//----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Data and Graph commands //----------------------------------------------------------------------------- #include // also included in util.h #include // also included in util.h #include // for CmdNorm INT_MIN && INT_MAX #include "data.h" // also included in util.h #include "cmddata.h" #include "util.h" #include "cmdmain.h" #include "proxmark3.h" #include "ui.h" // for show graph controls #include "graph.h" // for graph data #include "cmdparser.h"// already included in cmdmain.h #include "usb_cmd.h" // already included in cmdmain.h and proxmark3.h #include "lfdemod.h" // for demod code #include "crc.h" // for pyramid checksum maxim #include "crc16.h" // for FDXB demod checksum #include "loclass/cipherutils.h" // for decimating samples in getsamples uint8_t DemodBuffer[MAX_DEMOD_BUF_LEN]; uint8_t g_debugMode=0; size_t DemodBufferLen=0; static int CmdHelp(const char *Cmd); int usage_data_printdemodbuf(void){ PrintAndLog("Usage: data printdemodbuffer x o l "); PrintAndLog("Options:"); PrintAndLog(" h This help"); PrintAndLog(" x output in hex (omit for binary output)"); PrintAndLog(" o enter offset in # of bits"); PrintAndLog(" l enter length to print in # of bits or hex characters respectively"); return 0; } int usage_data_askem410xdemod(void){ PrintAndLog("Usage: data askem410xdemod [clock] <0|1> [maxError]"); PrintAndLog(" [set clock as integer] optional, if not set, autodetect."); PrintAndLog(" , 1 for invert output"); PrintAndLog(" [set maximum allowed errors], default = 100."); PrintAndLog(""); PrintAndLog(" sample: data askem410xdemod = demod an EM410x Tag ID from GraphBuffer"); PrintAndLog(" : data askem410xdemod 32 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32"); PrintAndLog(" : data askem410xdemod 32 1 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/32 and inverting data"); PrintAndLog(" : data askem410xdemod 1 = demod an EM410x Tag ID from GraphBuffer while inverting data"); PrintAndLog(" : data askem410xdemod 64 1 0 = demod an EM410x Tag ID from GraphBuffer using a clock of RF/64 and inverting data and allowing 0 demod errors"); return 0; } int usage_data_manrawdecode(void){ PrintAndLog("Usage: data manrawdecode [invert] [maxErr]"); PrintAndLog(" Takes 10 and 01 and converts to 0 and 1 respectively"); PrintAndLog(" --must have binary sequence in demodbuffer (run data askrawdemod first)"); PrintAndLog(" [invert] invert output"); PrintAndLog(" [maxErr] set number of errors allowed (default = 20)"); PrintAndLog(""); PrintAndLog(" sample: data manrawdecode = decode manchester bitstream from the demodbuffer"); return 0; } int usage_data_biphaserawdecode(void){ PrintAndLog("Usage: data biphaserawdecode [offset] [invert] [maxErr]"); PrintAndLog(" Converts 10 or 01 to 1 and 11 or 00 to 0"); PrintAndLog(" --must have binary sequence in demodbuffer (run data askrawdemod first)"); PrintAndLog(" --invert for Conditional Dephase Encoding (CDP) AKA Differential Manchester"); PrintAndLog(""); PrintAndLog(" [offset <0|1>], set to 0 not to adjust start position or to 1 to adjust decode start position"); PrintAndLog(" [invert <0|1>], set to 1 to invert output"); PrintAndLog(" [maxErr int], set max errors tolerated - default=20"); PrintAndLog(""); PrintAndLog(" sample: data biphaserawdecode = decode biphase bitstream from the demodbuffer"); PrintAndLog(" sample: data biphaserawdecode 1 1 = decode biphase bitstream from the demodbuffer, set offset, and invert output"); return 0; } int usage_data_rawdemod(void){ PrintAndLog("Usage: data rawdemod [modulation] |"); PrintAndLog(" [modulation] as 2 char, 'ab' for ask/biphase, 'am' for ask/manchester, 'ar' for ask/raw, 'fs' for fsk, ..."); PrintAndLog(" 'nr' for nrz/direct, 'p1' for psk1, 'p2' for psk2"); PrintAndLog(" as 'h', prints the help for the specific modulation"); PrintAndLog(" see specific modulation help for optional parameters"); PrintAndLog(""); PrintAndLog(" sample: data rawdemod fs h = print help specific to fsk demod"); PrintAndLog(" : data rawdemod fs = demod GraphBuffer using: fsk - autodetect"); PrintAndLog(" : data rawdemod ab = demod GraphBuffer using: ask/biphase - autodetect"); PrintAndLog(" : data rawdemod am = demod GraphBuffer using: ask/manchester - autodetect"); PrintAndLog(" : data rawdemod ar = demod GraphBuffer using: ask/raw - autodetect"); PrintAndLog(" : data rawdemod nr = demod GraphBuffer using: nrz/direct - autodetect"); PrintAndLog(" : data rawdemod p1 = demod GraphBuffer using: psk1 - autodetect"); PrintAndLog(" : data rawdemod p2 = demod GraphBuffer using: psk2 - autodetect"); return 0; } int usage_data_rawdemod_am(void){ PrintAndLog("Usage: data rawdemod am [clock] [maxError] [maxLen] [amplify]"); PrintAndLog(" ['s'] optional, check for Sequence Terminator"); PrintAndLog(" [set clock as integer] optional, if not set, autodetect"); PrintAndLog(" , 1 to invert output"); PrintAndLog(" [set maximum allowed errors], default = 100"); PrintAndLog(" [set maximum Samples to read], default = 32768 (512 bits at rf/64)"); PrintAndLog(" , 'a' to attempt demod with ask amplification, default = no amp"); PrintAndLog(""); PrintAndLog(" sample: data rawdemod am = demod an ask/manchester tag from GraphBuffer"); PrintAndLog(" : data rawdemod am 32 = demod an ask/manchester tag from GraphBuffer using a clock of RF/32"); PrintAndLog(" : data rawdemod am 32 1 = demod an ask/manchester tag from GraphBuffer using a clock of RF/32 and inverting data"); PrintAndLog(" : data rawdemod am 1 = demod an ask/manchester tag from GraphBuffer while inverting data"); PrintAndLog(" : data rawdemod am 64 1 0 = demod an ask/manchester tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors"); return 0; } int usage_data_rawdemod_ab(void){ PrintAndLog("Usage: data rawdemod ab [offset] [clock] [maxError] [maxLen] "); PrintAndLog(" [offset], offset to begin biphase, default=0"); PrintAndLog(" [set clock as integer] optional, if not set, autodetect"); PrintAndLog(" , 1 to invert output"); PrintAndLog(" [set maximum allowed errors], default = 100"); PrintAndLog(" [set maximum Samples to read], default = 32768 (512 bits at rf/64)"); PrintAndLog(" , 'a' to attempt demod with ask amplification, default = no amp"); PrintAndLog(" NOTE: can be entered as second or third argument"); PrintAndLog(" NOTE: can be entered as first, second or last argument"); PrintAndLog(" NOTE: any other arg must have previous args set to work"); PrintAndLog(""); PrintAndLog(" NOTE: --invert for Conditional Dephase Encoding (CDP) AKA Differential Manchester"); PrintAndLog(""); PrintAndLog(" sample: data rawdemod ab = demod an ask/biph tag from GraphBuffer"); PrintAndLog(" : data rawdemod ab 0 a = demod an ask/biph tag from GraphBuffer, amplified"); PrintAndLog(" : data rawdemod ab 1 32 = demod an ask/biph tag from GraphBuffer using an offset of 1 and a clock of RF/32"); PrintAndLog(" : data rawdemod ab 0 32 1 = demod an ask/biph tag from GraphBuffer using a clock of RF/32 and inverting data"); PrintAndLog(" : data rawdemod ab 0 1 = demod an ask/biph tag from GraphBuffer while inverting data"); PrintAndLog(" : data rawdemod ab 0 64 1 0 = demod an ask/biph tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors"); PrintAndLog(" : data rawdemod ab 0 64 1 0 0 a = demod an ask/biph tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors, and amp"); return 0; } int usage_data_rawdemod_ar(void){ PrintAndLog("Usage: data rawdemod ar [clock] [maxError] [maxLen] [amplify]"); PrintAndLog(" [set clock as integer] optional, if not set, autodetect"); PrintAndLog(" , 1 to invert output"); PrintAndLog(" [set maximum allowed errors], default = 100"); PrintAndLog(" [set maximum Samples to read], default = 32768 (1024 bits at rf/64)"); PrintAndLog(" , 'a' to attempt demod with ask amplification, default = no amp"); PrintAndLog(""); PrintAndLog(" sample: data rawdemod ar = demod an ask tag from GraphBuffer"); PrintAndLog(" : data rawdemod ar a = demod an ask tag from GraphBuffer, amplified"); PrintAndLog(" : data rawdemod ar 32 = demod an ask tag from GraphBuffer using a clock of RF/32"); PrintAndLog(" : data rawdemod ar 32 1 = demod an ask tag from GraphBuffer using a clock of RF/32 and inverting data"); PrintAndLog(" : data rawdemod ar 1 = demod an ask tag from GraphBuffer while inverting data"); PrintAndLog(" : data rawdemod ar 64 1 0 = demod an ask tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors"); PrintAndLog(" : data rawdemod ar 64 1 0 0 a = demod an ask tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors, and amp"); return 0; } int usage_data_rawdemod_fs(void){ PrintAndLog("Usage: data rawdemod fs [clock] [fchigh] [fclow]"); PrintAndLog(" [set clock as integer] optional, omit for autodetect."); PrintAndLog(" , 1 for invert output, can be used even if the clock is omitted"); PrintAndLog(" [fchigh], larger field clock length, omit for autodetect"); PrintAndLog(" [fclow], small field clock length, omit for autodetect"); PrintAndLog(""); PrintAndLog(" sample: data rawdemod fs = demod an fsk tag from GraphBuffer using autodetect"); PrintAndLog(" : data rawdemod fs 32 = demod an fsk tag from GraphBuffer using a clock of RF/32, autodetect fc"); PrintAndLog(" : data rawdemod fs 1 = demod an fsk tag from GraphBuffer using autodetect, invert output"); PrintAndLog(" : data rawdemod fs 32 1 = demod an fsk tag from GraphBuffer using a clock of RF/32, invert output, autodetect fc"); PrintAndLog(" : data rawdemod fs 64 0 8 5 = demod an fsk1 RF/64 tag from GraphBuffer"); PrintAndLog(" : data rawdemod fs 50 0 10 8 = demod an fsk2 RF/50 tag from GraphBuffer"); PrintAndLog(" : data rawdemod fs 50 1 10 8 = demod an fsk2a RF/50 tag from GraphBuffer"); return 0; } int usage_data_rawdemod_nr(void){ PrintAndLog("Usage: data rawdemod nr [clock] <0|1> [maxError]"); PrintAndLog(" [set clock as integer] optional, if not set, autodetect."); PrintAndLog(" , 1 for invert output"); PrintAndLog(" [set maximum allowed errors], default = 100."); PrintAndLog(""); PrintAndLog(" sample: data rawdemod nr = demod a nrz/direct tag from GraphBuffer"); PrintAndLog(" : data rawdemod nr 32 = demod a nrz/direct tag from GraphBuffer using a clock of RF/32"); PrintAndLog(" : data rawdemod nr 32 1 = demod a nrz/direct tag from GraphBuffer using a clock of RF/32 and inverting data"); PrintAndLog(" : data rawdemod nr 1 = demod a nrz/direct tag from GraphBuffer while inverting data"); PrintAndLog(" : data rawdemod nr 64 1 0 = demod a nrz/direct tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors"); return 0; } int usage_data_rawdemod_p1(void){ PrintAndLog("Usage: data rawdemod p1 [clock] <0|1> [maxError]"); PrintAndLog(" [set clock as integer] optional, if not set, autodetect."); PrintAndLog(" , 1 for invert output"); PrintAndLog(" [set maximum allowed errors], default = 100."); PrintAndLog(""); PrintAndLog(" sample: data rawdemod p1 = demod a psk1 tag from GraphBuffer"); PrintAndLog(" : data rawdemod p1 32 = demod a psk1 tag from GraphBuffer using a clock of RF/32"); PrintAndLog(" : data rawdemod p1 32 1 = demod a psk1 tag from GraphBuffer using a clock of RF/32 and inverting data"); PrintAndLog(" : data rawdemod p1 1 = demod a psk1 tag from GraphBuffer while inverting data"); PrintAndLog(" : data rawdemod p1 64 1 0 = demod a psk1 tag from GraphBuffer using a clock of RF/64, inverting data and allowing 0 demod errors"); return 0; } int usage_data_rawdemod_p2(void){ PrintAndLog("Usage: data rawdemod p2 [clock] <0|1> [maxError]"); PrintAndLog(" [set clock as integer] optional, if not set, autodetect."); PrintAndLog(" , 1 for invert output"); PrintAndLog(" [set maximum allowed errors], default = 100."); PrintAndLog(""); PrintAndLog(" sample: data rawdemod p2 = demod a psk2 tag from GraphBuffer, autodetect clock"); PrintAndLog(" : data rawdemod p2 32 = demod a psk2 tag from GraphBuffer using a clock of RF/32"); PrintAndLog(" : data rawdemod p2 32 1 = demod a psk2 tag from GraphBuffer using a clock of RF/32 and inverting output"); PrintAndLog(" : data rawdemod p2 1 = demod a psk2 tag from GraphBuffer, autodetect clock and invert output"); PrintAndLog(" : data rawdemod p2 64 1 0 = demod a psk2 tag from GraphBuffer using a clock of RF/64, inverting output and allowing 0 demod errors"); return 0; } int usage_data_autocorr(void) { PrintAndLog("Usage: data autocorr [window] [g]"); PrintAndLog("Options:"); PrintAndLog(" h This help"); PrintAndLog(" [window] window length for correlation - default = 4000"); PrintAndLog(" g save back to GraphBuffer (overwrite)"); return 0; } int usage_data_undecimate(void){ PrintAndLog("Usage: data undec [factor]"); PrintAndLog("This function performs un-decimation, by repeating each sample N times"); PrintAndLog("Options: "); PrintAndLog(" h This help"); PrintAndLog(" factor The number of times to repeat each sample.[default:2]"); PrintAndLog("Example: 'data undec 3'"); return 0; } int usage_data_detectclock(void){ PrintAndLog("Usage: data detectclock [modulation] "); PrintAndLog(" [modulation as char], specify the modulation type you want to detect the clock of"); PrintAndLog(" , specify the clock (optional - to get best start position only)"); PrintAndLog(" 'a' = ask, 'f' = fsk, 'n' = nrz/direct, 'p' = psk"); PrintAndLog(""); PrintAndLog(" sample: data detectclock a = detect the clock of an ask modulated wave in the GraphBuffer"); PrintAndLog(" data detectclock f = detect the clock of an fsk modulated wave in the GraphBuffer"); PrintAndLog(" data detectclock p = detect the clock of an psk modulated wave in the GraphBuffer"); PrintAndLog(" data detectclock n = detect the clock of an nrz/direct modulated wave in the GraphBuffer"); return 0; } int usage_data_hex2bin(void){ PrintAndLog("Usage: data hex2bin "); PrintAndLog(" This function will ignore all non-hexadecimal characters (but stop reading on whitespace)"); return 0; } int usage_data_bin2hex(void){ PrintAndLog("Usage: data bin2hex "); PrintAndLog(" This function will ignore all characters not 1 or 0 (but stop reading on whitespace)"); return 0; } //set the demod buffer with given array of binary (one bit per byte) //by marshmellow void setDemodBuf(uint8_t *buff, size_t size, size_t startIdx) { if (buff == NULL) return; if ( size >= MAX_DEMOD_BUF_LEN) size = MAX_DEMOD_BUF_LEN; size_t i = 0; for (; i < size; i++){ DemodBuffer[i]=buff[startIdx++]; } DemodBufferLen = size; } int CmdSetDebugMode(const char *Cmd) { int demod=0; sscanf(Cmd, "%i", &demod); g_debugMode=(uint8_t)demod; return 1; } //by marshmellow void printDemodBuff(void) { int bitLen = DemodBufferLen; if (bitLen<1) { PrintAndLog("no bits found in demod buffer"); return; } if (bitLen>512) bitLen=512; //max output to 512 bits if we have more - should be plenty char *bin = sprint_bin_break(DemodBuffer, bitLen,16); PrintAndLog("%s",bin); return; } int CmdPrintDemodBuff(const char *Cmd) { char hex[512]={0x00}; bool hexMode = false; bool errors = false; uint32_t offset = 0; //could be size_t but no param_get16... uint32_t length = 512; char cmdp = 0; while(param_getchar(Cmd, cmdp) != 0x00) { switch(param_getchar(Cmd, cmdp)) { case 'h': case 'H': return usage_data_printdemodbuf(); case 'x': case 'X': hexMode = true; cmdp++; break; case 'o': case 'O': offset = param_get32ex(Cmd, cmdp+1, 0, 10); if (!offset) errors = true; cmdp += 2; break; case 'l': case 'L': length = param_get32ex(Cmd, cmdp+1, 512, 10); if (!length) errors = true; cmdp += 2; break; default: PrintAndLog("Unknown parameter '%c'", param_getchar(Cmd, cmdp)); errors = true; break; } if(errors) break; } //Validations if(errors) return usage_data_printdemodbuf(); length = (length > (DemodBufferLen-offset)) ? DemodBufferLen-offset : length; int numBits = (length) & 0x00FFC; //make sure we don't exceed our string if (hexMode){ char *buf = (char *) (DemodBuffer + offset); numBits = (numBits > sizeof(hex)) ? sizeof(hex) : numBits; numBits = binarraytohex(hex, buf, numBits); if (numBits==0) return 0; PrintAndLog("DemodBuffer: %s",hex); } else { PrintAndLog("DemodBuffer:\n%s", sprint_bin_break(DemodBuffer+offset,numBits,16)); } return 1; } //by marshmellow //this function strictly converts >1 to 1 and <1 to 0 for each sample in the graphbuffer int CmdGetBitStream(const char *Cmd) { int i; CmdHpf(Cmd); for (i = 0; i < GraphTraceLen; i++) { if (GraphBuffer[i] >= 1) { GraphBuffer[i] = 1; } else { GraphBuffer[i] = 0; } } RepaintGraphWindow(); return 0; } //by marshmellow //print 64 bit EM410x ID in multiple formats void printEM410x(uint32_t hi, uint64_t id) { if (id || hi){ uint64_t iii=1; uint64_t id2lo=0; uint32_t ii=0; uint32_t i=0; for (ii=5; ii>0;ii--){ for (i=0;i<8;i++){ id2lo=(id2lo<<1LL) | ((id & (iii << (i+((ii-1)*8)))) >> (i+((ii-1)*8))); } } if (hi){ //output 88 bit em id PrintAndLog("\nEM TAG ID : %06X%016llX", hi, id); } else{ //output 40 bit em id PrintAndLog("\nEM TAG ID : %010llX", id); PrintAndLog("Unique TAG ID : %010llX", id2lo); PrintAndLog("\nPossible de-scramble patterns"); PrintAndLog("HoneyWell IdentKey {"); PrintAndLog("DEZ 8 : %08lld",id & 0xFFFFFF); PrintAndLog("DEZ 10 : %010lld",id & 0xFFFFFFFF); PrintAndLog("DEZ 5.5 : %05lld.%05lld",(id>>16LL) & 0xFFFF,(id & 0xFFFF)); PrintAndLog("DEZ 3.5A : %03lld.%05lld",(id>>32ll),(id & 0xFFFF)); PrintAndLog("DEZ 3.5B : %03lld.%05lld",(id & 0xFF000000) >> 24,(id & 0xFFFF)); PrintAndLog("DEZ 3.5C : %03lld.%05lld",(id & 0xFF0000) >> 16,(id & 0xFFFF)); PrintAndLog("DEZ 14/IK2 : %014lld",id); PrintAndLog("DEZ 15/IK3 : %015lld",id2lo); PrintAndLog("DEZ 20/ZK : %02lld%02lld%02lld%02lld%02lld%02lld%02lld%02lld%02lld%02lld", (id2lo & 0xf000000000) >> 36, (id2lo & 0x0f00000000) >> 32, (id2lo & 0x00f0000000) >> 28, (id2lo & 0x000f000000) >> 24, (id2lo & 0x0000f00000) >> 20, (id2lo & 0x00000f0000) >> 16, (id2lo & 0x000000f000) >> 12, (id2lo & 0x0000000f00) >> 8, (id2lo & 0x00000000f0) >> 4, (id2lo & 0x000000000f) ); uint64_t paxton = (((id>>32) << 24) | (id & 0xffffff)) + 0x143e00; PrintAndLog("}\nOther : %05lld_%03lld_%08lld",(id&0xFFFF),((id>>16LL) & 0xFF),(id & 0xFFFFFF)); PrintAndLog("Pattern Paxton : %lld [0x%llX]", paxton, paxton); uint32_t p1id = (id & 0xFFFFFF); uint8_t arr[32] = {0x00}; int i =0; int j = 23; for (; i < 24; ++i, --j ){ arr[i] = (p1id >> i) & 1; } uint32_t p1 = 0; p1 |= arr[23] << 21; p1 |= arr[22] << 23; p1 |= arr[21] << 20; p1 |= arr[20] << 22; p1 |= arr[19] << 18; p1 |= arr[18] << 16; p1 |= arr[17] << 19; p1 |= arr[16] << 17; p1 |= arr[15] << 13; p1 |= arr[14] << 15; p1 |= arr[13] << 12; p1 |= arr[12] << 14; p1 |= arr[11] << 6; p1 |= arr[10] << 2; p1 |= arr[9] << 7; p1 |= arr[8] << 1; p1 |= arr[7] << 0; p1 |= arr[6] << 8; p1 |= arr[5] << 11; p1 |= arr[4] << 3; p1 |= arr[3] << 10; p1 |= arr[2] << 4; p1 |= arr[1] << 5; p1 |= arr[0] << 9; PrintAndLog("Pattern 1 : %d [0x%X]", p1, p1); uint16_t sebury1 = id & 0xFFFF; uint8_t sebury2 = (id >> 16) & 0x7F; uint32_t sebury3 = id & 0x7FFFFF; PrintAndLog("Pattern Sebury : %d %d %d [0x%X 0x%X 0x%X]", sebury1, sebury2, sebury3, sebury1, sebury2, sebury3); } } return; } int AskEm410xDecode(bool verbose, uint32_t *hi, uint64_t *lo ) { size_t idx = 0; size_t size = DemodBufferLen; uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0}; memcpy(BitStream, DemodBuffer, size); int ans = Em410xDecode(BitStream, &size, &idx, hi, lo); if ( ans < 0){ if (g_debugMode){ if (ans == -1) PrintAndLog("DEBUG: Error - Em410x not only 0|1 in decoded bitstream"); else if (ans == -3) PrintAndLog("DEBUG: Error - Em410x Size not correct: %d", size); else if (ans == -4) PrintAndLog("DEBUG: Error - Em410x preamble not found"); else if (ans == -5) PrintAndLog("DEBUG: Error - Em410x parity failed"); } return 0; } //set GraphBuffer for clone or sim command setDemodBuf(BitStream, size, idx); if (g_debugMode){ PrintAndLog("DEBUG: idx: %d, Len: %d, Printing Demod Buffer:", idx, size); printDemodBuff(); } if (verbose){ PrintAndLog("EM410x pattern found: "); printEM410x(*hi, *lo); } return 1; } int AskEm410xDemod(const char *Cmd, uint32_t *hi, uint64_t *lo, bool verbose) { bool st = TRUE; if (!ASKDemod_ext(Cmd, FALSE, FALSE, 1, &st)) return 0; return AskEm410xDecode(verbose, hi, lo); } //by marshmellow //takes 3 arguments - clock, invert and maxErr as integers //attempts to demodulate ask while decoding manchester //prints binary found and saves in graphbuffer for further commands int CmdAskEM410xDemod(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') return usage_data_askem410xdemod(); uint64_t lo = 0; uint32_t hi = 0; return AskEm410xDemod(Cmd, &hi, &lo, true); } //by marshmellow //Cmd Args: Clock, invert, maxErr, maxLen as integers and amplify as char == 'a' // (amp may not be needed anymore) //verbose will print results and demoding messages //emSearch will auto search for EM410x format in bitstream //askType switches decode: ask/raw = 0, ask/manchester = 1 int ASKDemod_ext(const char *Cmd, bool verbose, bool emSearch, uint8_t askType, bool *stCheck) { int invert=0; int clk=0; int maxErr=100; int maxLen=0; uint8_t askAmp = 0; char amp = param_getchar(Cmd, 0); uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0}; sscanf(Cmd, "%i %i %i %i %c", &clk, &invert, &maxErr, &maxLen, &); if (!maxLen) maxLen = BIGBUF_SIZE; if (invert != 0 && invert != 1) { PrintAndLog("Invalid argument: %s", Cmd); return 0; } if (clk==1){ invert=1; clk=0; } if (amp == 'a' || amp == 'A') askAmp=1; size_t BitLen = getFromGraphBuf(BitStream); if (g_debugMode) PrintAndLog("DEBUG: Bitlen from grphbuff: %d",BitLen); if (BitLen<255) return 0; if (maxLenmaxErr){ if (g_debugMode) PrintAndLog("DEBUG: Too many errors found, errors:%d, bits:%d, clock:%d",errCnt, BitLen, clk); return 0; } if (verbose || g_debugMode) PrintAndLog("\nUsing Clock:%d, Invert:%d, Bits Found:%d",clk,invert,BitLen); //output setDemodBuf(BitStream,BitLen,0); if (verbose || g_debugMode){ if (errCnt>0) PrintAndLog("# Errors during Demoding (shown as 7 in bit stream): %d",errCnt); if (askType) PrintAndLog("ASK/Manchester - Clock: %d - Decoded bitstream:",clk); else PrintAndLog("ASK/Raw - Clock: %d - Decoded bitstream:",clk); // Now output the bitstream to the scrollback by line of 16 bits printDemodBuff(); } uint64_t lo = 0; uint32_t hi = 0; if (emSearch){ AskEm410xDecode(true, &hi, &lo); } return 1; } int ASKDemod(const char *Cmd, bool verbose, bool emSearch, uint8_t askType) { bool st = false; return ASKDemod_ext(Cmd, verbose, emSearch, askType, &st); } //by marshmellow //takes 5 arguments - clock, invert, maxErr, maxLen as integers and amplify as char == 'a' //attempts to demodulate ask while decoding manchester //prints binary found and saves in graphbuffer for further commands int Cmdaskmandemod(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) > 25 || cmdp == 'h' || cmdp == 'H') return usage_data_rawdemod_am(); bool st = TRUE; if (Cmd[0]=='s') return ASKDemod_ext(Cmd++, TRUE, TRUE, 1, &st); else if (Cmd[1] == 's') return ASKDemod_ext(Cmd+=2, TRUE, TRUE, 1, &st); else return ASKDemod(Cmd, TRUE, TRUE, 1); } //by marshmellow //manchester decode //stricktly take 10 and 01 and convert to 0 and 1 int Cmdmandecoderaw(const char *Cmd) { int i =0; int errCnt=0; size_t size=0; int invert=0; int maxErr = 20; char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) > 5 || cmdp == 'h' || cmdp == 'H') return usage_data_manrawdecode(); if (DemodBufferLen==0) return 0; uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0}; int high=0,low=0; for (;ihigh) high=DemodBuffer[i]; else if(DemodBuffer[i]7 || low <0 ){ PrintAndLog("Error: please raw demod the wave first then manchester raw decode"); return 0; } sscanf(Cmd, "%i %i", &invert, &maxErr); size=i; errCnt=manrawdecode(BitStream, &size, invert); if (errCnt>=maxErr){ PrintAndLog("Too many errors: %d",errCnt); return 0; } PrintAndLog("Manchester Decoded - # errors:%d - data:",errCnt); PrintAndLog("%s", sprint_bin_break(BitStream, size, 16)); if (errCnt==0){ uint64_t id = 0; uint32_t hi = 0; size_t idx=0; if (Em410xDecode(BitStream, &size, &idx, &hi, &id)){ //need to adjust to set bitstream back to manchester encoded data //setDemodBuf(BitStream, size, idx); printEM410x(hi, id); } } return 1; } //by marshmellow //biphase decode //take 01 or 10 = 0 and 11 or 00 = 1 //takes 2 arguments "offset" default = 0 if 1 it will shift the decode by one bit // and "invert" default = 0 if 1 it will invert output // the argument offset allows us to manually shift if the output is incorrect - [EDIT: now auto detects] int CmdBiphaseDecodeRaw(const char *Cmd) { size_t size=0; int offset=0, invert=0, maxErr=20, errCnt=0; char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) > 3 || cmdp == 'h' || cmdp == 'H') return usage_data_biphaserawdecode(); sscanf(Cmd, "%i %i %i", &offset, &invert, &maxErr); if (DemodBufferLen==0){ PrintAndLog("DemodBuffer Empty - run 'data rawdemod ar' first"); return 0; } uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0}; memcpy(BitStream, DemodBuffer, DemodBufferLen); size = DemodBufferLen; errCnt=BiphaseRawDecode(BitStream, &size, offset, invert); if (errCnt<0){ PrintAndLog("Error during decode:%d", errCnt); return 0; } if (errCnt>maxErr){ PrintAndLog("Too many errors attempting to decode: %d",errCnt); return 0; } if (errCnt>0){ PrintAndLog("# Errors found during Demod (shown as 7 in bit stream): %d",errCnt); } PrintAndLog("Biphase Decoded using offset: %d - # invert:%d - data:",offset,invert); PrintAndLog("%s", sprint_bin_break(BitStream, size, 16)); if (offset) setDemodBuf(DemodBuffer,DemodBufferLen-offset, offset); //remove first bit from raw demod return 1; } //by marshmellow // - ASK Demod then Biphase decode GraphBuffer samples int ASKbiphaseDemod(const char *Cmd, bool verbose) { //ask raw demod GraphBuffer first int offset=0, clk=0, invert=0, maxErr=0; sscanf(Cmd, "%i %i %i %i", &offset, &clk, &invert, &maxErr); uint8_t BitStream[MAX_DEMOD_BUF_LEN]; size_t size = getFromGraphBuf(BitStream); if (size == 0 ) { if (g_debugMode) PrintAndLog("DEBUG: no data in graphbuf"); return 0; } //invert here inverts the ask raw demoded bits which has no effect on the demod, but we need the pointer int errCnt = askdemod(BitStream, &size, &clk, &invert, maxErr, 0, 0); if ( errCnt < 0 || errCnt > maxErr ) { if (g_debugMode) PrintAndLog("DEBUG: no data or error found %d, clock: %d", errCnt, clk); return 0; } //attempt to Biphase decode BitStream errCnt = BiphaseRawDecode(BitStream, &size, offset, invert); if (errCnt < 0){ if (g_debugMode || verbose) PrintAndLog("Error BiphaseRawDecode: %d", errCnt); return 0; } if (errCnt > maxErr) { if (g_debugMode || verbose) PrintAndLog("Error BiphaseRawDecode too many errors: %d", errCnt); return 0; } //success set DemodBuffer and return setDemodBuf(BitStream, size, 0); if (g_debugMode || verbose){ PrintAndLog("Biphase Decoded using offset: %d - clock: %d - # errors:%d - data:",offset,clk,errCnt); printDemodBuff(); } return 1; } //by marshmellow - see ASKbiphaseDemod int Cmdaskbiphdemod(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) > 25 || cmdp == 'h' || cmdp == 'H') return usage_data_rawdemod_ab(); return ASKbiphaseDemod(Cmd, TRUE); } //by marshmellow //attempts to demodulate and identify a G_Prox_II verex/chubb card //WARNING: if it fails during some points it will destroy the DemodBuffer data // but will leave the GraphBuffer intact. //if successful it will push askraw data back to demod buffer ready for emulation int CmdG_Prox_II_Demod(const char *Cmd) { if (!ASKbiphaseDemod(Cmd, FALSE)){ if (g_debugMode) PrintAndLog("Error gProxII: ASKbiphaseDemod failed 1st try"); return 0; } size_t size = DemodBufferLen; //call lfdemod.c demod for gProxII int ans = gProxII_Demod(DemodBuffer, &size); if (ans < 0){ if (g_debugMode) PrintAndLog("Error gProxII_Demod"); return 0; } //got a good demod of 96 bits uint8_t ByteStream[8] = {0x00}; uint8_t xorKey=0; size_t startIdx = ans + 6; //start after 6 bit preamble uint8_t bits_no_spacer[90]; //so as to not mess with raw DemodBuffer copy to a new sample array memcpy(bits_no_spacer, DemodBuffer + startIdx, 90); // remove the 18 (90/5=18) parity bits (down to 72 bits (96-6-18=72)) size_t bitLen = removeParity(bits_no_spacer, 0, 5, 3, 90); //source, startloc, paritylen, ptype, length_to_run if (bitLen != 72) { if (g_debugMode) PrintAndLog("Error gProxII: spacer removal did not produce 72 bits: %u, start: %u", bitLen, startIdx); return 0; } // get key and then get all 8 bytes of payload decoded xorKey = (uint8_t)bytebits_to_byteLSBF(bits_no_spacer, 8); for (size_t idx = 0; idx < 8; idx++) { ByteStream[idx] = ((uint8_t)bytebits_to_byteLSBF(bits_no_spacer+8 + (idx*8),8)) ^ xorKey; if (g_debugMode) PrintAndLog("byte %u after xor: %02x", (unsigned int)idx, ByteStream[idx]); } //now ByteStream contains 8 Bytes (64 bits) of decrypted raw tag data // uint8_t fmtLen = ByteStream[0]>>2; uint32_t FC = 0; uint32_t Card = 0; //get raw 96 bits to print uint32_t raw1 = bytebits_to_byte(DemodBuffer+ans,32); uint32_t raw2 = bytebits_to_byte(DemodBuffer+ans+32, 32); uint32_t raw3 = bytebits_to_byte(DemodBuffer+ans+64, 32); if (fmtLen==36){ FC = ((ByteStream[3] & 0x7F)<<7) | (ByteStream[4]>>1); Card = ((ByteStream[4]&1)<<19) | (ByteStream[5]<<11) | (ByteStream[6]<<3) | (ByteStream[7]>>5); PrintAndLog("G-Prox-II Found: FmtLen %d, FC %u, Card %u", (int)fmtLen, FC, Card); } else if(fmtLen==26){ FC = ((ByteStream[3] & 0x7F)<<1) | (ByteStream[4]>>7); Card = ((ByteStream[4]&0x7F)<<9) | (ByteStream[5]<<1) | (ByteStream[6]>>7); PrintAndLog("G-Prox-II Found: FmtLen %d, FC %u, Card %u", (int)fmtLen, FC, Card); } else { PrintAndLog("Unknown G-Prox-II Fmt Found: FmtLen %d",(int)fmtLen); PrintAndLog("Decoded Raw: %s", sprint_hex(ByteStream, 8)); } PrintAndLog("Raw: %08x%08x%08x", raw1,raw2,raw3); setDemodBuf(DemodBuffer+ans, 96, 0); return 1; } //by marshmellow //see ASKDemod for what args are accepted int CmdVikingDemod(const char *Cmd) { if (!ASKDemod(Cmd, false, false, 1)) { if (g_debugMode) PrintAndLog("ASKDemod failed"); return 0; } size_t size = DemodBufferLen; //call lfdemod.c demod for Viking int ans = VikingDemod_AM(DemodBuffer, &size); if (ans < 0) { if (g_debugMode) PrintAndLog("Error Viking_Demod %d %s", ans, (ans == -5)?"[chksum error]":""); return 0; } //got a good demod uint32_t raw1 = bytebits_to_byte(DemodBuffer+ans, 32); uint32_t raw2 = bytebits_to_byte(DemodBuffer+ans+32, 32); uint32_t cardid = bytebits_to_byte(DemodBuffer+ans+24, 32); uint8_t checksum = bytebits_to_byte(DemodBuffer+ans+32+24, 8); PrintAndLog("Viking Tag Found: Card ID %08X, Checksum: %02X", cardid, checksum); PrintAndLog("Raw: %08X%08X", raw1,raw2); setDemodBuf(DemodBuffer+ans, 64, 0); return 1; } //by marshmellow - see ASKDemod int Cmdaskrawdemod(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) > 25 || cmdp == 'h' || cmdp == 'H') return usage_data_rawdemod_ar(); return ASKDemod(Cmd, TRUE, FALSE, 0); } int AutoCorrelate(int window, bool SaveGrph, bool verbose) { static int CorrelBuffer[MAX_GRAPH_TRACE_LEN]; size_t Correlation = 0; int maxSum = 0; int lastMax = 0; if (verbose) PrintAndLog("performing %d correlations", GraphTraceLen - window); for (int i = 0; i < GraphTraceLen - window; ++i) { int sum = 0; for (int j = 0; j < window; ++j) { sum += (GraphBuffer[j]*GraphBuffer[i + j]) / 256; } CorrelBuffer[i] = sum; if (sum >= maxSum-100 && sum <= maxSum+100){ //another max Correlation = i-lastMax; lastMax = i; if (sum > maxSum) maxSum = sum; } else if (sum > maxSum){ maxSum=sum; lastMax = i; } } if (Correlation==0){ //try again with wider margin for (int i = 0; i < GraphTraceLen - window; i++){ if (CorrelBuffer[i] >= maxSum-(maxSum*0.05) && CorrelBuffer[i] <= maxSum+(maxSum*0.05)){ //another max Correlation = i-lastMax; lastMax = i; //if (CorrelBuffer[i] > maxSum) maxSum = sum; } } } if (verbose && Correlation > 0) PrintAndLog("Possible Correlation: %d samples",Correlation); if (SaveGrph){ GraphTraceLen = GraphTraceLen - window; memcpy(GraphBuffer, CorrelBuffer, GraphTraceLen * sizeof (int)); RepaintGraphWindow(); } return Correlation; } int CmdAutoCorr(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); if (cmdp == 'h' || cmdp == 'H') return usage_data_autocorr(); int window = 4000; //set default char grph=0; bool updateGrph = FALSE; sscanf(Cmd, "%i %c", &window, &grph); if (window >= GraphTraceLen) { PrintAndLog("window must be smaller than trace (%d samples)", GraphTraceLen); return 0; } if (grph == 'g') updateGrph=TRUE; return AutoCorrelate(window, updateGrph, TRUE); } int CmdBitsamples(const char *Cmd) { int cnt = 0; uint8_t got[12288]; GetFromBigBuf(got, sizeof(got), 0); WaitForResponse(CMD_ACK, NULL); for (int j = 0; j < sizeof(got); j++) { for (int k = 0; k < 8; k++) { if(got[j] & (1 << (7 - k))) { GraphBuffer[cnt++] = 1; } else { GraphBuffer[cnt++] = 0; } } } GraphTraceLen = cnt; RepaintGraphWindow(); return 0; } int CmdBuffClear(const char *Cmd) { UsbCommand c = {CMD_BUFF_CLEAR, {0,0,0}}; SendCommand(&c); ClearGraph(true); return 0; } int CmdDec(const char *Cmd) { for (int i = 0; i < (GraphTraceLen >> 2); ++i) GraphBuffer[i] = GraphBuffer[i * 2]; GraphTraceLen >>= 2; PrintAndLog("decimated by 2"); RepaintGraphWindow(); return 0; } /** * Undecimate - I'd call it 'interpolate', but we'll save that * name until someone does an actual interpolation command, not just * blindly repeating samples * @param Cmd * @return */ int CmdUndec(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); if (cmdp == 'h' || cmdp == 'H') return usage_data_undecimate(); uint8_t factor = param_get8ex(Cmd, 0, 2, 10); //We have memory, don't we? int swap[MAX_GRAPH_TRACE_LEN] = { 0 }; uint32_t g_index = 0 ,s_index = 0; while(g_index < GraphTraceLen && s_index + factor < MAX_GRAPH_TRACE_LEN) { int count = 0; for (count = 0; count < factor && s_index + count < MAX_GRAPH_TRACE_LEN; count++) swap[s_index+count] = GraphBuffer[g_index]; s_index += count; g_index++; } memcpy(GraphBuffer, swap, s_index * sizeof(int)); GraphTraceLen = s_index; RepaintGraphWindow(); return 0; } //by marshmellow //shift graph zero up or down based on input + or - int CmdGraphShiftZero(const char *Cmd) { int shift = 0, shiftedVal = 0; //set options from parameters entered with the command sscanf(Cmd, "%i", &shift); for(int i = 0; i 127) shiftedVal = 127; else if (shiftedVal < -127) shiftedVal = -127; GraphBuffer[i] = shiftedVal; } CmdNorm(""); return 0; } //by marshmellow //use large jumps in read samples to identify edges of waves and then amplify that wave to max //similar to dirtheshold, threshold commands //takes a threshold length which is the measured length between two samples then determines an edge int CmdAskEdgeDetect(const char *Cmd) { int thresLen = 25; int last = 0; sscanf(Cmd, "%i", &thresLen); for(int i = 1; i < GraphTraceLen; ++i){ if (GraphBuffer[i] - GraphBuffer[i-1] >= thresLen) //large jump up last = 127; else if(GraphBuffer[i] - GraphBuffer[i-1] <= -1 * thresLen) //large jump down last = -127; GraphBuffer[i-1] = last; } RepaintGraphWindow(); return 0; } /* Print our clock rate */ // uses data from graphbuffer // adjusted to take char parameter for type of modulation to find the clock - by marshmellow. int CmdDetectClockRate(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) > 6 || strlen(Cmd) == 0 || cmdp == 'h' || cmdp == 'H') return usage_data_detectclock(); int ans = 0; switch ( cmdp ) { case 'a' : case 'A' : ans = GetAskClock(Cmd+1, true, false); break; case 'f' : case 'F' : ans = GetFskClock("", true, false); break; case 'n' : case 'N' : ans = GetNrzClock("", true, false); break; case 'p' : case 'P' : ans = GetPskClock("", true, false); break; default : PrintAndLog ("Please specify a valid modulation to detect the clock of - see option h for help"); break; } return ans; } char *GetFSKType(uint8_t fchigh, uint8_t fclow, uint8_t invert) { static char fType[8]; memset(fType, 0x00, 8); char *fskType = fType; if (fchigh==10 && fclow==8){ if (invert) //fsk2a memcpy(fskType, "FSK2a", 5); else //fsk2 memcpy(fskType, "FSK2", 4); } else if (fchigh == 8 && fclow == 5) { if (invert) memcpy(fskType, "FSK1", 4); else memcpy(fskType, "FSK1a", 5); } else { memcpy(fskType, "FSK??", 5); } return fskType; } //by marshmellow //fsk raw demod and print binary //takes 4 arguments - Clock, invert, fchigh, fclow //defaults: clock = 50, invert=1, fchigh=10, fclow=8 (RF/10 RF/8 (fsk2a)) int FSKrawDemod(const char *Cmd, bool verbose) { //raw fsk demod no manchester decoding no start bit finding just get binary from wave uint8_t rfLen, invert, fchigh, fclow; //set defaults //set options from parameters entered with the command rfLen = param_get8(Cmd, 0); invert = param_get8(Cmd, 1); fchigh = param_get8(Cmd, 2); fclow = param_get8(Cmd, 3); if (strlen(Cmd)>0 && strlen(Cmd)<=2) { if (rfLen==1) { invert = 1; //if invert option only is used rfLen = 0; } } uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0}; size_t BitLen = getFromGraphBuf(BitStream); if (BitLen==0) return 0; //get field clock lengths uint16_t fcs=0; if (!fchigh || !fclow) { fcs = countFC(BitStream, BitLen, 1); if (!fcs) { fchigh = 10; fclow = 8; } else { fchigh = (fcs >> 8) & 0x00FF; fclow = fcs & 0x00FF; } } //get bit clock length if (!rfLen) { rfLen = detectFSKClk(BitStream, BitLen, fchigh, fclow); if (!rfLen) rfLen = 50; } int size = fskdemod(BitStream, BitLen, rfLen, invert, fchigh, fclow); if (size > 0) { setDemodBuf(BitStream, size, 0); // Now output the bitstream to the scrollback by line of 16 bits if (verbose || g_debugMode) { PrintAndLog("\nUsing Clock:%u, invert:%u, fchigh:%u, fclow:%u", (unsigned int)rfLen, (unsigned int)invert, (unsigned int)fchigh, (unsigned int)fclow); PrintAndLog("%s decoded bitstream:", GetFSKType(fchigh, fclow, invert)); printDemodBuff(); } return 1; } else { if (g_debugMode) PrintAndLog("no FSK data found"); } return 0; } //by marshmellow //fsk raw demod and print binary //takes 4 arguments - Clock, invert, fchigh, fclow //defaults: clock = 50, invert=1, fchigh=10, fclow=8 (RF/10 RF/8 (fsk2a)) int CmdFSKrawdemod(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') return usage_data_rawdemod_fs(); return FSKrawDemod(Cmd, TRUE); } //by marshmellow (based on existing demod + holiman's refactor) //HID Prox demod - FSK RF/50 with preamble of 00011101 (then manchester encoded) //print full HID Prox ID and some bit format details if found int CmdFSKdemodHID(const char *Cmd) { //raw fsk demod no manchester decoding no start bit finding just get binary from wave uint32_t hi2=0, hi=0, lo=0; uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0}; size_t BitLen = getFromGraphBuf(BitStream); if (BitLen==0) return 0; //get binary from fsk wave int idx = HIDdemodFSK(BitStream,&BitLen,&hi2,&hi,&lo); if (idx<0){ if (g_debugMode){ if (idx==-1){ PrintAndLog("DEBUG: Just Noise Detected"); } else if (idx == -2) { PrintAndLog("DEBUG: Error demoding fsk"); } else if (idx == -3) { PrintAndLog("DEBUG: Preamble not found"); } else if (idx == -4) { PrintAndLog("DEBUG: Error in Manchester data, SIZE: %d", BitLen); } else { PrintAndLog("DEBUG: Error demoding fsk %d", idx); } } return 0; } if (hi2==0 && hi==0 && lo==0) { if (g_debugMode) PrintAndLog("DEBUG: Error - no values found"); return 0; } if (hi2 != 0){ //extra large HID tags PrintAndLog("HID Prox TAG ID: %x%08x%08x (%d)", (unsigned int) hi2, (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF); } else { //standard HID tags <38 bits uint8_t fmtLen = 0; uint32_t fc = 0; uint32_t cardnum = 0; if (((hi>>5)&1)==1){//if bit 38 is set then < 37 bit format is used uint32_t lo2=0; lo2=(((hi & 31) << 12) | (lo>>20)); //get bits 21-37 to check for format len bit uint8_t idx3 = 1; while(lo2>1){ //find last bit set to 1 (format len bit) lo2=lo2>>1; idx3++; } fmtLen =idx3+19; fc =0; cardnum=0; if(fmtLen==26){ cardnum = (lo>>1)&0xFFFF; fc = (lo>>17)&0xFF; } if(fmtLen==34){ cardnum = (lo>>1)&0xFFFF; fc= ((hi&1)<<15)|(lo>>17); } if(fmtLen==35){ cardnum = (lo>>1)&0xFFFFF; fc = ((hi&1)<<11)|(lo>>21); } } else { //if bit 38 is not set then 37 bit format is used fmtLen = 37; fc = 0; cardnum = 0; if(fmtLen == 37){ cardnum = (lo>>1)&0x7FFFF; fc = ((hi&0xF)<<12)|(lo>>20); } } PrintAndLog("HID Prox TAG ID: %x%08x (%d) - Format Len: %dbit - FC: %d - Card: %d", (unsigned int) hi, (unsigned int) lo, (unsigned int) (lo>>1) & 0xFFFF, (unsigned int) fmtLen, (unsigned int) fc, (unsigned int) cardnum); } setDemodBuf(BitStream,BitLen,idx); if (g_debugMode){ PrintAndLog("DEBUG: idx: %d, Len: %d, Printing Demod Buffer:", idx, BitLen); printDemodBuff(); } return 1; } //by marshmellow //Paradox Prox demod - FSK RF/50 with preamble of 00001111 (then manchester encoded) //print full Paradox Prox ID and some bit format details if found int CmdFSKdemodParadox(const char *Cmd) { //raw fsk demod no manchester decoding no start bit finding just get binary from wave uint32_t hi2=0, hi=0, lo=0; uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0}; size_t BitLen = getFromGraphBuf(BitStream); if (BitLen==0) return 0; //get binary from fsk wave int idx = ParadoxdemodFSK(BitStream,&BitLen,&hi2,&hi,&lo); if (idx<0){ if (g_debugMode){ if (idx==-1){ PrintAndLog("DEBUG: Just Noise Detected"); } else if (idx == -2) { PrintAndLog("DEBUG: Error demoding fsk"); } else if (idx == -3) { PrintAndLog("DEBUG: Preamble not found"); } else if (idx == -4) { PrintAndLog("DEBUG: Error in Manchester data"); } else { PrintAndLog("DEBUG: Error demoding fsk %d", idx); } } return 0; } if (hi2==0 && hi==0 && lo==0){ if (g_debugMode) PrintAndLog("DEBUG: Error - no value found"); return 0; } uint32_t fc = ((hi & 0x3)<<6) | (lo>>26); uint32_t cardnum = (lo>>10)&0xFFFF; uint32_t rawLo = bytebits_to_byte(BitStream+idx+64,32); uint32_t rawHi = bytebits_to_byte(BitStream+idx+32,32); uint32_t rawHi2 = bytebits_to_byte(BitStream+idx,32); PrintAndLog("Paradox TAG ID: %x%08x - FC: %d - Card: %d - Checksum: %02x - RAW: %08x%08x%08x", hi>>10, (hi & 0x3)<<26 | (lo>>10), fc, cardnum, (lo>>2) & 0xFF, rawHi2, rawHi, rawLo); setDemodBuf(BitStream,BitLen,idx); if (g_debugMode){ PrintAndLog("DEBUG: idx: %d, len: %d, Printing Demod Buffer:", idx, BitLen); printDemodBuff(); } return 1; } //by marshmellow //IO-Prox demod - FSK RF/64 with preamble of 000000001 //print ioprox ID and some format details int CmdFSKdemodIO(const char *Cmd) { int idx=0; //something in graphbuffer? if (GraphTraceLen < 65) { if (g_debugMode)PrintAndLog("DEBUG: not enough samples in GraphBuffer"); return 0; } uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0}; size_t BitLen = getFromGraphBuf(BitStream); if (BitLen==0) return 0; //get binary from fsk wave idx = IOdemodFSK(BitStream,BitLen); if (idx<0){ if (g_debugMode){ if (idx==-1){ PrintAndLog("DEBUG: Just Noise Detected"); } else if (idx == -2) { PrintAndLog("DEBUG: not enough samples"); } else if (idx == -3) { PrintAndLog("DEBUG: error during fskdemod"); } else if (idx == -4) { PrintAndLog("DEBUG: Preamble not found"); } else if (idx == -5) { PrintAndLog("DEBUG: Separator bits not found"); } else { PrintAndLog("DEBUG: Error demoding fsk %d", idx); } } return 0; } if (idx==0){ if (g_debugMode){ PrintAndLog("DEBUG: IO Prox Data not found - FSK Bits: %d",BitLen); if (BitLen > 92) PrintAndLog("%s", sprint_bin_break(BitStream,92,16)); } return 0; } //Index map //0 10 20 30 40 50 60 //| | | | | | | //01234567 8 90123456 7 89012345 6 78901234 5 67890123 4 56789012 3 45678901 23 //----------------------------------------------------------------------------- //00000000 0 11110000 1 facility 1 version* 1 code*one 1 code*two 1 ???????? 11 // //XSF(version)facility:codeone+codetwo (raw) //Handle the data if (idx+64>BitLen) { if (g_debugMode) PrintAndLog("not enough bits found - bitlen: %d",BitLen); return 0; } PrintAndLog("%d%d%d%d%d%d%d%d %d",BitStream[idx], BitStream[idx+1], BitStream[idx+2], BitStream[idx+3], BitStream[idx+4], BitStream[idx+5], BitStream[idx+6], BitStream[idx+7], BitStream[idx+8]); PrintAndLog("%d%d%d%d%d%d%d%d %d",BitStream[idx+9], BitStream[idx+10], BitStream[idx+11],BitStream[idx+12],BitStream[idx+13],BitStream[idx+14],BitStream[idx+15],BitStream[idx+16],BitStream[idx+17]); PrintAndLog("%d%d%d%d%d%d%d%d %d facility",BitStream[idx+18], BitStream[idx+19], BitStream[idx+20],BitStream[idx+21],BitStream[idx+22],BitStream[idx+23],BitStream[idx+24],BitStream[idx+25],BitStream[idx+26]); PrintAndLog("%d%d%d%d%d%d%d%d %d version",BitStream[idx+27], BitStream[idx+28], BitStream[idx+29],BitStream[idx+30],BitStream[idx+31],BitStream[idx+32],BitStream[idx+33],BitStream[idx+34],BitStream[idx+35]); PrintAndLog("%d%d%d%d%d%d%d%d %d code1",BitStream[idx+36], BitStream[idx+37], BitStream[idx+38],BitStream[idx+39],BitStream[idx+40],BitStream[idx+41],BitStream[idx+42],BitStream[idx+43],BitStream[idx+44]); PrintAndLog("%d%d%d%d%d%d%d%d %d code2",BitStream[idx+45], BitStream[idx+46], BitStream[idx+47],BitStream[idx+48],BitStream[idx+49],BitStream[idx+50],BitStream[idx+51],BitStream[idx+52],BitStream[idx+53]); PrintAndLog("%d%d%d%d%d%d%d%d %d%d checksum",BitStream[idx+54],BitStream[idx+55],BitStream[idx+56],BitStream[idx+57],BitStream[idx+58],BitStream[idx+59],BitStream[idx+60],BitStream[idx+61],BitStream[idx+62],BitStream[idx+63]); uint32_t code = bytebits_to_byte(BitStream+idx,32); uint32_t code2 = bytebits_to_byte(BitStream+idx+32,32); uint8_t version = bytebits_to_byte(BitStream+idx+27,8); //14,4 uint8_t facilitycode = bytebits_to_byte(BitStream+idx+18,8) ; uint16_t number = (bytebits_to_byte(BitStream+idx+36,8)<<8)|(bytebits_to_byte(BitStream+idx+45,8)); //36,9 uint8_t crc = bytebits_to_byte(BitStream+idx+54,8); uint16_t calccrc = 0; for (uint8_t i=1; i<6; ++i){ calccrc += bytebits_to_byte(BitStream+idx+9*i,8); } calccrc &= 0xff; calccrc = 0xff - calccrc; char *crcStr = (crc == calccrc) ? "crc ok": "!crc"; PrintAndLog("IO Prox XSF(%02d)%02x:%05d (%08x%08x) [%02x %s]",version,facilitycode,number,code,code2, crc, crcStr); setDemodBuf(BitStream,64,idx); if (g_debugMode){ PrintAndLog("DEBUG: idx: %d, Len: %d, Printing demod buffer:",idx,64); printDemodBuff(); } return 1; } //by marshmellow //AWID Prox demod - FSK RF/50 with preamble of 00000001 (always a 96 bit data stream) //print full AWID Prox ID and some bit format details if found int CmdFSKdemodAWID(const char *Cmd) { uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0}; size_t size = getFromGraphBuf(BitStream); if (size==0) return 0; //get binary from fsk wave int idx = AWIDdemodFSK(BitStream, &size); if (idx<=0){ if (g_debugMode){ if (idx == -1) PrintAndLog("DEBUG: Error - not enough samples"); else if (idx == -2) PrintAndLog("DEBUG: Error - only noise found"); else if (idx == -3) PrintAndLog("DEBUG: Error - problem during FSK demod"); else if (idx == -4) PrintAndLog("DEBUG: Error - AWID preamble not found"); else if (idx == -5) PrintAndLog("DEBUG: Error - Size not correct: %d", size); else PrintAndLog("DEBUG: Error %d",idx); } return 0; } // Index map // 0 10 20 30 40 50 60 // | | | | | | | // 01234567 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 456 7 890 1 234 5 678 9 012 3 - to 96 // ----------------------------------------------------------------------------- // 00000001 000 1 110 1 101 1 011 1 101 1 010 0 000 1 000 1 010 0 001 0 110 1 100 0 000 1 000 1 // premable bbb o bbb o bbw o fff o fff o ffc o ccc o ccc o ccc o ccc o ccc o wxx o xxx o xxx o - to 96 // |---26 bit---| |-----117----||-------------142-------------| // b = format bit len, o = odd parity of last 3 bits // f = facility code, c = card number // w = wiegand parity // (26 bit format shown) //get raw ID before removing parities uint32_t rawLo = bytebits_to_byte(BitStream+idx+64,32); uint32_t rawHi = bytebits_to_byte(BitStream+idx+32,32); uint32_t rawHi2 = bytebits_to_byte(BitStream+idx,32); setDemodBuf(BitStream,96,idx); size = removeParity(BitStream, idx+8, 4, 1, 88); if (size != 66){ if (g_debugMode) PrintAndLog("DEBUG: Error - at parity check-tag size does not match AWID format"); return 0; } // ok valid card found! // Index map // 0 10 20 30 40 50 60 // | | | | | | | // 01234567 8 90123456 7890123456789012 3 456789012345678901234567890123456 // ----------------------------------------------------------------------------- // 00011010 1 01110101 0000000010001110 1 000000000000000000000000000000000 // bbbbbbbb w ffffffff cccccccccccccccc w xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx // |26 bit| |-117--| |-----142------| // // 00110010 0 0000111110100000 00000000000100010010100010000111 1 000000000 // bbbbbbbb w ffffffffffffffff cccccccccccccccccccccccccccccccc w xxxxxxxxx // |50 bit| |----4000------| |-----------2248975------------| // b = format bit len, o = odd parity of last 3 bits // f = facility code, c = card number // w = wiegand parity uint32_t fc = 0; uint32_t cardnum = 0; uint32_t code1 = 0; uint32_t code2 = 0; uint8_t fmtLen = bytebits_to_byte(BitStream, 8); switch(fmtLen) { case 26: fc = bytebits_to_byte(BitStream + 9, 8); cardnum = bytebits_to_byte(BitStream + 17, 16); code1 = bytebits_to_byte(BitStream + 8,fmtLen); PrintAndLog("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi2, rawHi, rawLo); break; case 50: fc = bytebits_to_byte(BitStream + 9, 16); cardnum = bytebits_to_byte(BitStream + 25, 32); code1 = bytebits_to_byte(BitStream + 8, (fmtLen-32) ); code2 = bytebits_to_byte(BitStream + 8 + (fmtLen-32), 32); PrintAndLog("AWID Found - BitLength: %d, FC: %d, Card: %u - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, fc, cardnum, code1, code2, rawHi2, rawHi, rawLo); break; default: if (fmtLen > 32 ) { cardnum = bytebits_to_byte(BitStream+8+(fmtLen-17), 16); code1 = bytebits_to_byte(BitStream+8,fmtLen-32); code2 = bytebits_to_byte(BitStream+8+(fmtLen-32),32); PrintAndLog("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x%08x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, code2, rawHi2, rawHi, rawLo); } else { cardnum = bytebits_to_byte(BitStream+8+(fmtLen-17), 16); code1 = bytebits_to_byte(BitStream+8,fmtLen); PrintAndLog("AWID Found - BitLength: %d -unknown BitLength- (%u) - Wiegand: %x, Raw: %08x%08x%08x", fmtLen, cardnum, code1, rawHi2, rawHi, rawLo); } break; } if (g_debugMode){ PrintAndLog("DEBUG: idx: %d, Len: %d Printing Demod Buffer:", idx, 96); printDemodBuff(); } return 1; } //by marshmellow //Pyramid Prox demod - FSK RF/50 with preamble of 0000000000000001 (always a 128 bit data stream) //print full Farpointe Data/Pyramid Prox ID and some bit format details if found int CmdFSKdemodPyramid(const char *Cmd) { //raw fsk demod no manchester decoding no start bit finding just get binary from wave uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0}; size_t size = getFromGraphBuf(BitStream); if (size==0) return 0; //get binary from fsk wave int idx = PyramiddemodFSK(BitStream, &size); if (idx < 0){ if (g_debugMode){ if (idx == -5) PrintAndLog("DEBUG: Error - not enough samples"); else if (idx == -1) PrintAndLog("DEBUG: Error - only noise found"); else if (idx == -2) PrintAndLog("DEBUG: Error - problem during FSK demod"); else if (idx == -3) PrintAndLog("DEBUG: Error - Size not correct: %d", size); else if (idx == -4) PrintAndLog("DEBUG: Error - Pyramid preamble not found"); else PrintAndLog("DEBUG: Error - idx: %d",idx); } return 0; } // Index map // 0 10 20 30 40 50 60 // | | | | | | | // 0123456 7 8901234 5 6789012 3 4567890 1 2345678 9 0123456 7 8901234 5 6789012 3 // ----------------------------------------------------------------------------- // 0000000 0 0000000 1 0000000 1 0000000 1 0000000 1 0000000 1 0000000 1 0000000 1 // premable xxxxxxx o xxxxxxx o xxxxxxx o xxxxxxx o xxxxxxx o xxxxxxx o xxxxxxx o // 64 70 80 90 100 110 120 // | | | | | | | // 4567890 1 2345678 9 0123456 7 8901234 5 6789012 3 4567890 1 2345678 9 0123456 7 // ----------------------------------------------------------------------------- // 0000000 1 0000000 1 0000000 1 0110111 0 0011000 1 0000001 0 0001100 1 1001010 0 // xxxxxxx o xxxxxxx o xxxxxxx o xswffff o ffffccc o ccccccc o ccccccw o ppppppp o // |---115---||---------71---------| // s = format start bit, o = odd parity of last 7 bits // f = facility code, c = card number // w = wiegand parity, x = extra space for other formats // p = CRC8maxim checksum // (26 bit format shown) //get bytes for checksum calc uint8_t checksum = bytebits_to_byte(BitStream + idx + 120, 8); uint8_t csBuff[14] = {0x00}; for (uint8_t i = 0; i < 13; i++){ csBuff[i] = bytebits_to_byte(BitStream + idx + 16 + (i*8), 8); } //check checksum calc //checksum calc thanks to ICEMAN!! uint32_t checkCS = CRC8Maxim(csBuff,13); //get raw ID before removing parities uint32_t rawLo = bytebits_to_byte(BitStream+idx+96,32); uint32_t rawHi = bytebits_to_byte(BitStream+idx+64,32); uint32_t rawHi2 = bytebits_to_byte(BitStream+idx+32,32); uint32_t rawHi3 = bytebits_to_byte(BitStream+idx,32); setDemodBuf(BitStream,128,idx); size = removeParity(BitStream, idx+8, 8, 1, 120); if (size != 105){ if (g_debugMode) PrintAndLog("DEBUG: Error at parity check - tag size does not match Pyramid format, SIZE: %d, IDX: %d, hi3: %x",size, idx, rawHi3); return 0; } // ok valid card found! // Index map // 0 10 20 30 40 50 60 70 // | | | | | | | | // 01234567890123456789012345678901234567890123456789012345678901234567890 // ----------------------------------------------------------------------- // 00000000000000000000000000000000000000000000000000000000000000000000000 // xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx // 71 80 90 100 // | | | | // 1 2 34567890 1234567890123456 7 8901234 // --------------------------------------- // 1 1 01110011 0000000001000110 0 1001010 // s w ffffffff cccccccccccccccc w ppppppp // |--115-| |------71------| // s = format start bit, o = odd parity of last 7 bits // f = facility code, c = card number // w = wiegand parity, x = extra space for other formats // p = CRC8-Maxim checksum // (26 bit format shown) //find start bit to get fmtLen int j; for (j=0; j < size; ++j){ if(BitStream[j]) break; } uint8_t fmtLen = size-j-8; uint32_t fc = 0; uint32_t cardnum = 0; uint32_t code1 = 0; if ( fmtLen == 26 ){ fc = bytebits_to_byte(BitStream+73, 8); cardnum = bytebits_to_byte(BitStream+81, 16); code1 = bytebits_to_byte(BitStream+72,fmtLen); PrintAndLog("Pyramid ID Found - BitLength: %d, FC: %d, Card: %d - Wiegand: %x, Raw: %08x%08x%08x%08x", fmtLen, fc, cardnum, code1, rawHi3, rawHi2, rawHi, rawLo); } else if (fmtLen == 45) { fmtLen = 42; //end = 10 bits not 7 like 26 bit fmt fc = bytebits_to_byte(BitStream+53, 10); cardnum = bytebits_to_byte(BitStream+63, 32); PrintAndLog("Pyramid ID Found - BitLength: %d, FC: %d, Card: %d - Raw: %08x%08x%08x%08x", fmtLen, fc, cardnum, rawHi3, rawHi2, rawHi, rawLo); } else { cardnum = bytebits_to_byte(BitStream+81, 16); PrintAndLog("Pyramid ID Found - BitLength: %d -unknown BitLength- (%d), Raw: %08x%08x%08x%08x", fmtLen, cardnum, rawHi3, rawHi2, rawHi, rawLo); } if (checksum == checkCS) PrintAndLog("Checksum %02x passed", checksum); else PrintAndLog("Checksum %02x failed - should have been %02x", checksum, checkCS); if (g_debugMode){ PrintAndLog("DEBUG: idx: %d, Len: %d, Printing Demod Buffer:", idx, 128); printDemodBuff(); } return 1; } // FDX-B ISO11784/85 demod (aka animal tag) BIPHASE, inverted, rf/32, with preamble of 00000000001 (128bits) // 8 databits + 1 parity (1) // CIITT 16 chksum // NATIONAL CODE, ICAR database // COUNTRY CODE (ISO3166) or http://cms.abvma.ca/uploads/ManufacturersISOsandCountryCodes.pdf // FLAG (animal/non-animal) /* 38 IDbits 10 country code 1 extra app bit 14 reserved bits 1 animal bit 16 ccitt CRC chksum over 64bit ID CODE. 24 appli bits. -- sample: 985121004515220 [ 37FF65B88EF94 ] */ int CmdFDXBdemodBI(const char *Cmd){ int invert = 1; int clk = 32; int errCnt = 0; int maxErr = 0; uint8_t BitStream[MAX_DEMOD_BUF_LEN]; size_t size = getFromGraphBuf(BitStream); errCnt = askdemod(BitStream, &size, &clk, &invert, maxErr, 0, 0); if ( errCnt < 0 || errCnt > maxErr ) { if (g_debugMode) PrintAndLog("DEBUG: no data or error found %d, clock: %d", errCnt, clk); return 0; } errCnt = BiphaseRawDecode(BitStream, &size, maxErr, 1); if (errCnt < 0 || errCnt > maxErr ) { if (g_debugMode) PrintAndLog("Error BiphaseRawDecode: %d", errCnt); return 0; } int preambleIndex = FDXBdemodBI(BitStream, &size); if (preambleIndex < 0){ if (g_debugMode) PrintAndLog("Error FDXBDemod , no startmarker found :: %d",preambleIndex); return 0; } if (size != 128) { if (g_debugMode) PrintAndLog("Error incorrect data length found"); return 0; } setDemodBuf(BitStream, 128, preambleIndex); // remove marker bits (1's every 9th digit after preamble) (pType = 2) size = removeParity(BitStream, preambleIndex + 11, 9, 2, 117); if ( size != 104 ) { if (g_debugMode) PrintAndLog("Error removeParity:: %d", size); return 0; } if (g_debugMode) { char *bin = sprint_bin_break(BitStream,size,16); PrintAndLog("DEBUG BinStream:\n%s",bin); } PrintAndLog("\nFDX-B / ISO 11784/5 Animal Tag ID Found:"); if (g_debugMode) PrintAndLog("Start marker %d; Size %d", preambleIndex, size); //got a good demod uint64_t NationalCode = ((uint64_t)(bytebits_to_byteLSBF(BitStream+32,6)) << 32) | bytebits_to_byteLSBF(BitStream,32); uint32_t countryCode = bytebits_to_byteLSBF(BitStream+38,10); uint8_t dataBlockBit = BitStream[48]; uint32_t reservedCode = bytebits_to_byteLSBF(BitStream+49,14); uint8_t animalBit = BitStream[63]; uint32_t crc16 = bytebits_to_byteLSBF(BitStream+64,16); uint32_t extended = bytebits_to_byteLSBF(BitStream+80,24); uint64_t rawid = ((uint64_t)bytebits_to_byte(BitStream,32)<<32) | bytebits_to_byte(BitStream+32,32); uint8_t raw[8]; num_to_bytes(rawid, 8, raw); if (g_debugMode) PrintAndLog("Raw ID Hex: %s", sprint_hex(raw,8)); uint16_t calcCrc = crc16_ccitt_kermit(raw, 8); PrintAndLog("Animal ID: %04u-%012llu", countryCode, NationalCode); PrintAndLog("National Code: %012llu", NationalCode); PrintAndLog("CountryCode: %04u", countryCode); PrintAndLog("Extended Data: %s", dataBlockBit ? "True" : "False"); PrintAndLog("reserved Code: %u", reservedCode); PrintAndLog("Animal Tag: %s", animalBit ? "True" : "False"); PrintAndLog("CRC: 0x%04X - [%04X] - %s", crc16, calcCrc, (calcCrc == crc16) ? "Passed" : "Failed"); PrintAndLog("Extended: 0x%X\n", extended); return 1; } //by marshmellow //attempt to psk1 demod graph buffer int PSKDemod(const char *Cmd, bool verbose) { int invert=0; int clk=0; int maxErr=100; sscanf(Cmd, "%i %i %i", &clk, &invert, &maxErr); if (clk==1){ invert=1; clk=0; } if (invert != 0 && invert != 1) { if (g_debugMode || verbose) PrintAndLog("Invalid argument: %s", Cmd); return 0; } uint8_t BitStream[MAX_GRAPH_TRACE_LEN]={0}; size_t BitLen = getFromGraphBuf(BitStream); if (BitLen==0) return 0; uint8_t carrier=countFC(BitStream, BitLen, 0); if (carrier!=2 && carrier!=4 && carrier!