block: %d", blockNum); return 3; } } return 0; } else { len = strlen(Cmd); if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5; memcpy(filename, Cmd, len); fnameptr += len; sprintf(fnameptr, ".eml"); // open file f = fopen(filename, "r"); if (f == NULL) { PrintAndLog("File not found or locked."); return 1; } blockNum = 0; while(!feof(f)){ memset(buf, 0, sizeof(buf)); if (fgets(buf, sizeof(buf), f) == NULL) { fclose(f); PrintAndLog("File reading error."); return 2; } if (strlen(buf) < 32) { if(strlen(buf) && feof(f)) break; PrintAndLog("File content error. Block data must include 32 HEX symbols"); fclose(f); return 2; } for (i = 0; i < 32; i += 2) sscanf(&buf[i], "%02x", (unsigned int *)&buf8[i / 2]); if (blockNum == 0) flags = MAGIC_INIT + MAGIC_WUPC; // switch on field and send magic sequence if (blockNum == 1) flags = 0; // just write if (blockNum == 16 * 4 - 1) flags = MAGIC_HALT + MAGIC_OFF; // Done. Switch off field. if (mfCSetBlock(blockNum, buf8, NULL, flags)) { PrintAndLog("Can't set magic card block: %d", blockNum); fclose(f); return 3; } blockNum++; if (blockNum >= 16 * 4) break; // magic card type - mifare 1K } fclose(f); // 64 or 256blocks. if (blockNum != 16 * 4 && blockNum != 32 * 4 + 8 * 16){ PrintAndLog("File content error. There must be 64 blocks"); return 4; } PrintAndLog("Loaded from file: %s", filename); return 0; } return 0; } int CmdHF14AMfCGetBlk(const char *Cmd) { uint8_t data[16]; uint8_t blockNo = 0; int res; memset(data, 0x00, sizeof(data)); char ctmp = param_getchar(Cmd, 0); if (strlen(Cmd) < 1 || ctmp == 'h' || ctmp == 'H') { PrintAndLog("Usage: hf mf cgetblk "); PrintAndLog("sample: hf mf cgetblk 1"); PrintAndLog("Get block data from magic Chinese card (only works with such cards)\n"); return 0; } blockNo = param_get8(Cmd, 0); PrintAndLog("--block number:%2d ", blockNo); res = mfCGetBlock(blockNo, data, MAGIC_SINGLE); if (res) { PrintAndLog("Can't read block. error=%d", res); return 1; } PrintAndLog("data: %s", sprint_hex(data, sizeof(data))); return 0; } int CmdHF14AMfCGetSc(const char *Cmd) { uint8_t data[16]; uint8_t sectorNo = 0; int i, res, flags; memset(data, 0x00, sizeof(data)); char ctmp = param_getchar(Cmd, 0); if (strlen(Cmd) < 1 || ctmp == 'h' || ctmp == 'H') { PrintAndLog("Usage: hf mf cgetsc "); PrintAndLog("sample: hf mf cgetsc 0"); PrintAndLog("Get sector data from magic Chinese card (only works with such cards)\n"); return 0; } sectorNo = param_get8(Cmd, 0); if (sectorNo > 15) { PrintAndLog("Sector number must be in [0..15] as in MIFARE classic."); return 1; } PrintAndLog("--sector number:%d ", sectorNo); PrintAndLog("block | data"); flags = MAGIC_INIT + MAGIC_WUPC; for (i = 0; i < 4; i++) { if (i == 1) flags = 0; if (i == 3) flags = MAGIC_HALT + MAGIC_OFF; res = mfCGetBlock(sectorNo * 4 + i, data, flags); if (res) { PrintAndLog("Can't read block. %d error=%d", sectorNo * 4 + i, res); return 1; } PrintAndLog(" %3d | %s", sectorNo * 4 + i, sprint_hex(data, sizeof(data))); } return 0; } int CmdHF14AMfCSave(const char *Cmd) { FILE * f; char filename[FILE_PATH_SIZE]; char * fnameptr = filename; uint8_t fillFromEmulator = 0; uint8_t buf[64]; int i, j, len, flags; memset(filename, 0, sizeof(filename)); memset(buf, 0, sizeof(buf)); char ctmp = param_getchar(Cmd, 0); if ( ctmp == 'h' || ctmp == 'H' ) { PrintAndLog("It saves `magic Chinese` card dump into the file `filename.eml` or `cardID.eml`"); PrintAndLog("or into emulator memory (option `e`)"); PrintAndLog("Usage: hf mf esave [file name w/o `.eml`][e]"); PrintAndLog(" sample: hf mf esave "); PrintAndLog(" hf mf esave filename"); PrintAndLog(" hf mf esave e \n"); return 0; } if (ctmp == 'e' || ctmp == 'E') fillFromEmulator = 1; if (fillFromEmulator) { // put into emulator flags = MAGIC_INIT + MAGIC_WUPC; for (i = 0; i < 16 * 4; i++) { if (i == 1) flags = 0; if (i == 16 * 4 - 1) flags = MAGIC_HALT + MAGIC_OFF; if (mfCGetBlock(i, buf, flags)) { PrintAndLog("Cant get block: %d", i); break; } if (mfEmlSetMem(buf, i, 1)) { PrintAndLog("Cant set emul block: %d", i); return 3; } } return 0; } else { len = strlen(Cmd); if (len > FILE_PATH_SIZE - 5) len = FILE_PATH_SIZE - 5; // get filename based on UID if (len < 1) { if (mfCGetBlock(0, buf, MAGIC_SINGLE)) { PrintAndLog("Cant get block: %d", 0); len = sprintf(fnameptr, "dump"); fnameptr += len; } else { for (j = 0; j < 7; j++, fnameptr += 2) sprintf(fnameptr, "%02x", buf[j]); } } else { memcpy(filename, Cmd, len); fnameptr += len; } // add .eml extension sprintf(fnameptr, ".eml"); // open file f = fopen(filename, "w+"); if (f == NULL) { PrintAndLog("File not found or locked."); return 1; } // put hex flags = MAGIC_INIT + MAGIC_WUPC; for (i = 0; i < 16 * 4; i++) { if (i == 1) flags = 0; if (i == 16 * 4 - 1) flags = MAGIC_HALT + MAGIC_OFF; if (mfCGetBlock(i, buf, flags)) { PrintAndLog("Cant get block: %d", i); break; } for (j = 0; j < 16; j++) fprintf(f, "%02x", buf[j]); fprintf(f,"\n"); } fflush(f); fclose(f); PrintAndLog("Saved to file: %s", filename); return 0; } } //needs nt, ar, at, Data to decrypt int CmdHf14MfDecryptBytes(const char *Cmd){ uint8_t data[50]; uint32_t nt = param_get32ex(Cmd,0,0,16); uint32_t ar_enc = param_get32ex(Cmd,1,0,16); uint32_t at_enc = param_get32ex(Cmd,2,0,16); int len = 0; param_gethex_ex(Cmd, 3, data, &len); len /= 2; int limit = sizeof(data) / 2; if ( len >= limit ) len = limit; return tryDecryptWord( nt, ar_enc, at_enc, data, len); } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"dbg", CmdHF14AMfDbg, 0, "Set default debug mode"}, {"rdbl", CmdHF14AMfRdBl, 0, "Read MIFARE classic block"}, {"rdsc", CmdHF14AMfRdSc, 0, "Read MIFARE classic sector"}, {"dump", CmdHF14AMfDump, 0, "Dump MIFARE classic tag to binary file"}, {"restore", CmdHF14AMfRestore, 0, "Restore MIFARE classic binary file to BLANK tag"}, {"wrbl", CmdHF14AMfWrBl, 0, "Write MIFARE classic block"}, {"chk", CmdHF14AMfChk, 0, "Check keys"}, {"mifare", CmdHF14AMifare, 0, "Darkside attack. read parity error messages."}, {"nested", CmdHF14AMfNested, 0, "Nested attack. Test nested authentication"}, {"hardnested", CmdHF14AMfNestedHard, 0, "Nested attack for hardened Mifare cards"}, {"keybrute", CmdHF14AMfKeyBrute, 0, "J_Run's 2nd phase of multiple sector nested authentication key recovery"}, {"sniff", CmdHF14AMfSniff, 0, "Sniff card-reader communication"}, {"sim", CmdHF14AMf1kSim, 0, "Simulate MIFARE card"}, {"eclr", CmdHF14AMfEClear, 0, "Clear simulator memory block"}, {"eget", CmdHF14AMfEGet, 0, "Get simulator memory block"}, {"eset", CmdHF14AMfESet, 0, "Set simulator memory block"}, {"eload", CmdHF14AMfELoad, 0, "Load from file emul dump"}, {"esave", CmdHF14AMfESave, 0, "Save to file emul dump"}, {"ecfill", CmdHF14AMfECFill, 0, "Fill simulator memory with help of keys from simulator"}, {"ekeyprn", CmdHF14AMfEKeyPrn, 0, "Print keys from simulator memory"}, {"csetuid", CmdHF14AMfCSetUID, 0, "Set UID for magic Chinese card"}, {"csetblk", CmdHF14AMfCSetBlk, 0, "Write block - Magic Chinese card"}, {"cgetblk", CmdHF14AMfCGetBlk, 0, "Read block - Magic Chinese card"}, {"cgetsc", CmdHF14AMfCGetSc, 0, "Read sector - Magic Chinese card"}, {"cload", CmdHF14AMfCLoad, 0, "Load dump into magic Chinese card"}, {"csave", CmdHF14AMfCSave, 0, "Save dump from magic Chinese card into file or emulator"}, {"decrypt", CmdHf14MfDecryptBytes, 1, "[nt] [ar_enc] [at_enc] [data] - to decrypt snoop or trace"}, {NULL, NULL, 0, NULL} }; int CmdHFMF(const char *Cmd) { clearCommandBuffer(); CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }