//----------------------------------------------------------------------------- // Copyright (C) 2016, 2017 by piwi // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license.ch b //----------------------------------------------------------------------------- // Implements a card only attack based on crypto text (encrypted nonces // received during a nested authentication) only. Unlike other card only // attacks this doesn't rely on implementation errors but only on the // inherent weaknesses of the crypto1 cypher. Described in // Carlo Meijer, Roel Verdult, "Ciphertext-only Cryptanalysis on Hardened // Mifare Classic Cards" in Proceedings of the 22nd ACM SIGSAC Conference on // Computer and Communications Security, 2015 //----------------------------------------------------------------------------- // some helper functions which can benefit from SIMD instructions or other special instructions // #include "hardnested_bitarray_core.h" #include "hardnested_bf_core.h" #include #include #include #ifndef __APPLE__ #include #endif // this needs to be compiled several times for each instruction set. // For each instruction set, define a dedicated function name: #if defined (__AVX512F__) #define MALLOC_BITARRAY malloc_bitarray_AVX512 #define FREE_BITARRAY free_bitarray_AVX512 #define BITCOUNT bitcount_AVX512 #define COUNT_STATES count_states_AVX512 #define BITARRAY_AND bitarray_AND_AVX512 #define BITARRAY_LOW20_AND bitarray_low20_AND_AVX512 #define COUNT_BITARRAY_AND count_bitarray_AND_AVX512 #define COUNT_BITARRAY_LOW20_AND count_bitarray_low20_AND_AVX512 #define BITARRAY_AND4 bitarray_AND4_AVX512 #define BITARRAY_OR bitarray_OR_AVX512 #define COUNT_BITARRAY_AND2 count_bitarray_AND2_AVX512 #define COUNT_BITARRAY_AND3 count_bitarray_AND3_AVX512 #define COUNT_BITARRAY_AND4 count_bitarray_AND4_AVX512 #elif defined (__AVX2__) #define MALLOC_BITARRAY malloc_bitarray_AVX2 #define FREE_BITARRAY free_bitarray_AVX2 #define BITCOUNT bitcount_AVX2 #define COUNT_STATES count_states_AVX2 #define BITARRAY_AND bitarray_AND_AVX2 #define BITARRAY_LOW20_AND bitarray_low20_AND_AVX2 #define COUNT_BITARRAY_AND count_bitarray_AND_AVX2 #define COUNT_BITARRAY_LOW20_AND count_bitarray_low20_AND_AVX2 #define BITARRAY_AND4 bitarray_AND4_AVX2 #define BITARRAY_OR bitarray_OR_AVX2 #define COUNT_BITARRAY_AND2 count_bitarray_AND2_AVX2 #define COUNT_BITARRAY_AND3 count_bitarray_AND3_AVX2 #define COUNT_BITARRAY_AND4 count_bitarray_AND4_AVX2 #elif defined (__AVX__) #define MALLOC_BITARRAY malloc_bitarray_AVX #define FREE_BITARRAY free_bitarray_AVX #define BITCOUNT bitcount_AVX #define COUNT_STATES count_states_AVX #define BITARRAY_AND bitarray_AND_AVX #define BITARRAY_LOW20_AND bitarray_low20_AND_AVX #define COUNT_BITARRAY_AND count_bitarray_AND_AVX #define COUNT_BITARRAY_LOW20_AND count_bitarray_low20_AND_AVX #define BITARRAY_AND4 bitarray_AND4_AVX #define BITARRAY_OR bitarray_OR_AVX #define COUNT_BITARRAY_AND2 count_bitarray_AND2_AVX #define COUNT_BITARRAY_AND3 count_bitarray_AND3_AVX #define COUNT_BITARRAY_AND4 count_bitarray_AND4_AVX #elif defined (__SSE2__) #define MALLOC_BITARRAY malloc_bitarray_SSE2 #define FREE_BITARRAY free_bitarray_SSE2 #define BITCOUNT bitcount_SSE2 #define COUNT_STATES count_states_SSE2 #define BITARRAY_AND bitarray_AND_SSE2 #define BITARRAY_LOW20_AND bitarray_low20_AND_SSE2 #define COUNT_BITARRAY_AND count_bitarray_AND_SSE2 #define COUNT_BITARRAY_LOW20_AND count_bitarray_low20_AND_SSE2 #define BITARRAY_AND4 bitarray_AND4_SSE2 #define BITARRAY_OR bitarray_OR_SSE2 #define COUNT_BITARRAY_AND2 count_bitarray_AND2_SSE2 #define COUNT_BITARRAY_AND3 count_bitarray_AND3_SSE2 #define COUNT_BITARRAY_AND4 count_bitarray_AND4_SSE2 #elif defined (__MMX__) #define MALLOC_BITARRAY malloc_bitarray_MMX #define FREE_BITARRAY free_bitarray_MMX #define BITCOUNT bitcount_MMX #define COUNT_STATES count_states_MMX #define BITARRAY_AND bitarray_AND_MMX #define BITARRAY_LOW20_AND bitarray_low20_AND_MMX #define COUNT_BITARRAY_AND count_bitarray_AND_MMX #define COUNT_BITARRAY_LOW20_AND count_bitarray_low20_AND_MMX #define BITARRAY_AND4 bitarray_AND4_MMX #define BITARRAY_OR bitarray_OR_MMX #define COUNT_BITARRAY_AND2 count_bitarray_AND2_MMX #define COUNT_BITARRAY_AND3 count_bitarray_AND3_MMX #define COUNT_BITARRAY_AND4 count_bitarray_AND4_MMX #elif defined (__ARM_NEON) && !defined (NOSIMD_BUILD) #define MALLOC_BITARRAY malloc_bitarray_NEON #define FREE_BITARRAY free_bitarray_NEON #define BITCOUNT bitcount_NEON #define COUNT_STATES count_states_NEON #define BITARRAY_AND bitarray_AND_NEON #define BITARRAY_LOW20_AND bitarray_low20_AND_NEON #define COUNT_BITARRAY_AND count_bitarray_AND_NEON #define COUNT_BITARRAY_LOW20_AND count_bitarray_low20_AND_NEON #define BITARRAY_AND4 bitarray_AND4_NEON #define BITARRAY_OR bitarray_OR_NEON #define COUNT_BITARRAY_AND2 count_bitarray_AND2_NEON #define COUNT_BITARRAY_AND3 count_bitarray_AND3_NEON #define COUNT_BITARRAY_AND4 count_bitarray_AND4_NEON #else #define MALLOC_BITARRAY malloc_bitarray_NOSIMD #define FREE_BITARRAY free_bitarray_NOSIMD #define BITCOUNT bitcount_NOSIMD #define COUNT_STATES count_states_NOSIMD #define BITARRAY_AND bitarray_AND_NOSIMD #define BITARRAY_LOW20_AND bitarray_low20_AND_NOSIMD #define COUNT_BITARRAY_AND count_bitarray_AND_NOSIMD #define COUNT_BITARRAY_LOW20_AND count_bitarray_low20_AND_NOSIMD #define BITARRAY_AND4 bitarray_AND4_NOSIMD #define BITARRAY_OR bitarray_OR_NOSIMD #define COUNT_BITARRAY_AND2 count_bitarray_AND2_NOSIMD #define COUNT_BITARRAY_AND3 count_bitarray_AND3_NOSIMD #define COUNT_BITARRAY_AND4 count_bitarray_AND4_NOSIMD #endif // typedefs and declaration of functions: typedef uint32_t *malloc_bitarray_t(uint32_t); malloc_bitarray_t malloc_bitarray_AVX512, malloc_bitarray_AVX2, malloc_bitarray_AVX, malloc_bitarray_SSE2, malloc_bitarray_MMX, malloc_bitarray_NOSIMD, malloc_bitarray_NEON, malloc_bitarray_dispatch; typedef void free_bitarray_t(uint32_t *); free_bitarray_t free_bitarray_AVX512, free_bitarray_AVX2, free_bitarray_AVX, free_bitarray_SSE2, free_bitarray_MMX, free_bitarray_NOSIMD, free_bitarray_NEON, free_bitarray_dispatch; typedef uint32_t bitcount_t(uint32_t); bitcount_t bitcount_AVX512, bitcount_AVX2, bitcount_AVX, bitcount_SSE2, bitcount_MMX, bitcount_NOSIMD, bitcount_NEON, bitcount_dispatch; typedef uint32_t count_states_t(uint32_t *); count_states_t count_states_AVX512, count_states_AVX2, count_states_AVX, count_states_SSE2, count_states_MMX, count_states_NOSIMD, count_states_NEON, count_states_dispatch; typedef void bitarray_AND_t(uint32_t[], uint32_t[]); bitarray_AND_t bitarray_AND_AVX512, bitarray_AND_AVX2, bitarray_AND_AVX, bitarray_AND_SSE2, bitarray_AND_MMX, bitarray_AND_NOSIMD, bitarray_AND_NEON, bitarray_AND_dispatch; typedef void bitarray_low20_AND_t(uint32_t *, uint32_t *); bitarray_low20_AND_t bitarray_low20_AND_AVX512, bitarray_low20_AND_AVX2, bitarray_low20_AND_AVX, bitarray_low20_AND_SSE2, bitarray_low20_AND_MMX, bitarray_low20_AND_NOSIMD, bitarray_low20_AND_NEON, bitarray_low20_AND_dispatch; typedef uint32_t count_bitarray_AND_t(uint32_t *, uint32_t *); count_bitarray_AND_t count_bitarray_AND_AVX512, count_bitarray_AND_AVX2, count_bitarray_AND_AVX, count_bitarray_AND_SSE2, count_bitarray_AND_MMX, count_bitarray_AND_NOSIMD, count_bitarray_AND_NEON, count_bitarray_AND_dispatch; typedef uint32_t count_bitarray_low20_AND_t(uint32_t *, uint32_t *); count_bitarray_low20_AND_t count_bitarray_low20_AND_AVX512, count_bitarray_low20_AND_AVX2, count_bitarray_low20_AND_AVX, count_bitarray_low20_AND_SSE2, count_bitarray_low20_AND_MMX, count_bitarray_low20_AND_NOSIMD, count_bitarray_low20_AND_NEON, count_bitarray_low20_AND_dispatch; typedef void bitarray_AND4_t(uint32_t *, uint32_t *, uint32_t *, uint32_t *); bitarray_AND4_t bitarray_AND4_AVX512, bitarray_AND4_AVX2, bitarray_AND4_AVX, bitarray_AND4_SSE2, bitarray_AND4_MMX, bitarray_AND4_NOSIMD, bitarray_AND4_NEON, bitarray_AND4_dispatch; typedef void bitarray_OR_t(uint32_t[], uint32_t[]); bitarray_OR_t bitarray_OR_AVX512, bitarray_OR_AVX2, bitarray_OR_AVX, bitarray_OR_SSE2, bitarray_OR_MMX, bitarray_OR_NOSIMD, bitarray_OR_NEON, bitarray_OR_dispatch; typedef uint32_t count_bitarray_AND2_t(uint32_t *, uint32_t *); count_bitarray_AND2_t count_bitarray_AND2_AVX512, count_bitarray_AND2_AVX2, count_bitarray_AND2_AVX, count_bitarray_AND2_SSE2, count_bitarray_AND2_MMX, count_bitarray_AND2_NOSIMD, count_bitarray_AND2_NEON, count_bitarray_AND2_dispatch; typedef uint32_t count_bitarray_AND3_t(uint32_t *, uint32_t *, uint32_t *); count_bitarray_AND3_t count_bitarray_AND3_AVX512, count_bitarray_AND3_AVX2, count_bitarray_AND3_AVX, count_bitarray_AND3_SSE2, count_bitarray_AND3_MMX, count_bitarray_AND3_NOSIMD, count_bitarray_AND3_NEON, count_bitarray_AND3_dispatch; typedef uint32_t count_bitarray_AND4_t(uint32_t *, uint32_t *, uint32_t *, uint32_t *); count_bitarray_AND4_t count_bitarray_AND4_AVX512, count_bitarray_AND4_AVX2, count_bitarray_AND4_AVX, count_bitarray_AND4_SSE2, count_bitarray_AND4_MMX, count_bitarray_AND4_NOSIMD, count_bitarray_AND4_NEON, count_bitarray_AND4_dispatch; inline uint32_t *MALLOC_BITARRAY(uint32_t x) { #if defined (_WIN32) return __builtin_assume_aligned(_aligned_malloc((x), __BIGGEST_ALIGNMENT__), __BIGGEST_ALIGNMENT__); #elif defined (__APPLE__) uint32_t *allocated_memory; if (posix_memalign((void **)&allocated_memory, __BIGGEST_ALIGNMENT__, x)) { return NULL; } else { return __builtin_assume_aligned(allocated_memory, __BIGGEST_ALIGNMENT__); } #else return __builtin_assume_aligned(memalign(__BIGGEST_ALIGNMENT__, (x)), __BIGGEST_ALIGNMENT__); #endif } inline void FREE_BITARRAY(uint32_t *x) { #ifdef _WIN32 _aligned_free(x); #else free(x); #endif } inline uint32_t BITCOUNT(uint32_t a) { return __builtin_popcountl(a); } inline uint32_t COUNT_STATES(uint32_t *A) { uint32_t count = 0; for (uint32_t i = 0; i < (1 << 19); i++) { count += BITCOUNT(A[i]); } return count; } inline void BITARRAY_AND(uint32_t *restrict A, uint32_t *restrict B) { A = __builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__); B = __builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__); for (uint32_t i = 0; i < (1 << 19); i++) { A[i] &= B[i]; } } inline void BITARRAY_LOW20_AND(uint32_t *restrict