=8){ //invalid carrier return 0; } if (g_debugMode){ PrintAndLog("Carrier: rf/%d",carrier); } int errCnt=0; errCnt = pskRawDemod(BitStream, &BitLen, &clk, &invert); if (errCnt > maxErr){ if (g_debugMode || verbose) PrintAndLog("Too many errors found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt); return 0; } if (errCnt<0|| BitLen<16){ //throw away static - allow 1 and -1 (in case of threshold command first) if (g_debugMode || verbose) PrintAndLog("no data found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt); return 0; } if (verbose || g_debugMode){ PrintAndLog("\nUsing Clock:%d, invert:%d, Bits Found:%d",clk,invert,BitLen); if (errCnt>0){ PrintAndLog("# Errors during Demoding (shown as 7 in bit stream): %d",errCnt); } } //prime demod buffer for output setDemodBuf(BitStream,BitLen,0); return 1; } // Indala 26 bit decode // by marshmellow // optional arguments - same as CmdpskNRZrawDemod (clock & invert) int CmdIndalaDecode(const char *Cmd) { int ans; if (strlen(Cmd)>0){ ans = PSKDemod(Cmd, 0); } else{ //default to RF/32 ans = PSKDemod("32", 0); } if (!ans){ if (g_debugMode) PrintAndLog("Error1: %d",ans); return 0; } uint8_t invert = 0; size_t size = DemodBufferLen; int startIdx = indala26decode(DemodBuffer, &size, &invert); if (startIdx < 0 || size > 224) { if (g_debugMode) PrintAndLog("Error2: %d",ans); return -1; } setDemodBuf(DemodBuffer, size, (size_t)startIdx); if (invert) if (g_debugMode) PrintAndLog("Had to invert bits"); PrintAndLog("BitLen: %d",DemodBufferLen); //convert UID to HEX uint32_t uid1, uid2, uid3, uid4, uid5, uid6, uid7; uid1=bytebits_to_byte(DemodBuffer,32); uid2=bytebits_to_byte(DemodBuffer+32,32); if (DemodBufferLen==64){ PrintAndLog("Indala UID=%s (%x%08x)", sprint_bin_break(DemodBuffer,DemodBufferLen,16), uid1, uid2); } else { uid3=bytebits_to_byte(DemodBuffer+64,32); uid4=bytebits_to_byte(DemodBuffer+96,32); uid5=bytebits_to_byte(DemodBuffer+128,32); uid6=bytebits_to_byte(DemodBuffer+160,32); uid7=bytebits_to_byte(DemodBuffer+192,32); PrintAndLog("Indala UID=%s (%x%08x%08x%08x%08x%08x%08x)", sprint_bin_break(DemodBuffer,DemodBufferLen,16), uid1, uid2, uid3, uid4, uid5, uid6, uid7); } if (g_debugMode){ PrintAndLog("DEBUG: printing demodbuffer:"); printDemodBuff(); } return 1; } int CmdPSKNexWatch(const char *Cmd) { if (!PSKDemod("", false)) return 0; uint8_t preamble[28] = {0,0,0,0,0,1,0,1,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; size_t startIdx = 0, size = DemodBufferLen; // sanity check. if ( size < sizeof(preamble) + 100) return 0; bool invert = false; if (!preambleSearch(DemodBuffer, preamble, sizeof(preamble), &size, &startIdx)){ // if didn't find preamble try again inverting if (!PSKDemod("1", false)) return 0; size = DemodBufferLen; if (!preambleSearch(DemodBuffer, preamble, sizeof(preamble), &size, &startIdx)) return 0; invert = true; } if (size != 128) return 0; setDemodBuf(DemodBuffer, size, startIdx+4); startIdx = 8+32; //4 = extra i added, 8 = preamble, 32 = reserved bits (always 0) //get ID uint32_t ID = 0; for (uint8_t wordIdx=0; wordIdx<4; wordIdx++){ for (uint8_t idx=0; idx<8; idx++){ ID = (ID << 1) | DemodBuffer[startIdx+wordIdx+(idx*4)]; } } //parity check (TBD) //checksum check (TBD) //output PrintAndLog("NexWatch ID: %d", ID); if (invert){ PrintAndLog("Had to Invert - probably NexKey"); for (uint8_t idx=0; idx maxErr){ if (g_debugMode) PrintAndLog("Too many errors found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt); return 0; } if (errCnt<0 || BitLen<16){ //throw away static - allow 1 and -1 (in case of threshold command first) if (g_debugMode) PrintAndLog("no data found, clk: %d, invert: %d, numbits: %d, errCnt: %d",clk,invert,BitLen,errCnt); return 0; } if (verbose || g_debugMode) PrintAndLog("Tried NRZ Demod using Clock: %d - invert: %d - Bits Found: %d",clk,invert,BitLen); //prime demod buffer for output setDemodBuf(BitStream,BitLen,0); if (errCnt>0 && (verbose || g_debugMode)) PrintAndLog("# Errors during Demoding (shown as 7 in bit stream): %d",errCnt); if (verbose || g_debugMode) { PrintAndLog("NRZ demoded bitstream:"); // Now output the bitstream to the scrollback by line of 16 bits printDemodBuff(); } return 1; } int CmdNRZrawDemod(const char *Cmd) { char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') return usage_data_rawdemod_nr(); return NRZrawDemod(Cmd, TRUE); } // by marshmellow // takes 3 arguments - clock, invert, maxErr as integers // attempts to demodulate psk only // prints binary found and saves in demodbuffer for further commands int CmdPSK1rawDemod(const char *Cmd) { int ans; char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') return usage_data_rawdemod_p1(); ans = PSKDemod(Cmd, TRUE); //output if (!ans){ if (g_debugMode) PrintAndLog("Error demoding: %d",ans); return 0; } PrintAndLog("PSK1 demoded bitstream:"); // Now output the bitstream to the scrollback by line of 16 bits printDemodBuff(); return 1; } // by marshmellow // takes same args as cmdpsk1rawdemod int CmdPSK2rawDemod(const char *Cmd) { int ans = 0; char cmdp = param_getchar(Cmd, 0); if (strlen(Cmd) > 10 || cmdp == 'h' || cmdp == 'H') return usage_data_rawdemod_p2(); ans = PSKDemod(Cmd, TRUE); if (!ans){ if (g_debugMode) PrintAndLog("Error demoding: %d",ans); return 0; } psk1TOpsk2(DemodBuffer, DemodBufferLen); PrintAndLog("PSK2 demoded bitstream:"); // Now output the bitstream to the scrollback by line of 16 bits printDemodBuff(); return 1; } // by marshmellow - combines all raw demod functions into one menu command int CmdRawDemod(const char *Cmd) { char cmdp = Cmd[0]; //param_getchar(Cmd, 0); char cmdp2 = Cmd[1]; int ans = 0; if (strlen(Cmd) > 20 || cmdp == 'h' || cmdp == 'H' || strlen(Cmd) < 2) return usage_data_rawdemod(); if (cmdp == 'f' && cmdp2 == 's') ans = CmdFSKrawdemod(Cmd+2); else if(cmdp == 'a' && cmdp2 == 'b') ans = Cmdaskbiphdemod(Cmd+2); else if(cmdp == 'a' && cmdp2 == 'm') ans = Cmdaskmandemod(Cmd+2); else if(cmdp == 'a' && cmdp2 == 'r') ans = Cmdaskrawdemod(Cmd+2); else if(cmdp == 'n' && cmdp2 == 'r') ans = CmdNRZrawDemod(Cmd+2); else if(cmdp == 'p' && cmdp2 == '1') ans = CmdPSK1rawDemod(Cmd+2); else if(cmdp == 'p' && cmdp2 == '2') ans = CmdPSK2rawDemod(Cmd+2); else PrintAndLog("unknown modulation entered - see help ('h') for parameter structure"); return ans; } //iceman: diff sizes on the plotwindow? int CmdGrid(const char *Cmd) { sscanf(Cmd, "%i %i", &PlotGridX, &PlotGridY); PlotGridXdefault = PlotGridX; PlotGridYdefault = PlotGridY; RepaintGraphWindow(); return 0; } int CmdHexsamples(const char *Cmd) { int i, j; int requested = 0; int offset = 0; char string_buf[25]; char* string_ptr = string_buf; uint8_t got[BIGBUF_SIZE]; sscanf(Cmd, "%i %i", &requested, &offset); /* if no args send something */ if (requested == 0) { requested = 8; } if (offset + requested > sizeof(got)) { PrintAndLog("Tried to read past end of buffer, + > %d", BIGBUF_SIZE); return 0; } GetFromBigBuf(got,requested,offset); WaitForResponse(CMD_ACK,NULL); i = 0; for (j = 0; j < requested; j++) { i++; string_ptr += sprintf(string_ptr, "%02x ", got[j]); if (i == 8) { *(string_ptr - 1) = '\0'; // remove the trailing space PrintAndLog("%s", string_buf); string_buf[0] = '\0'; string_ptr = string_buf; i = 0; } if (j == requested - 1 && string_buf[0] != '\0') { // print any remaining bytes *(string_ptr - 1) = '\0'; PrintAndLog("%s", string_buf); string_buf[0] = '\0'; } } return 0; } int CmdHide(const char *Cmd) { HideGraphWindow(); return 0; } //zero mean GraphBuffer int CmdHpf(const char *Cmd) { int i; int accum = 0; for (i = 10; i < GraphTraceLen; ++i) accum += GraphBuffer[i]; accum /= (GraphTraceLen - 10); for (i = 0; i < GraphTraceLen; ++i) GraphBuffer[i] -= accum; RepaintGraphWindow(); return 0; } bool _headBit( BitstreamOut *stream) { int bytepos = stream->position >> 3; // divide by 8 int bitpos = (stream->position++) & 7; // mask out 00000111 return (*(stream->buffer + bytepos) >> (7-bitpos)) & 1; } uint8_t getByte(uint8_t bits_per_sample, BitstreamOut* b) { int i; uint8_t val = 0; for(i = 0 ; i < bits_per_sample; i++) val |= (_headBit(b) << (7-i)); return val; } int getSamples(const char *Cmd, bool silent) { //If we get all but the last byte in bigbuf, // we don't have to worry about remaining trash // in the last byte in case the bits-per-sample // does not line up on byte boundaries uint8_t got[BIGBUF_SIZE-1] = { 0 }; int n = strtol(Cmd, NULL, 0); if ( n == 0 || n > sizeof(got)) n = sizeof(got); PrintAndLog("Reading %d bytes from device memory\n", n); GetFromBigBuf(got,n,0); PrintAndLog("Data fetched"); UsbCommand response; if ( !WaitForResponseTimeout(CMD_ACK, &response, 10000) ) { PrintAndLog("timeout while waiting for reply."); return 1; } uint8_t bits_per_sample = 8; //Old devices without this feature would send 0 at arg[0] if (response.arg[0] > 0) { sample_config *sc = (sample_config *) response.d.asBytes; PrintAndLog("Samples @ %d bits/smpl, decimation 1:%d ", sc->bits_per_sample, sc->decimation); bits_per_sample = sc->bits_per_sample; } if (bits_per_sample < 8) { PrintAndLog("Unpacking..."); BitstreamOut bout = { got, bits_per_sample * n, 0}; int j =0; for (j = 0; j * bits_per_sample < n * 8 && j < n; j++) { uint8_t sample = getByte(bits_per_sample, &bout); GraphBuffer[j] = ((int) sample )- 128; } GraphTraceLen = j; PrintAndLog("Unpacked %d samples" , j ); } else { for (int j = 0; j < n; j++) { GraphBuffer[j] = ((int)got[j]) - 128; } GraphTraceLen = n; } RepaintGraphWindow(); return 0; } int CmdSamples(const char *Cmd) { return getSamples(Cmd, false); } int CmdTuneSamples(const char *Cmd) { int timeout = 0; printf("\nMeasuring antenna characteristics, please wait..."); UsbCommand c = {CMD_MEASURE_ANTENNA_TUNING, {0,0,0}}; clearCommandBuffer(); SendCommand(&c); UsbCommand resp; while(!WaitForResponseTimeout(CMD_MEASURED_ANTENNA_TUNING, &resp, 2000)) { timeout++; printf("."); if (timeout > 7) { PrintAndLog("\nNo response from Proxmark. Aborting..."); return 1; } } int peakv, peakf; int vLf125, vLf134, vHf; vLf125 = resp.arg[0] & 0xffff; vLf134 = resp.arg[0] >> 16; vHf = resp.arg[1] & 0xffff;; peakf = resp.arg[2] & 0xffff; peakv = resp.arg[2] >> 16; PrintAndLog(""); if ( vLf125 > 0 ) PrintAndLog("# LF antenna: %5.2f V @ 125.00 kHz", vLf125/1000.0); if ( vLf134 > 0 ) PrintAndLog("# LF antenna: %5.2f V @ 134.00 kHz", vLf134/1000.0); if ( peakv > 0 && peakf > 0 ) PrintAndLog("# LF optimal: %5.2f V @%9.2f kHz", peakv/1000.0, 12000.0/(peakf+1)); if ( vHf > 0 ) PrintAndLog("# HF antenna: %5.2f V @ 13.56 MHz", vHf/1000.0); #define LF_UNUSABLE_V 2948 // was 2000. Changed due to bugfix in voltage measurements. LF results are now 47% higher. #define LF_MARGINAL_V 14739 // was 10000. Changed due to bugfix bug in voltage measurements. LF results are now 47% higher. #define HF_UNUSABLE_V 3167 // was 2000. Changed due to bugfix in voltage measurements. HF results are now 58% higher. #define HF_MARGINAL_V 7917 // was 5000. Changed due to bugfix in voltage measurements. HF results are now 58% higher. if (peakv < LF_UNUSABLE_V) PrintAndLog("# Your LF antenna is unusable."); else if (peakv < LF_MARGINAL_V) PrintAndLog("# Your LF antenna is marginal."); if (vHf < HF_UNUSABLE_V) PrintAndLog("# Your HF antenna is unusable."); else if (vHf < HF_MARGINAL_V) PrintAndLog("# Your HF antenna is marginal."); if (peakv >= LF_UNUSABLE_V) { for (int i = 0; i < 256; i++) { GraphBuffer[i] = resp.d.asBytes[i] - 128; } PrintAndLog("Displaying LF tuning graph. Divisor 89 is 134khz, 95 is 125khz.