A, uint32_t *restrict B) { uint16_t *a = (uint16_t *)__builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__); uint16_t *b = (uint16_t *)__builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__); for (uint32_t i = 0; i < (1 << 20); i++) { if (!b[i]) { a[i] = 0; } } } inline uint32_t COUNT_BITARRAY_AND(uint32_t *restrict A, uint32_t *restrict B) { A = __builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__); B = __builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__); uint32_t count = 0; for (uint32_t i = 0; i < (1 << 19); i++) { A[i] &= B[i]; count += BITCOUNT(A[i]); } return count; } inline uint32_t COUNT_BITARRAY_LOW20_AND(uint32_t *restrict A, uint32_t *restrict B) { uint16_t *a = (uint16_t *)__builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__); uint16_t *b = (uint16_t *)__builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__); uint32_t count = 0; for (uint32_t i = 0; i < (1 << 20); i++) { if (!b[i]) { a[i] = 0; } count += BITCOUNT(a[i]); } return count; } inline void BITARRAY_AND4(uint32_t *restrict A, uint32_t *restrict B, uint32_t *restrict C, uint32_t *restrict D) { A = __builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__); B = __builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__); C = __builtin_assume_aligned(C, __BIGGEST_ALIGNMENT__); D = __builtin_assume_aligned(D, __BIGGEST_ALIGNMENT__); for (uint32_t i = 0; i < (1 << 19); i++) { A[i] = B[i] & C[i] & D[i]; } } inline void BITARRAY_OR(uint32_t *restrict A, uint32_t *restrict B) { A = __builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__); B = __builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__); for (uint32_t i = 0; i < (1 << 19); i++) { A[i] |= B[i]; } } inline uint32_t COUNT_BITARRAY_AND2(uint32_t *restrict A, uint32_t *restrict B) { A = __builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__); B = __builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__); uint32_t count = 0; for (uint32_t i = 0; i < (1 << 19); i++) { count += BITCOUNT(A[i] & B[i]); } return count; } inline uint32_t COUNT_BITARRAY_AND3(uint32_t *restrict A, uint32_t *restrict B, uint32_t *restrict C) { A = __builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__); B = __builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__); C = __builtin_assume_aligned(C, __BIGGEST_ALIGNMENT__); uint32_t count = 0; for (uint32_t i = 0; i < (1 << 19); i++) { count += BITCOUNT(A[i] & B[i] & C[i]); } return count; } inline uint32_t COUNT_BITARRAY_AND4(uint32_t *restrict A, uint32_t *restrict B, uint32_t *restrict C, uint32_t *restrict D) { A = __builtin_assume_aligned(A, __BIGGEST_ALIGNMENT__); B = __builtin_assume_aligned(B, __BIGGEST_ALIGNMENT__); C = __builtin_assume_aligned(C, __BIGGEST_ALIGNMENT__); D = __builtin_assume_aligned(D, __BIGGEST_ALIGNMENT__); uint32_t count = 0; for (uint32_t i = 0; i < (1 << 19); i++) { count += BITCOUNT(A[i] & B[i] & C[i] & D[i]); } return count; } #ifdef NOSIMD_BUILD // pointers to functions: malloc_bitarray_t *malloc_bitarray_function_p = &malloc_bitarray_dispatch; free_bitarray_t *free_bitarray_function_p = &free_bitarray_dispatch; bitcount_t *bitcount_function_p = &bitcount_dispatch; count_states_t *count_states_function_p = &count_states_dispatch; bitarray_AND_t *bitarray_AND_function_p = &bitarray_AND_dispatch; bitarray_low20_AND_t *bitarray_low20_AND_function_p = &bitarray_low20_AND_dispatch; count_bitarray_AND_t *count_bitarray_AND_function_p = &count_bitarray_AND_dispatch; count_bitarray_low20_AND_t *count_bitarray_low20_AND_function_p = &count_bitarray_low20_AND_dispatch; bitarray_AND4_t *bitarray_AND4_function_p = &bitarray_AND4_dispatch; bitarray_OR_t *bitarray_OR_function_p = &bitarray_OR_dispatch; count_bitarray_AND2_t *count_bitarray_AND2_function_p = &count_bitarray_AND2_dispatch; count_bitarray_AND3_t *count_bitarray_AND3_function_p = &count_bitarray_AND3_dispatch; count_bitarray_AND4_t *count_bitarray_AND4_function_p = &count_bitarray_AND4_dispatch; // determine the available instruction set at runtime and call the correct function uint32_t *malloc_bitarray_dispatch(uint32_t x) { #if defined(COMPILER_HAS_SIMD_NEON) if (arm_has_neon()) malloc_bitarray_function_p = &malloc_bitarray_NEON; else #endif #if defined(COMPILER_HAS_SIMD_AVX512) if (__builtin_cpu_supports("avx512f")) malloc_bitarray_function_p = &malloc_bitarray_AVX512; else #endif #if defined(COMPILER_HAS_SIMD_X86) if (__builtin_cpu_supports("avx2")) malloc_bitarray_function_p = &malloc_bitarray_AVX2; else if (__builtin_cpu_supports("avx")) malloc_bitarray_function_p = &malloc_bitarray_AVX; else if (__builtin_cpu_supports("sse2")) malloc_bitarray_function_p = &malloc_bitarray_SSE2; else if (__builtin_cpu_supports("mmx")) malloc_bitarray_function_p = &malloc_bitarray_MMX; else #endif malloc_bitarray_function_p = &malloc_bitarray_NOSIMD; // call the most optimized function for this CPU return (*malloc_bitarray_function_p)(x); } void free_bitarray_dispatch(uint32_t *x) { #if defined(COMPILER_HAS_SIMD_NEON) if (arm_has_neon()) free_bitarray_function_p = &free_bitarray_NEON; else #endif #if defined(COMPILER_HAS_SIMD_AVX512) if (__builtin_cpu_supports("avx512f")) free_bitarray_function_p = &free_bitarray_AVX512; else #endif #if defined(COMPILER_HAS_SIMD_X86) if (__builtin_cpu_supports("avx2")) free_bitarray_function_p = &free_bitarray_AVX2; else if (__builtin_cpu_supports("avx")) free_bitarray_function_p = &free_bitarray_AVX; else if (__builtin_cpu_supports("sse2")) free_bitarray_function_p = &free_bitarray_SSE2; else if (__builtin_cpu_supports("mmx")) free_bitarray_function_p = &free_bitarray_MMX; else #endif free_bitarray_function_p = &free_bitarray_NOSIMD; // call the most optimized function for this CPU (*free_bitarray_function_p)(x); } uint32_t bitcount_dispatch(uint32_t a) { #if defined(COMPILER_HAS_SIMD_NEON) if (arm_has_neon()) bitcount_function_p = &bitcount_NEON; else #endif #if defined(COMPILER_HAS_SIMD_AVX512) if (__builtin_cpu_supports("avx512f")) bitcount_function_p = &bitcount_AVX512; else #endif #if defined(COMPILER_HAS_SIMD_X86) if (__builtin_cpu_supports("avx2")) bitcount_function_p = &bitcount_AVX2; else if (__builtin_cpu_supports("avx")) bitcount_function_p = &bitcount_AVX; else if (__builtin_cpu_supports("sse2")) bitcount_function_p = &bitcount_SSE2; else if (__builtin_cpu_supports("mmx")) bitcount_function_p = &bitcount_MMX; else #endif bitcount_function_p = &bitcount_NOSIMD; // call the most optimized function for this CPU return (*bitcount_function_p)(a); } uint32_t count_states_dispatch(uint32_t *bitarray) { #if defined(COMPILER_HAS_SIMD_NEON) if (arm_has_neon()) count_states_function_p = &count_states_NEON; else #endif #if defined(COMPILER_HAS_SIMD_AVX512) if (__builtin_cpu_supports("avx512f")) count_states_function_p = &count_states_AVX512; else #endif #if defined(COMPILER_HAS_SIMD_X86) if (__builtin_cpu_supports("avx2")) count_states_function_p = &count_states_AVX2; else if (__builtin_cpu_supports("avx")) count_states_function_p = &count_states_AVX; else if (__builtin_cpu_supports("sse2")) count_states_function_p = &count_states_SSE2; else if (__builtin_cpu_supports("mmx")) count_states_function_p = &count_states_MMX; else #endif count_states_function_p = &count_states_NOSIMD; // call the most optimized function for this CPU return (*count_states_function_p)(bitarray); } void bitarray_AND_dispatch(uint32_t *A, uint32_t *B) { #if defined(COMPILER_HAS_SIMD_NEON) if (arm_has_neon()) bitarray_AND_function_p = &bitarray_AND_NEON; else #endif #if defined(COMPILER_HAS_SIMD_AVX512) if (__builtin_cpu_supports("avx512f")) bitarray_AND_function_p = &bitarray_AND_AVX512; else #endif #if defined(COMPILER_HAS_SIMD_X86) if (__builtin_cpu_supports("avx2")) bitarray_AND_function_p = &bitarray_AND_AVX2; else if (__builtin_cpu_supports("avx")) bitarray_AND_function_p = &bitarray_AND_AVX; else if (__builtin_cpu_supports("sse2")) bitarray_AND_function_p = &bitarray_AND_SSE2; else if (__builtin_cpu_supports("mmx")) bitarray_AND_function_p = &bitarray_AND_MMX; else #endif bitarray_AND_function_p = &bitarray_AND_NOSIMD; // call the most optimized function for this CPU (*bitarray_AND_function_p)(A, B); } void bitarray_low20_AND_dispatch(uint32_t *A, uint32_t *B) { #if defined(COMPILER_HAS_SIMD_NEON) if (arm_has_neon()) bitarray_low20_AND_function_p = &bitarray_low20_AND_NEON; else #endif #if defined(COMPILER_HAS_SIMD_AVX512) if (__builtin_cpu_supports("avx512f")) bitarray_low20_AND_function_p = &bitarray_low20_AND_AVX512; else #endif #if defined(COMPILER_HAS_SIMD_X86) if (__builtin_cpu_supports("avx2")) bitarray_low20_AND_function_p = &bitarray_low20_AND_AVX2; else if (__builtin_cpu_supports("avx")) bitarray_low20_AND_function_p = &bitarray_low20_AND_AVX; else if (__builtin_cpu_supports("sse2")) bitarray_low20_AND_function_p = &bitarray_low20_AND_SSE2; else if (__builtin_cpu_supports("mmx")) bitarray_low20_AND_function_p = &bitarray_low20_AND_MMX; else #endif bitarray_low20_AND_function_p = &bitarray_low20_AND_NOSIMD; // call the most optimized function for this CPU (*bitarray_low20_AND_function_p)(A, B); } uint32_t count_bitarray_AND_dispatch(uint32_t *A, uint32_t *B) { #if defined(COMPILER_HAS_SIMD_NEON) if (arm_has_neon()) count_bitarray_AND_function_p = &count_bitarray_AND_NEON; else #endif #if defined(COMPILER_HAS_SIMD_AVX512) if (__builtin_cpu_supports("avx512f")) count_bitarray_AND_function_p = &count_bitarray_AND_AVX512; else #endif #if defined(COMPILER_HAS_SIMD_X86) if (__builtin_cpu_supports("avx2")) count_bitarray_AND_function_p = &count_bitarray_AND_AVX2; else if (__builtin_cpu_supports("avx")) count_bitarray_AND_function_p = &count_bitarray_AND_AVX; else if (__builtin_cpu_supports("sse2")) count_bitarray_AND_function_p = &count_bitarray_AND_SSE2; else if (__builtin_cpu_supports("mmx")) count_bitarray_AND_function_p = &count_bitarray_AND_MMX; else #endif count_bitarray_AND_function_p = &count_bitarray_AND_NOSIMD; // call the most optimized function for this CPU return (*count_bitarray_AND_function_p)(A, B); } uint32_t count_bitarray_low20_AND_dispatch(uint32_t *A, uint32_t *B) { #if defined(COMPILER_HAS_SIMD_NEON) if (arm_has_neon()) count_bitarray_low20_AND_function_p = &count_bitarray_low20_AND_NEON; else #endif #if defined(COMPILER_HAS_SIMD_AVX512) if (__builtin_cpu_supports("avx512f")) count_bitarray_low20_AND_function_p = &count_bitarray_low20_AND_AVX512; else #endif #if defined(COMPILER_HAS_SIMD_X86) if (__builtin_cpu_supports("avx2")) count_bitarray_low20_AND_function_p = &count_bitarray_low20_AND_AVX2; else if (__builtin_cpu_supports("avx")) count_bitarray_low20_AND_function_p = &count_bitarray_low20_AND_AVX; else if (__builtin_cpu_supports("sse2")) count_bitarray_low20_AND_function_p = &count_bitarray_low20_AND_SSE2; else if (__builtin_cpu_supports("mmx")) count_bitarray_low20_AND_function_p = &count_bitarray_low20_AND_MMX; else #endif count_bitarray_low20_AND_function_p = &count_bitarray_low20_AND_NOSIMD; // call the most optimized function for this CPU return (*count_bitarray_low20_AND_function_p)(A, B); } void bitarray_AND4_dispatch(uint32_t *A, uint32_t *B, uint32_t *C, uint32_t *D) { #if defined(COMPILER_HAS_SIMD_NEON) if (arm_has_neon()) bitarray_AND4_function_p = &bitarray_AND4_NEON; else #endif #if defined(COMPILER_HAS_SIMD_AVX512) if (__builtin_cpu_supports("avx512f")) bitarray_AND4_function_p = &bitarray_AND4_AVX512; else #endif #if defined(COMPILER_HAS_SIMD_X86) if (__builtin_cpu_supports("avx2")) bitarray_AND4_function_p = &bitarray_AND4_AVX2; else if (__builtin_cpu_supports("avx")) bitarray_AND4_function_p = &bitarray_AND4_AVX; else if (__builtin_cpu_supports("sse2")) bitarray_AND4_function_p = &bitarray_AND4_SSE2; else if (__builtin_cpu_supports("mmx")) bitarray_AND4_function_p = &bitarray_AND4_MMX; else #endif bitarray_AND4_function_p = &bitarray_AND4_NOSIMD; // call the most optimized function for this CPU (*bitarray_AND4_function_p)(A, B, C, D); } void bitarray_OR_dispatch(uint32_t *A, uint32_t *B) { #if defined(COMPILER_HAS_SIMD_NEON) if (arm_has_neon()) bitarray_OR_function_p = &bitarray_OR_NEON; else #endif #if defined(COMPILER_HAS_SIMD_AVX512) if (__builtin_cpu_supports("avx512f")) bitarray_OR_function_p = &bitarray_OR_AVX512; else #endif #if defined(COMPILER_HAS_SIMD_X86) if (__builtin_cpu_supports("avx2")) bitarray_OR_function_p = &bitarray_OR_AVX2; else if (__builtin_cpu_supports("avx")) bitarray_OR_function_p = &bitarray_OR_AVX; else if (__builtin_cpu_supports("sse2")) bitarray_OR_function_p = &bitarray_OR_SSE2; else if (__builtin_cpu_supports("mmx")) bitarray_OR_function_p = &bitarray_OR_MMX; else #endif bitarray_OR_function_p = &bitarray_OR_NOSIMD; // call the most optimized function for this CPU (*bitarray_OR_function_p)(A, B); } uint32_t count_bitarray_AND2_dispatch(uint32_t *A, uint32_t *B) { #if defined(COMPILER_HAS_SIMD_NEON) if (arm_has_neon()) count_bitarray_AND2_function_p = &count_bitarray_AND2_NEON; else #endif #if defined(COMPILER_HAS_SIMD_AVX512) if (__builtin_cpu_supports("avx512f")) count_bitarray_AND2_function_p = &count_bitarray_AND2_AVX512; else #endif #if defined(COMPILER_HAS_SIMD_X86) if (__builtin_cpu_supports("avx2")) count_bitarray_AND2_function_p = &count_bitarray_AND2_AVX2; else if (__builtin_cpu_supports("avx")) count_bitarray_AND2_function_p = &count_bitarray_AND2_AVX; else if (__builtin_cpu_supports("sse2")) count_bitarray_AND2_function_p = &count_bitarray_AND2_SSE2; else if (__builtin_cpu_supports("mmx")) count_bitarray_AND2_function_p = &count_bitarray_AND2_MMX; else #endif count_bitarray_AND2_function_p = &count_bitarray_AND2_NOSIMD; // call the most optimized function for this CPU return (*count_bitarray_AND2_function_p)(A, B); } uint32_t count_bitarray_AND3_dispatch(uint32_t *A, uint32_t *B, uint32_t *C) { #if defined(COMPILER_HAS_SIMD_NEON) if (arm_has_neon()) count_bitarray_AND3_function_p = &count_bitarray_AND3_NEON; else #endif #if defined(COMPILER_HAS_SIMD_AVX512) if (__builtin_cpu_supports("avx512f")) count_bitarray_AND3_function_p = &count_bitarray_AND3_AVX512; else #endif #if defined(COMPILER_HAS_SIMD_X86) if (__builtin_cpu_supports("avx2")) count_bitarray_AND3_function_p = &count_bitarray_AND3_AVX2; else if (__builtin_cpu_supports("avx")) count_bitarray_AND3_function_p = &count_bitarray_AND3_AVX; else if (__builtin_cpu_supports("sse2")) count_bitarray_AND3_function_p = &count_bitarray_AND3_SSE2; else if (__builtin_cpu_supports("mmx")) count_bitarray_AND3_function_p = &count_bitarray_AND3_MMX; else #endif count_bitarray_AND3_function_p = &count_bitarray_AND3_NOSIMD; // call the most optimized function for this CPU return (*count_bitarray_AND3_function_p)(A, B, C); } uint32_t count_bitarray_AND4_dispatch(uint32_t *A, uint32_t *B, uint32_t *C, uint32_t *D) { #if defined(COMPILER_HAS_SIMD_NEON) if (arm_has_neon()) count_bitarray_AND4_function_p = &count_bitarray_AND4_NEON; else #endif #if defined(COMPILER_HAS_SIMD_AVX512) if (__builtin_cpu_supports("avx512f")) count_bitarray_AND4_function_p = &count_bitarray_AND4_AVX512; else #endif #if defined(COMPILER_HAS_SIMD_X86) if (__builtin_cpu_supports("avx2")) count_bitarray_AND4_function_p = &count_bitarray_AND4_AVX2; else if (__builtin_cpu_supports("avx")) count_bitarray_AND4_function_p = &count_bitarray_AND4_AVX; else if (__builtin_cpu_supports("sse2")) count_bitarray_AND4_function_p = &count_bitarray_AND4_SSE2; else if (__builtin_cpu_supports("mmx")) count_bitarray_AND4_function_p = &count_bitarray_AND4_MMX; else #endif count_bitarray_AND4_function_p = &count_bitarray_AND4_NOSIMD; // call the most optimized function for this CPU return (*count_bitarray_AND4_function_p)(A, B, C, D); } ///////////////////////////////////////////////77 // Entries to dispatched function calls uint32_t *malloc_bitarray(uint32_t x) { return (*malloc_bitarray_function_p)(x); } void free_bitarray(uint32_t *x) { (*free_bitarray_function_p)(x); } uint32_t bitcount(uint32_t a) { return (*bitcount_function_p)(a); } uint32_t count_states(uint32_t *A) { return (*count_states_function_p)(A); } void bitarray_AND(uint32_t *A, uint32_t *B) { (*bitarray_AND_function_p)(A, B); } void bitarray_low20_AND(uint32_t *A, uint32_t *B) { (*bitarray_low20_AND_function_p)(A, B); } uint32_t count_bitarray_AND(uint32_t *A, uint32_t *B) { return (*count_bitarray_AND_function_p)(A, B); } uint32_t count_bitarray_low20_AND(uint32_t *A, uint32_t *B) { return (*count_bitarray_low20_AND_function_p)(A, B); } void bitarray_AND4(uint32_t *A, uint32_t *B, uint32_t *C, uint32_t *D) { (*bitarray_AND4_function_p)(A, B, C, D); } void bitarray_OR(uint32_t *A, uint32_t *B) { (*bitarray_OR_function_p)(A, B); } uint32_t count_bitarray_AND2(uint32_t *A, uint32_t *B) { return (*count_bitarray_AND2_function_p)(A, B); } uint32_t count_bitarray_AND3(uint32_t *A, uint32_t *B, uint32_t *C) { return (*count_bitarray_AND3_function_p)(A, B, C); } uint32_t count_bitarray_AND4(uint32_t *A, uint32_t *B, uint32_t *C, uint32_t *D) { return (*count_bitarray_AND4_function_p)(A, B, C, D); } #endif