\n"); PrintAndLog("\n"); GraphTraceLen = 256; ShowGraphWindow(); RepaintGraphWindow(); } return 0; } int CmdLoad(const char *Cmd) { char filename[FILE_PATH_SIZE] = {0x00}; int len = 0; len = strlen(Cmd); if (len > FILE_PATH_SIZE) len = FILE_PATH_SIZE; memcpy(filename, Cmd, len); FILE *f = fopen(filename, "r"); if (!f) { PrintAndLog("couldn't open '%s'", filename); return 0; } GraphTraceLen = 0; char line[80]; while (fgets(line, sizeof (line), f)) { GraphBuffer[GraphTraceLen] = atoi(line); GraphTraceLen++; } fclose(f); PrintAndLog("loaded %d samples", GraphTraceLen); RepaintGraphWindow(); return 0; } int CmdLtrim(const char *Cmd) { int ds = atoi(Cmd); if (GraphTraceLen <= 0) return 0; for (int i = ds; i < GraphTraceLen; ++i) GraphBuffer[i-ds] = GraphBuffer[i]; GraphTraceLen -= ds; RepaintGraphWindow(); return 0; } // trim graph to input argument length int CmdRtrim(const char *Cmd) { int ds = atoi(Cmd); GraphTraceLen = ds; RepaintGraphWindow(); return 0; } int CmdNorm(const char *Cmd) { int i; int max = INT_MIN, min = INT_MAX; for (i = 10; i < GraphTraceLen; ++i) { if (GraphBuffer[i] > max) max = GraphBuffer[i]; if (GraphBuffer[i] < min) min = GraphBuffer[i]; } if (max != min) { for (i = 0; i < GraphTraceLen; ++i) { GraphBuffer[i] = (GraphBuffer[i] - ((max + min) / 2)) * 256 / (max - min); //marshmelow: adjusted *1000 to *256 to make +/- 128 so demod commands still work } } RepaintGraphWindow(); return 0; } int CmdPlot(const char *Cmd) { ShowGraphWindow(); return 0; } int CmdSave(const char *Cmd) { char filename[FILE_PATH_SIZE] = {0x00}; int len = 0; len = strlen(Cmd); if (len > FILE_PATH_SIZE) len = FILE_PATH_SIZE; memcpy(filename, Cmd, len); FILE *f = fopen(filename, "w"); if(!f) { PrintAndLog("couldn't open '%s'", filename); return 0; } int i; for (i = 0; i < GraphTraceLen; i++) { fprintf(f, "%d\n", GraphBuffer[i]); } fclose(f); PrintAndLog("saved to '%s'", Cmd); return 0; } int CmdScale(const char *Cmd) { CursorScaleFactor = atoi(Cmd); if (CursorScaleFactor == 0) { PrintAndLog("bad, can't have zero scale"); CursorScaleFactor = 1; } RepaintGraphWindow(); return 0; } int CmdDirectionalThreshold(const char *Cmd) { int8_t upThres = param_get8(Cmd, 0); int8_t downThres = param_get8(Cmd, 1); printf("Applying Up Threshold: %d, Down Threshold: %d\n", upThres, downThres); int lastValue = GraphBuffer[0]; GraphBuffer[0] = 0; // Will be changed at the end, but init 0 as we adjust to last samples value if no threshold kicks in. for (int i = 1; i < GraphTraceLen; ++i) { // Apply first threshold to samples heading up if (GraphBuffer[i] >= upThres && GraphBuffer[i] > lastValue) { lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it. GraphBuffer[i] = 1; } // Apply second threshold to samples heading down else if (GraphBuffer[i] <= downThres && GraphBuffer[i] < lastValue) { lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it. GraphBuffer[i] = -1; } else { lastValue = GraphBuffer[i]; // Buffer last value as we overwrite it. GraphBuffer[i] = GraphBuffer[i-1]; } } GraphBuffer[0] = GraphBuffer[1]; // Aline with first edited sample. RepaintGraphWindow(); return 0; } int CmdZerocrossings(const char *Cmd) { // Zero-crossings aren't meaningful unless the signal is zero-mean. CmdHpf(""); int sign = 1; int zc = 0; int lastZc = 0; for (int i = 0; i < GraphTraceLen; ++i) { if (GraphBuffer[i] * sign >= 0) { // No change in sign, reproduce the previous sample count. zc++; GraphBuffer[i] = lastZc; } else { // Change in sign, reset the sample count. sign = -sign; GraphBuffer[i] = lastZc; if (sign > 0) { lastZc = zc; zc = 0; } } } RepaintGraphWindow(); return 0; } /** * @brief Utility for conversion via cmdline. * @param Cmd * @return */ int Cmdbin2hex(const char *Cmd) { int bg =0, en =0; if(param_getptr(Cmd, &bg, &en, 0)) return usage_data_bin2hex(); //Number of digits supplied as argument size_t length = en - bg +1; size_t bytelen = (length+7) / 8; uint8_t* arr = (uint8_t *) malloc(bytelen); memset(arr, 0, bytelen); BitstreamOut bout = { arr, 0, 0 }; for (; bg <= en ;bg++) { char c = Cmd[bg]; if( c == '1') pushBit(&bout, 1); else if( c == '0') pushBit(&bout, 0); else PrintAndLog("Ignoring '%c'", c); } if (bout.numbits % 8 != 0) printf("[padded with %d zeroes]\n", 8-(bout.numbits % 8)); //Uses printf instead of PrintAndLog since the latter // adds linebreaks to each printout - this way was more convenient since we don't have to // allocate a string and write to that first... for(size_t x = 0; x < bytelen ; x++) printf("%02X", arr[x]); printf("\n"); free(arr); return 0; } int Cmdhex2bin(const char *Cmd) { int bg =0, en =0; if(param_getptr(Cmd, &bg, &en, 0)) return usage_data_hex2bin(); while (bg <= en ) { char x = Cmd[bg++]; // capitalize if (x >= 'a' && x <= 'f') x -= 32; // convert to numeric value if (x >= '0' && x <= '9') x -= '0'; else if (x >= 'A' && x <= 'F') x -= 'A' - 10; else continue; //Uses printf instead of PrintAndLog since the latter // adds linebreaks to each printout - this way was more convenient since we don't have to // allocate a string and write to that first... for(int i= 0 ; i < 4 ; ++i) printf("%d",(x >> (3 - i)) & 1); } printf("\n"); return 0; } int CmdDataIIR(const char *Cmd){ uint8_t k = param_get8(Cmd,0); //iceIIR_Butterworth(GraphBuffer, GraphTraceLen); iceSimple_Filter(GraphBuffer, GraphTraceLen, k); RepaintGraphWindow(); return 0; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"askedgedetect", CmdAskEdgeDetect, 1, "[threshold] Adjust Graph for manual ASK demod using the length of sample differences to detect the edge of a wave (use 20-45, def:25)"}, {"askem410xdemod", CmdAskEM410xDemod, 1, "[clock] [invert<0|1>] [maxErr] -- Demodulate an EM410x tag from GraphBuffer (args optional)"}, {"askgproxiidemod", CmdG_Prox_II_Demod, 1, "Demodulate a G Prox II tag from GraphBuffer"}, {"askvikingdemod", CmdVikingDemod, 1, "Demodulate a Viking AM tag from GraphBuffer"}, {"autocorr", CmdAutoCorr, 1, "[window length] [g] -- Autocorrelation over window - g to save back to GraphBuffer (overwrite)"}, {"biphaserawdecode",CmdBiphaseDecodeRaw,1, "[offset] [invert<0|1>] [maxErr] -- Biphase decode bin stream in DemodBuffer (offset = 0|1 bits to shift the decode start)"}, {"bin2hex", Cmdbin2hex, 1, " -- Converts binary to hexadecimal"}, {"bitsamples", CmdBitsamples, 0, "Get raw samples as bitstring"}, {"buffclear", CmdBuffClear, 1, "Clear sample buffer and graph window"}, {"dec", CmdDec, 1, "Decimate samples"}, {"detectclock", CmdDetectClockRate, 1, "[] Detect ASK, FSK, NRZ, PSK clock rate of wave in GraphBuffer"}, {"fdxbdemod", CmdFDXBdemodBI , 1, "Demodulate a FDX-B ISO11784/85 Biphase tag from GraphBuffer"}, {"fskawiddemod", CmdFSKdemodAWID, 1, "Demodulate an AWID FSK tag from GraphBuffer"}, //{"fskfcdetect", CmdFSKfcDetect, 1, "Try to detect the Field Clock of an FSK wave"}, {"fskhiddemod", CmdFSKdemodHID, 1, "Demodulate a HID FSK tag from GraphBuffer"}, {"fskiodemod", CmdFSKdemodIO, 1, "Demodulate an IO Prox FSK tag from GraphBuffer"}, {"fskpyramiddemod", CmdFSKdemodPyramid, 1, "Demodulate a Pyramid FSK tag from GraphBuffer"}, {"fskparadoxdemod", CmdFSKdemodParadox, 1, "Demodulate a Paradox FSK tag from GraphBuffer"}, {"getbitstream", CmdGetBitStream, 1, "Convert GraphBuffer's >=1 values to 1 and <1 to 0"}, {"grid", CmdGrid, 1, " -- overlay grid on graph window, use zero value to turn off either"}, {"hexsamples", CmdHexsamples, 0, " [] -- Dump big buffer as hex bytes"}, {"hex2bin", Cmdhex2bin, 1, " -- Converts hexadecimal to binary"}, {"hide", CmdHide, 1, "Hide graph window"}, {"hpf", CmdHpf, 1, "Remove DC offset from trace"}, {"load", CmdLoad, 1, " -- Load trace (to graph window"}, {"ltrim", CmdLtrim, 1, " -- Trim samples from left of trace"}, {"rtrim", CmdRtrim, 1, " -- Trim samples from right of trace"}, {"manrawdecode", Cmdmandecoderaw, 1, "[invert] [maxErr] -- Manchester decode binary stream in DemodBuffer"}, {"norm", CmdNorm, 1, "Normalize max/min to +/-128"}, {"plot", CmdPlot, 1, "Show graph window (hit 'h' in window for keystroke help)"}, {"printdemodbuffer",CmdPrintDemodBuff, 1, "[x] [o] [l] -- print the data in the DemodBuffer - 'x' for hex output"}, {"pskindalademod", CmdIndalaDecode, 1, "[clock] [invert<0|1>] -- Demodulate an indala tag (PSK1) from GraphBuffer (args optional)"}, {"psknexwatchdemod",CmdPSKNexWatch, 1, "Demodulate a NexWatch tag (nexkey, quadrakey) (PSK1) from GraphBuffer"}, {"rawdemod", CmdRawDemod, 1, "[modulation] ... -see help (h option) -- Demodulate the data in the GraphBuffer and output binary"}, {"samples", CmdSamples, 0, "[512 - 40000] -- Get raw samples for graph window (GraphBuffer)"}, {"save", CmdSave, 1, " -- Save trace (from graph window)"}, {"scale", CmdScale, 1, " -- Set cursor display scale"}, {"setdebugmode", CmdSetDebugMode, 1, "<0|1|2> -- Turn on or off Debugging Level for lf demods"}, {"shiftgraphzero", CmdGraphShiftZero, 1, " -- Shift 0 for Graphed wave + or - shift value"}, {"dirthreshold", CmdDirectionalThreshold, 1, " -- Max rising higher up-thres/ Min falling lower down-thres, keep rest as prev."}, {"tune", CmdTuneSamples, 0, "Get hw tune samples for graph window"}, {"undec", CmdUndec, 1, "Un-decimate samples by 2"}, {"zerocrossings", CmdZerocrossings, 1, "Count time between zero-crossings"}, {"iir", CmdDataIIR, 0, "apply IIR buttersworth filter on plotdata"}, {NULL, NULL, 0, NULL} }; int CmdData(const char *Cmd){ clearCommandBuffer(); CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }