//----------------------------------------------------------------------------- // Gerhard de Koning Gans - May 2008 // Hagen Fritsch - June 2010 // Gerhard de Koning Gans - May 2011 // Gerhard de Koning Gans - June 2012 - Added iClass card and reader emulation // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Routines to support iClass. //----------------------------------------------------------------------------- // Based on ISO14443a implementation. Still in experimental phase. // Contribution made during a security research at Radboud University Nijmegen // // Please feel free to contribute and extend iClass support!! //----------------------------------------------------------------------------- // // FIX: // ==== // We still have sometimes a demodulation error when snooping iClass communication. // The resulting trace of a read-block-03 command may look something like this: // // + 22279: : 0c 03 e8 01 // // ...with an incorrect answer... // // + 85: 0: TAG ff! ff! ff! ff! ff! ff! ff! ff! bb 33 bb 00 01! 0e! 04! bb !crc // // We still left the error signalling bytes in the traces like 0xbb // // A correct trace should look like this: // // + 21112: : 0c 03 e8 01 // + 85: 0: TAG ff ff ff ff ff ff ff ff ea f5 // //----------------------------------------------------------------------------- #include "apps.h" #include "cmd.h" // Needed for CRC in emulation mode; // same construction as in ISO 14443; // different initial value (CRC_ICLASS) #include "iso14443crc.h" #include "iso15693tools.h" #include "protocols.h" #include "optimized_cipher.h" #include "usb_cdc.h" // for usb_poll_validate_length static int timeout = 4096; static int SendIClassAnswer(uint8_t *resp, int respLen, int delay); #define MODE_SIM_CSN 0 #define MODE_EXIT_AFTER_MAC 1 #define MODE_FULLSIM 2 #ifndef ICLASS_DMA_BUFFER_SIZE # define ICLASS_DMA_BUFFER_SIZE 256 #endif // The length of a received command will in most cases be no more than 18 bytes. // 32 should be enough! #ifndef ICLASS_BUFFER_SIZE #define ICLASS_BUFFER_SIZE 32 #endif int doIClassSimulation(int simulationMode, uint8_t *reader_mac_buf); //----------------------------------------------------------------------------- // The software UART that receives commands from the reader, and its state // variables. //----------------------------------------------------------------------------- typedef struct { enum { STATE_UNSYNCD, STATE_START_OF_COMMUNICATION, STATE_RECEIVING } state; uint16_t shiftReg; int bitCnt; int byteCnt; // int byteCntMax; int posCnt; int nOutOfCnt; int OutOfCnt; int syncBit; int samples; int highCnt; int swapper; int counter; int bitBuffer; int dropPosition; uint8_t *output; } tUart; typedef struct { enum { DEMOD_UNSYNCD, DEMOD_START_OF_COMMUNICATION, DEMOD_START_OF_COMMUNICATION2, DEMOD_START_OF_COMMUNICATION3, DEMOD_SOF_COMPLETE, DEMOD_MANCHESTER_D, DEMOD_MANCHESTER_E, DEMOD_END_OF_COMMUNICATION, DEMOD_END_OF_COMMUNICATION2, DEMOD_MANCHESTER_F, DEMOD_ERROR_WAIT } state; int bitCount; int posCount; int syncBit; uint16_t shiftReg; int buffer; int buffer2; int buffer3; int buff; int samples; int len; enum { SUB_NONE, SUB_FIRST_HALF, SUB_SECOND_HALF, SUB_BOTH } sub; uint8_t *output; } tDemod; static tUart Uart; static void UartReset(){ Uart.state = STATE_UNSYNCD; Uart.shiftReg = 0; Uart.bitCnt = 0; Uart.byteCnt = 0; Uart.posCnt = 0; Uart.nOutOfCnt = 0; Uart.OutOfCnt = 0; Uart.syncBit = 0; Uart.samples = 0; Uart.highCnt = 0; Uart.swapper = 0; Uart.counter = 0; Uart.bitBuffer = 0; Uart.dropPosition = 0; } static void UartInit(uint8_t *data){ Uart.output = data; UartReset(); } /* * READER TO CARD * 1 out of 4 Decoding * 1 out of 256 Decoding */ static RAMFUNC int OutOfNDecoding(int bit) { //int error = 0; int bitright; if (!Uart.bitBuffer) { Uart.bitBuffer = bit ^ 0xFF0; return false; } else { Uart.bitBuffer <<= 4; Uart.bitBuffer ^= bit; } /*if (Uart.swapper) { Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; Uart.byteCnt++; Uart.swapper = 0; if (Uart.byteCnt > 15) return true; } else { Uart.swapper = 1; }*/ if (Uart.state != STATE_UNSYNCD) { Uart.posCnt++; if ((Uart.bitBuffer & Uart.syncBit) ^ Uart.syncBit) bit = 0; else bit = 1; if (((Uart.bitBuffer << 1) & Uart.syncBit) ^ Uart.syncBit) bitright = 0; else bitright = 1; if(bit != bitright) bit = bitright; // So, now we only have to deal with *bit*, lets see... if (Uart.posCnt == 1) { // measurement first half bitperiod if (!bit) { // Drop in first half means that we are either seeing // an SOF or an EOF. if (Uart.nOutOfCnt == 1) { // End of Communication Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; if (Uart.byteCnt == 0) { // Its not straightforward to show single EOFs // So just leave it and do not return TRUE Uart.output[0] = 0xf0; Uart.byteCnt++; } else { return true; } } else if (Uart.state != STATE_START_OF_COMMUNICATION) { // When not part of SOF or EOF, it is an error Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; //error = 4; } } } else { // measurement second half bitperiod // Count the bitslot we are in... (ISO 15693) Uart.nOutOfCnt++; if (!bit) { if (Uart.dropPosition) { if (Uart.state == STATE_START_OF_COMMUNICATION) { //error = 1; } else { //error = 7; } // It is an error if we already have seen a drop in current frame Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; } else { Uart.dropPosition = Uart.nOutOfCnt; } } Uart.posCnt = 0; if (Uart.nOutOfCnt == Uart.OutOfCnt && Uart.OutOfCnt == 4) { Uart.nOutOfCnt = 0; if (Uart.state == STATE_START_OF_COMMUNICATION) { if (Uart.dropPosition == 4) { Uart.state = STATE_RECEIVING; Uart.OutOfCnt = 256; } else if (Uart.dropPosition == 3) { Uart.state = STATE_RECEIVING; Uart.OutOfCnt = 4; //Uart.output[Uart.byteCnt] = 0xdd; //Uart.byteCnt++; } else { Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; } Uart.dropPosition = 0; } else { // RECEIVING DATA // 1 out of 4 if (!Uart.dropPosition) { Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; //error = 9; } else { Uart.shiftReg >>= 2; // Swap bit order Uart.dropPosition--; //if(Uart.dropPosition == 1) { Uart.dropPosition = 2; } //else if(Uart.dropPosition == 2) { Uart.dropPosition = 1; } Uart.shiftReg ^= ((Uart.dropPosition & 0x03) << 6); Uart.bitCnt += 2; Uart.dropPosition = 0; if (Uart.bitCnt == 8) { Uart.output[Uart.byteCnt] = (Uart.shiftReg & 0xff); Uart.byteCnt++; Uart.bitCnt = 0; Uart.shiftReg = 0; } } } } else if (Uart.nOutOfCnt == Uart.OutOfCnt) { // RECEIVING DATA // 1 out of 256 if (!Uart.dropPosition) { Uart.state = STATE_UNSYNCD; Uart.highCnt = 0; //error = 3; } else { Uart.dropPosition--; Uart.output[Uart.byteCnt] = (Uart.dropPosition & 0xff); Uart.byteCnt++; Uart.bitCnt = 0; Uart.shiftReg = 0; Uart.nOutOfCnt = 0; Uart.dropPosition = 0; } } /*if (error) { Uart.output[Uart.byteCnt] = 0xAA; Uart.byteCnt++; Uart.output[Uart.byteCnt] = error & 0xFF; Uart.byteCnt++; Uart.output[Uart.byteCnt] = 0xAA; Uart.byteCnt++; Uart.output[Uart.byteCnt] = (Uart.bitBuffer >> 8) & 0xFF; Uart.byteCnt++; Uart.output[Uart.byteCnt] = Uart.bitBuffer & 0xFF; Uart.byteCnt++; Uart.output[Uart.byteCnt] = (Uart.syncBit >> 3) & 0xFF; Uart.byteCnt++; Uart.output[Uart.byteCnt] = 0xAA; Uart.byteCnt++; return true; }*/ } } else { bit = Uart.bitBuffer & 0xf0; bit >>= 4; bit ^= 0x0F; // drops become 1s ;-) if (bit) { // should have been high or at least (4 * 128) / fc // according to ISO this should be at least (9 * 128 + 20) / fc if (Uart.highCnt == 8) { // we went low, so this could be start of communication // it turns out to be safer to choose a less significant // syncbit... so we check whether the neighbour also represents the drop Uart.posCnt = 1; // apparently we are busy with our first half bit period Uart.syncBit = bit & 8; Uart.samples = 3; if (!Uart.syncBit) { Uart.syncBit = bit & 4; Uart.samples = 2; } else if (bit & 4) { Uart.syncBit = bit & 4; Uart.samples = 2; bit <<= 2; } if (!Uart.syncBit) { Uart.syncBit = bit & 2; Uart.samples = 1; } else if (bit & 2) { Uart.syncBit = bit & 2; Uart.samples = 1; bit <<= 1; } if (!Uart.syncBit) { Uart.syncBit = bit & 1; Uart.samples = 0; if (Uart.syncBit && (Uart.bitBuffer & 8)) { Uart.syncBit = 8; // the first half bit period is expected in next sample Uart.posCnt = 0; Uart.samples = 3; } } else if (bit & 1) { Uart.syncBit = bit & 1; Uart.samples = 0; } Uart.syncBit <<= 4; Uart.state = STATE_START_OF_COMMUNICATION; Uart.bitCnt = 0; Uart.byteCnt = 0; Uart.nOutOfCnt = 0; Uart.OutOfCnt = 4; // Start at 1/4, could switch to 1/256 Uart.dropPosition = 0; Uart.shiftReg = 0; //error = 0; } else { Uart.highCnt = 0; } } else { if (Uart.highCnt < 8) Uart.highCnt++; } } return false; } //============================================================================= // Manchester //============================================================================= static tDemod Demod; static void DemodReset() { Demod.bitCount = 0; Demod.posCount = 0; Demod.syncBit = 0; Demod.shiftReg = 0; Demod.buffer = 0; Demod.buffer2 = 0; Demod.buffer3 = 0; Demod.buff = 0; Demod.samples = 0; Demod.len = 0; Demod.sub = SUB_NONE; Demod.state = DEMOD_UNSYNCD; } static void DemodInit(uint8_t *data) { Demod.output = data; DemodReset(); } // UART debug // it adds the debug values which will be put in the tracelog, // visible on client when running 'hf list iclass' /* pm3 --> hf li iclass Recorded Activity (TraceLen = 162 bytes) Start | End | Src | Data (! denotes parity error) | CRC | Annotation | ------------|------------|-----|-----------------------------------------------------------------|-----|--------------------| 0 | 0 | Rdr |0a | | ACTALL 1280 | 1280 | Tag |bb! 33! bb! 01 02 04 08 bb! | ok | 1280 | 1280 | Rdr |0c | | IDENTIFY 1616 | 1616 | Tag |bb! 33! bb! 00! 02 00! 02 bb! | ok | 1616 | 1616 | Rdr |0a | | ACTALL 2336 | 2336 | Tag |bb! d4! bb! 02 08 00! 08 bb! | ok | 2336 | 2336 | Rdr |0c | | IDENTIFY 2448 | 2448 | Tag |bb! 33! bb! 00! 00! 00! 02 bb! | ok | 2448 | 2448 | Rdr |0a | | ACTALL 2720 | 2720 | Tag |bb! d4! bb! 08 0b 01 04 bb! | ok | 2720 | 2720 | Rdr |0c | | IDENTIFY 3232 | 3232 | Tag |bb! d4! bb! 02 02 08 04 bb! | ok | */ static void uart_debug(int error, int bit) { Demod.output[Demod.len] = 0xBB; Demod.len++; Demod.output[Demod.len] = error & 0xFF; Demod.len++; Demod.output[Demod.len] = 0xBB; Demod.len++; Demod.output[Demod.len] = bit & 0xFF; Demod.len++; Demod.output[Demod.len] = Demod.buffer & 0xFF; Demod.len++; // Look harder ;-) Demod.output[Demod.len] = Demod.buffer2 & 0xFF; Demod.len++; Demod.output[Demod.len] = Demod.syncBit & 0xFF; Demod.len++; Demod.output[Demod.len] = 0xBB; Demod.len++; } /* * CARD TO READER * in ISO15693-2 mode - Manchester * in ISO 14443b - BPSK coding * * Timings: * ISO 15693-2 * Tout = 330 µs, Tprog 1 = 4 to 15 ms, Tslot = 330 µs + (number of slots x 160 µs) * ISO 14443a * Tout = 100 µs, Tprog = 4 to 15 ms, Tslot = 100 µs+ (number of slots x 80 µs) * ISO 14443b Tout = 76 µs, Tprog = 4 to 15 ms, Tslot = 119 µs+ (number of slots x 150 µs) * * * So for current implementation in ISO15693, its 330 µs from end of reader, to start of card. */ static RAMFUNC int ManchesterDecoding(int v) { int bit; int modulation; int error = 0; bit = Demod.buffer; Demod.buffer = Demod.buffer2; Demod.buffer2 = Demod.buffer3; Demod.buffer3 = v; // too few bits? if (Demod.buff < 3) { Demod.buff++; return false; } if (Demod.state == DEMOD_UNSYNCD) { Demod.output[Demod.len] = 0xfa; Demod.syncBit = 0; //Demod.samples = 0; Demod.posCount = 1; // This is the first half bit period, so after syncing handle the second part if (bit & 0x08) Demod.syncBit = 0x08; if (bit & 0x04) { if (Demod.syncBit) bit <<= 4; Demod.syncBit = 0x04; } if (bit & 0x02) { if (Demod.syncBit) bit <<= 2; Demod.syncBit = 0x02; } if (bit & 0x01 && Demod.syncBit) Demod.syncBit = 0x01; if (Demod.syncBit) { Demod.len = 0; Demod.state = DEMOD_START_OF_COMMUNICATION; Demod.sub = SUB_FIRST_HALF; Demod.bitCount = 0; Demod.shiftReg = 0; Demod.samples = 0; if (Demod.posCount) { switch (Demod.syncBit) { case 0x08: Demod.samples = 3; break; case 0x04: Demod.samples = 2; break; case 0x02: Demod.samples = 1; break; case 0x01: Demod.samples = 0; break; } // SOF must be long burst... otherwise stay unsynced!!! if (!(Demod.buffer & Demod.syncBit) || !(Demod.buffer2 & Demod.syncBit)) Demod.state = DEMOD_UNSYNCD; } else { // SOF must be long burst... otherwise stay unsynced!!! if (!(Demod.buffer2 & Demod.syncBit) || !(Demod.buffer3 & Demod.syncBit)) { Demod.state = DEMOD_UNSYNCD; error = 0x88; uart_debug(error, bit); return false; } } error = 0; } return false; } // state is DEMOD is in SYNC from here on. modulation = bit & Demod.syncBit; modulation |= ((bit << 1) ^ ((Demod.buffer & 0x08) >> 3)) & Demod.syncBit; Demod.samples += 4; if (Demod.posCount == 0) { Demod.posCount = 1; Demod.sub = (modulation) ? SUB_FIRST_HALF : SUB_NONE; return false; } Demod.posCount = 0; if (modulation) { if (Demod.sub == SUB_FIRST_HALF) Demod.sub = SUB_BOTH; else Demod.sub = SUB_SECOND_HALF; } if (Demod.sub == SUB_NONE) { if (Demod.state == DEMOD_SOF_COMPLETE) { Demod.output[Demod.len] = 0x0f; Demod.len++; Demod.state = DEMOD_UNSYNCD; return true; } else { Demod.state = DEMOD_ERROR_WAIT; error = 0x33; } } switch (Demod.state) { case DEMOD_START_OF_COMMUNICATION: if (Demod.sub == SUB_BOTH) { Demod.state = DEMOD_START_OF_COMMUNICATION2; Demod.posCount = 1; Demod.sub = SUB_NONE; } else { Demod.output[Demod.len] = 0xab; Demod.state = DEMOD_ERROR_WAIT; error = 0xd2; } break; case DEMOD_START_OF_COMMUNICATION2: if (Demod.sub == SUB_SECOND_HALF) { Demod.state = DEMOD_START_OF_COMMUNICATION3; } else { Demod.output[Demod.len] = 0xab; Demod.state = DEMOD_ERROR_WAIT; error = 0xd3; } break; case DEMOD_START_OF_COMMUNICATION3: if (Demod.sub == SUB_SECOND_HALF) { Demod.state = DEMOD_SOF_COMPLETE; } else { Demod.output[Demod.len] = 0xab; Demod.state = DEMOD_ERROR_WAIT; error = 0xd4; } break; case DEMOD_SOF_COMPLETE: case DEMOD_MANCHESTER_D: case DEMOD_MANCHESTER_E: // OPPOSITE FROM ISO14443 - 11110000 = 0 (1 in 14443) // 00001111 = 1 (0 in 14443) if (Demod.sub == SUB_SECOND_HALF) { // SUB_FIRST_HALF Demod.bitCount++; Demod.shiftReg = (Demod.shiftReg >> 1) ^ 0x100; Demod.state = DEMOD_MANCHESTER_D; } else if (Demod.sub == SUB_FIRST_HALF) { // SUB_SECOND_HALF Demod.bitCount++; Demod.shiftReg >>= 1; Demod.state = DEMOD_MANCHESTER_E; } else if (Demod.sub == SUB_BOTH) { Demod.state = DEMOD_MANCHESTER_F; } else { Demod.state = DEMOD_ERROR_WAIT; error = 0x55; } break; case DEMOD_MANCHESTER_F: // Tag response does not need to be a complete byte! if (Demod.len > 0 || Demod.bitCount > 0) { if (Demod.bitCount > 1) { // was > 0, do not interpret last closing bit, is part of EOF Demod.shiftReg >>= (9 - Demod.bitCount); // right align data Demod.output[Demod.len] = Demod.shiftReg & 0xff; Demod.len++; } Demod.state = DEMOD_UNSYNCD; return true; } else { Demod.output[Demod.len] = 0xad; Demod.state = DEMOD_ERROR_WAIT; error = 0x03; } break; case DEMOD_ERROR_WAIT: Demod.state = DEMOD_UNSYNCD; break; default: Demod.output[Demod.len] = 0xdd; Demod.state = DEMOD_UNSYNCD; break; } if (Demod.bitCount >= 8) { Demod.shiftReg >>= 1; Demod.output[Demod.len] = (Demod.shiftReg & 0xff); Demod.len++; Demod.bitCount = 0; Demod.shiftReg = 0; } if (error) { uart_debug(error, bit); return true; } return false; } //============================================================================= // Finally, a `sniffer' for iClass communication // Both sides of communication! //============================================================================= static void iclass_setup_sniff(void){ if (MF_DBGLEVEL > 3) Dbprintf("iclass_setup_sniff Enter"); LEDsoff(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); FpgaDownloadAndGo(FPGA_BITSTREAM_HF); // connect Demodulated Signal to ADC: SetAdcMuxFor(GPIO_MUXSEL_HIPKD); // Set up the synchronous serial port FpgaSetupSsc(); BigBuf_free(); BigBuf_Clear_ext(false); clear_trace(); set_tracing(true); // Initialize Demod and Uart structs DemodInit(BigBuf_malloc(ICLASS_BUFFER_SIZE)); UartInit(BigBuf_malloc(ICLASS_BUFFER_SIZE)); if (MF_DBGLEVEL > 1) { // Print debug information about the buffer sizes Dbprintf("Snooping buffers initialized:"); Dbprintf(" Trace: %i bytes", BigBuf_max_traceLen()); Dbprintf(" Reader -> tag: %i bytes", ICLASS_BUFFER_SIZE); Dbprintf(" tag -> Reader: %i bytes", ICLASS_BUFFER_SIZE); Dbprintf(" DMA: %i bytes", ICLASS_DMA_BUFFER_SIZE); } // Set FPGA in the appropriate mode // put the FPGA in the appropriate mode FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_SNIFFER); SpinDelay(200); // Start the SSP timer StartCountSspClk(); LED_A_ON(); if (MF_DBGLEVEL > 3) Dbprintf("iclass_setup_sniff Exit"); } //----------------------------------------------------------------------------- // Record the sequence of commands sent by the reader to the tag, with // triggering so that we start recording at the point that the tag is moved // near the reader. //----------------------------------------------------------------------------- // turn off afterwards void RAMFUNC SniffIClass(void) { uint8_t previous_data = 0; int maxDataLen = 0; // datalen = 0; uint32_t time_0 = 0, time_start = 0, time_stop = 0; uint32_t sniffCounter = 0; bool TagIsActive = false; bool ReaderIsActive = false; iclass_setup_sniff(); // The DMA buffer, used to stream samples from the FPGA uint8_t *dmaBuf = BigBuf_malloc(ICLASS_DMA_BUFFER_SIZE); uint8_t *data = dmaBuf; // Setup and start DMA. if ( !FpgaSetupSscDma(dmaBuf, ICLASS_DMA_BUFFER_SIZE) ){ if (MF_DBGLEVEL > 1) DbpString("FpgaSetupSscDma failed. Exiting"); return; } // time ZERO, the point from which it all is calculated. time_0 = GetCountSspClk(); // loop and listen while (!BUTTON_PRESS()) { WDT_HIT(); previous_data = *data; sniffCounter++; data++; if (data == dmaBuf + ICLASS_DMA_BUFFER_SIZE) { data = dmaBuf; AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; AT91C_BASE_PDC_SSC->PDC_RNCR = ICLASS_DMA_BUFFER_SIZE; } // number of bytes we have processed so far //int register readBufDataP = data - dmaBuf; // number of bytes already transferred //int register dmaBufDataP = ICLASS_DMA_BUFFER_SIZE - AT91C_BASE_PDC_SSC->PDC_RCR; /* if (readBufDataP <= dmaBufDataP) datalen = dmaBufDataP - readBufDataP; else datalen = ICLASS_DMA_BUFFER_SIZE - readBufDataP + dmaBufDataP; */ // test for length of buffer /* if (datalen > maxDataLen) { maxDataLen = datalen; if (datalen > (9 * ICLASS_DMA_BUFFER_SIZE / 10)) { Dbprintf("blew circular buffer! datalen=%d", datalen); break; } } */ // this part basically does wait until our DMA buffer got a value. // well it loops, but the purpose is to wait. //if (datalen < 1) continue; // these two, is more of a "reset" the DMA buffers, re-init. // primary buffer was stopped( <-- we lost data! /* if (!AT91C_BASE_PDC_SSC->PDC_RCR) { AT91C_BASE_PDC_SSC->PDC_RPR = (uint32_t) dmaBuf; AT91C_BASE_PDC_SSC->PDC_RCR = ICLASS_DMA_BUFFER_SIZE; // Dbprintf("Primary buffer ERROR!!! data length: %d", datalen); // temporary } */ /* // secondary buffer sets as primary, secondary buffer was stopped if (!AT91C_BASE_PDC_SSC->PDC_RNCR) { AT91C_BASE_PDC_SSC->PDC_RNPR = (uint32_t) dmaBuf; AT91C_BASE_PDC_SSC->PDC_RNCR = ICLASS_DMA_BUFFER_SIZE; // Dbprintf("Seconday buffer ERROR!!! data length: %d", datalen); // temporary }*/ if (sniffCounter & 0x01) { // no need to try decoding reader data if the tag is sending // READER TO CARD if (!TagIsActive) { LED_C_INV(); // HIGH nibble is always reader data. uint8_t readerdata = (previous_data & 0xF0) | (*data >> 4); if ( OutOfNDecoding(readerdata) ) { time_stop = GetCountSspClk() - time_0; LogTrace(Uart.output, Uart.byteCnt, time_start, time_stop, NULL, true); DemodReset(); UartReset(); } else { time_start = GetCountSspClk() - time_0; } ReaderIsActive = (Uart.state != STATE_UNSYNCD); } } if ( sniffCounter % 3) { // need two samples to feed Manchester // no need to try decoding tag data if the reader is sending - and we cannot afford the time // CARD TO READER if (!ReaderIsActive) { LED_C_INV(); // LOW nibble is always tag data. uint8_t tagdata = (previous_data << 4) | (*data & 0x0F); if (ManchesterDecoding(tagdata)) { time_stop = GetCountSspClk() - time_0; LogTrace(Demod.output, Demod.len, time_start, time_stop, NULL, false); DemodReset(); UartReset(); } else { time_start = GetCountSspClk() - time_0; } TagIsActive = (Demod.state != DEMOD_UNSYNCD); } } } // end main loop if (MF_DBGLEVEL >= 1) { DbpString("Sniff statistics:"); Dbprintf(" maxDataLen=%x, Uart.state=%x, Uart.byteCnt=%x", maxDataLen, Uart.state, Uart.byteCnt); Dbprintf(" Tracelen=%x, Uart.output[0]=%x", BigBuf_get_traceLen(), (int)Uart.output[0]); Dbhexdump(ICLASS_DMA_BUFFER_SIZE, data, false); uint8_t r[128] = {0}; uint8_t t[128] = {0}; uint16_t i; uint8_t j; for (i=0, j=0; i> 4); t[j] = (data[i] << 4) | (data[i+1] & 0xF); } DbpString("reader:"); Dbhexdump(sizeof(r), r, false); DbpString("tag:"); Dbhexdump(sizeof(t), t, false); } switch_off(); } void rotateCSN(uint8_t* originalCSN, uint8_t* rotatedCSN) { int i; for(i = 0; i < 8; i++) rotatedCSN[i] = (originalCSN[i] >> 3) | (originalCSN[(i+1)%8] << 5); } //----------------------------------------------------------------------------- // Wait for commands from reader // Stop when button is pressed // Or return TRUE when command is captured //----------------------------------------------------------------------------- static bool GetIClassCommandFromReader(uint8_t *received, int *len, int maxLen) { // Set FPGA mode to "simulated ISO 14443 tag", no modulation (listen // only, since we are receiving, not transmitting). // Signal field is off with the appropriate LED LED_D_OFF(); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); // Now run a `software UART' on the stream of incoming samples. UartInit(received); // clear RXRDY: uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; while (!BUTTON_PRESS()) { WDT_HIT(); //if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) // AT91C_BASE_SSC->SSC_THR = 0x00; if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; if (OutOfNDecoding(b & 0x0f)) { *len = Uart.byteCnt; return true; } } } return false; } static uint8_t encode4Bits(const uint8_t b) { // OTA, the least significant bits first // Manchester encoding added // The columns are // 1 - Bit value to send // 2 - Reversed (big-endian) // 3 - Machester Encoded // 4 - Hex values uint8_t c = b & 0xF; switch (c) { // 1 2 3 4 case 15: return 0x55; // 1111 -> 1111 -> 01010101 -> 0x55 case 14: return 0x95; // 1110 -> 0111 -> 10010101 -> 0x95 case 13: return 0x65; // 1101 -> 1011 -> 01100101 -> 0x65 case 12: return 0xa5; // 1100 -> 0011 -> 10100101 -> 0xa5 case 11: return 0x59; // 1011 -> 1101 -> 01011001 -> 0x59 case 10: return 0x99; // 1010 -> 0101 -> 10011001 -> 0x99 case 9: return 0x69; // 1001 -> 1001 -> 01101001 -> 0x69 case 8: return 0xa9; // 1000 -> 0001 -> 10101001 -> 0xa9 case 7: return 0x56; // 0111 -> 1110 -> 01010110 -> 0x56 case 6: return 0x96; // 0110 -> 0110 -> 10010110 -> 0x96 case 5: return 0x66; // 0101 -> 1010 -> 01100110 -> 0x66 case 4: return 0xa6; // 0100 -> 0010 -> 10100110 -> 0xa6 case 3: return 0x5a; // 0011 -> 1100 -> 01011010 -> 0x5a case 2: return 0x9a; // 0010 -> 0100 -> 10011010 -> 0x9a case 1: return 0x6a; // 0001 -> 1000 -> 01101010 -> 0x6a default: return 0xaa; // 0000 -> 0000 -> 10101010 -> 0xaa } } //----------------------------------------------------------------------------- // Prepare tag messages //----------------------------------------------------------------------------- static void CodeIClassTagAnswer(const uint8_t *cmd, int len) { /* * SOF comprises 3 parts; * * An unmodulated time of 56.64 us * * 24 pulses of 423.75 KHz (fc/32) * * A logic 1, which starts with an unmodulated time of 18.88us * followed by 8 pulses of 423.75kHz (fc/32) * * * EOF comprises 3 parts: * - A logic 0 (which starts with 8 pulses of fc/32 followed by an unmodulated * time of 18.88us. * - 24 pulses of fc/32 * - An unmodulated time of 56.64 us * * * A logic 0 starts with 8 pulses of fc/32 * followed by an unmodulated time of 256/fc (~18,88us). * * A logic 0 starts with unmodulated time of 256/fc (~18,88us) followed by * 8 pulses of fc/32 (also 18.88us) * * The mode FPGA_HF_SIMULATOR_MODULATE_424K_8BIT which we use to simulate tag, * works like this. * - A 1-bit input to the FPGA becomes 8 pulses on 423.5kHz (fc/32) (18.88us). * - A 0-bit input to the FPGA becomes an unmodulated time of 18.88us * * In this mode * SOF can be written as 00011101 = 0x1D * EOF can be written as 10111000 = 0xb8 * logic 1 be written as 01 = 0x1 * logic 0 be written as 10 = 0x2 * * */ ToSendReset(); // Send SOF ToSend[++ToSendMax] = 0x1D; int i; for(i = 0; i < len; i++) { uint8_t b = cmd[i]; ToSend[++ToSendMax] = encode4Bits(b & 0xF); // least significant half ToSend[++ToSendMax] = encode4Bits((b >> 4) & 0xF); // most significant half } // Send EOF ToSend[++ToSendMax] = 0xB8; //lastProxToAirDuration = 8*ToSendMax - 3*8 - 3*8;//Not counting zeroes in the beginning or end // Convert from last byte pos to length ToSendMax++; } // Only SOF static void CodeIClassTagSOF() { //So far a dummy implementation, not used //int lastProxToAirDuration =0; ToSendReset(); // Send SOF ToSend[++ToSendMax] = 0x1D; // lastProxToAirDuration = 8*ToSendMax - 3*8;//Not counting zeroes in the beginning // Convert from last byte pos to length ToSendMax++; } /** * @brief SimulateIClass simulates an iClass card. * @param arg0 type of simulation * - 0 uses the first 8 bytes in usb data as CSN * - 2 "dismantling iclass"-attack. This mode iterates through all CSN's specified * in the usb data. This mode collects MAC from the reader, in order to do an offline * attack on the keys. For more info, see "dismantling iclass" and proxclone.com. * - Other : Uses the default CSN (031fec8af7ff12e0) * @param arg1 - number of CSN's contained in datain (applicable for mode 2 only) * @param arg2 * @param datain */ // turn off afterwards void SimulateIClass(uint32_t arg0, uint32_t arg1, uint32_t arg2, uint8_t *datain) { if (MF_DBGLEVEL > 3) Dbprintf("iclass_simulate Enter"); LEDsoff(); FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // this will clear out bigbuf memory ... FpgaDownloadAndGo(FPGA_BITSTREAM_HF); FpgaSetupSsc(); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); // Enable and clear the trace clear_trace(); set_tracing(true); uint32_t simType = arg0; uint32_t numberOfCSNS = arg1; //Use the emulator memory for SIM uint8_t *emulator = BigBuf_get_EM_addr(); uint8_t mac_responses[USB_CMD_DATA_SIZE] = { 0 }; if (simType == 0) { // Use the CSN from commandline memcpy(emulator, datain, 8); doIClassSimulation(MODE_SIM_CSN, NULL); } else if (simType == 1) { //Default CSN uint8_t csn_crc[] = { 0x03, 0x1f, 0xec, 0x8a, 0xf7, 0xff, 0x12, 0xe0, 0x00, 0x00 }; // Use the CSN from commandline memcpy(emulator, csn_crc, 8); doIClassSimulation(MODE_SIM_CSN, NULL); } else if (simType == 2) { Dbprintf("Going into attack mode, %d CSNS sent", numberOfCSNS); // In this mode, a number of csns are within datain. We'll simulate each one, one at a time // in order to collect MAC's from the reader. This can later be used in an offlne-attack // in order to obtain the keys, as in the "dismantling iclass"-paper. int i = 0; for (; i < numberOfCSNS && i*8 + 8 < USB_CMD_DATA_SIZE; i++) { // The usb data is 512 bytes, fitting 65 8-byte CSNs in there. memcpy(emulator, datain + (i*8), 8); if (doIClassSimulation(MODE_EXIT_AFTER_MAC, mac_responses+i*8)) { // Button pressed cmd_send(CMD_ACK, CMD_SIMULATE_TAG_ICLASS, i, 0, mac_responses, i*8); goto out; } } cmd_send(CMD_ACK, CMD_SIMULATE_TAG_ICLASS, i, 0, mac_responses, i*8); } else if (simType == 3){ //This is 'full sim' mode, where we use the emulator storage for data. doIClassSimulation(MODE_FULLSIM, NULL); } else if (simType == 4){ // This is the KEYROLL version of sim 2. // the collected data (mac_response) is doubled out since we are trying to collect both keys in the keyroll process. // Keyroll iceman 9 csns * 8 * 2 = 144 // keyroll CARL55 15csns * 8 * 2 = 15 * 8 * 2 = 240 Dbprintf("Going into attack keyroll mode, %d CSNS sent", numberOfCSNS); // In this mode, a number of csns are within datain. We'll simulate each one, one at a time // in order to collect MAC's from the reader. This can later be used in an offlne-attack // in order to obtain the keys, as in the "dismantling iclass"-paper. // keyroll mode, reader swaps between old key and new key alternatively when fail a authentication. // attack below is same as SIM 2, but we run the CSN twice to collected the mac for both keys. int i = 0; // The usb data is 512 bytes, fitting 65 8-byte CSNs in there. iceman fork uses 9 CSNS for (; i < numberOfCSNS && i*8 + 8 < USB_CMD_DATA_SIZE; i++) { memcpy(emulator, datain + (i*8), 8); // keyroll 1 if (doIClassSimulation(MODE_EXIT_AFTER_MAC, mac_responses + i*8 )) { cmd_send(CMD_ACK, CMD_SIMULATE_TAG_ICLASS, i*2, 0, mac_responses, i * 8 * 2); // Button pressed goto out; } // keyroll 2 if (doIClassSimulation(MODE_EXIT_AFTER_MAC, mac_responses + (i + numberOfCSNS) * 8 )) { cmd_send(CMD_ACK, CMD_SIMULATE_TAG_ICLASS, i*2, 0, mac_responses, i * 8 * 2); // Button pressed goto out; } } // double the amount of collected data. cmd_send(CMD_ACK, CMD_SIMULATE_TAG_ICLASS, i*2, 0, mac_responses, i * 8 * 2 ); } else { // We may want a mode here where we hardcode the csns to use (from proxclone). // That will speed things up a little, but not required just yet. DbpString("The mode is not implemented, reserved for future use"); } out: switch_off(); } void AppendCrc(uint8_t* data, int len) { ComputeCrc14443(CRC_ICLASS, data, len, data+len, data+len+1); } /** * @brief Does the actual simulation * @param csn - csn to use * @param breakAfterMacReceived if true, returns after reader MAC has been received. */ int doIClassSimulation( int simulationMode, uint8_t *reader_mac_buf) { // free eventually allocated BigBuf memory BigBuf_free_keep_EM(); State cipher_state; uint8_t *csn = BigBuf_get_EM_addr(); uint8_t *emulator = csn; uint8_t sof_data[] = { 0x0F} ; // CSN followed by two CRC bytes uint8_t anticoll_data[10] = { 0 }; uint8_t csn_data[10] = { 0 }; memcpy(csn_data, csn, sizeof(csn_data)); Dbprintf("Simulating CSN %02x%02x%02x%02x%02x%02x%02x%02x", csn[0], csn[1], csn[2], csn[3], csn[4], csn[5], csn[6], csn[7]); // Construct anticollision-CSN rotateCSN(csn_data, anticoll_data); // Compute CRC on both CSNs ComputeCrc14443(CRC_ICLASS, anticoll_data, 8, &anticoll_data[8], &anticoll_data[9]); ComputeCrc14443(CRC_ICLASS, csn_data, 8, &csn_data[8], &csn_data[9]); uint8_t diversified_key[8] = { 0 }; // e-Purse uint8_t card_challenge_data[8] = { 0xfe,0xff,0xff,0xff,0xff,0xff,0xff,0xff }; if (simulationMode == MODE_FULLSIM) { //The diversified key should be stored on block 3 //Get the diversified key from emulator memory memcpy(diversified_key, emulator+(8*3),8); //Card challenge, a.k.a e-purse is on block 2 memcpy(card_challenge_data, emulator + (8 * 2) ,8); //Precalculate the cipher state, feeding it the CC cipher_state = opt_doTagMAC_1(card_challenge_data, diversified_key); } int exitLoop = 0; // Reader 0a // Tag 0f // Reader 0c // Tag anticoll. CSN // Reader 81 anticoll. CSN // Tag CSN uint8_t *modulated_response; int modulated_response_size = 0; uint8_t* trace_data = NULL; int trace_data_size = 0; // Respond SOF -- takes 1 bytes uint8_t *resp_sof = BigBuf_malloc(2); int resp_sof_Len; // Anticollision CSN (rotated CSN) // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) uint8_t *resp_anticoll = BigBuf_malloc(28); int resp_anticoll_len; // CSN // 22: Takes 2 bytes for SOF/EOF and 10 * 2 = 20 bytes (2 bytes/byte) uint8_t *resp_csn = BigBuf_malloc(30); int resp_csn_len; // configuration picopass 2ks uint8_t *resp_conf = BigBuf_malloc(20); int resp_conf_len; uint8_t conf_data[10] = {0x12,0xFF,0xFF,0xFF,0x7F,0x1F,0xFF,0x3C,0x00,0x00}; ComputeCrc14443(CRC_ICLASS, conf_data, 8, &conf_data[8], &conf_data[9]); // e-Purse // 18: Takes 2 bytes for SOF/EOF and 8 * 2 = 16 bytes (2 bytes/bit) uint8_t *resp_cc = BigBuf_malloc(20); int resp_cc_len; // Application Issuer Area uint8_t *resp_aia = BigBuf_malloc(20); int resp_aia_len; uint8_t aia_data[10] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0x00,0x00}; ComputeCrc14443(CRC_ICLASS, aia_data, 8, &aia_data[8], &aia_data[9]); // receive command uint8_t *receivedCmd = BigBuf_malloc(MAX_FRAME_SIZE); int len = 0; // Prepare card messages ToSendMax = 0; // First card answer: SOF CodeIClassTagSOF(); memcpy(resp_sof, ToSend, ToSendMax); resp_sof_Len = ToSendMax; if ( MF_DBGLEVEL == MF_DBG_EXTENDED) { DbpString("SOF"); PrintToSendBuffer(); } // Anticollision CSN CodeIClassTagAnswer(anticoll_data, sizeof(anticoll_data)); memcpy(resp_anticoll, ToSend, ToSendMax); resp_anticoll_len = ToSendMax; if ( MF_DBGLEVEL == MF_DBG_EXTENDED) { DbpString("ANTI COLL CSN"); PrintToSendBuffer(); } // CSN CodeIClassTagAnswer(csn_data, sizeof(csn_data)); memcpy(resp_csn, ToSend, ToSendMax); resp_csn_len = ToSendMax; if ( MF_DBGLEVEL == MF_DBG_EXTENDED) { DbpString("CSN"); PrintToSendBuffer(); } // Configuration CodeIClassTagAnswer(conf_data, sizeof(conf_data)); memcpy(resp_conf, ToSend, ToSendMax); resp_conf_len = ToSendMax; if ( MF_DBGLEVEL == MF_DBG_EXTENDED) { DbpString("Configuration"); PrintToSendBuffer(); } // e-Purse CodeIClassTagAnswer(card_challenge_data, sizeof(card_challenge_data)); memcpy(resp_cc, ToSend, ToSendMax); resp_cc_len = ToSendMax; if ( MF_DBGLEVEL == MF_DBG_EXTENDED) { DbpString("e-Purse"); PrintToSendBuffer(); } // Application Issuer Area CodeIClassTagAnswer(aia_data, sizeof(aia_data)); memcpy(resp_aia, ToSend, ToSendMax); resp_aia_len = ToSendMax; if ( MF_DBGLEVEL == MF_DBG_EXTENDED) { DbpString("Application Issuer Data"); PrintToSendBuffer(); } //This is used for responding to READ-block commands or other data which is dynamically generated //First the 'trace'-data, not encoded for FPGA uint8_t *data_generic_trace = BigBuf_malloc(8 + 2);//8 bytes data + 2byte CRC is max tag answer //Then storage for the modulated data //Each bit is doubled when modulated for FPGA, and we also have SOF and EOF (2 bytes) uint8_t *data_response = BigBuf_malloc( (8+2) * 2 + 2); FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_TAGSIM_LISTEN); StartCountSspClk(); // To control where we are in the protocol int cmdsRecvd = 0; uint32_t time_0 = GetCountSspClk(); uint32_t t2r_time = 0, r2t_time = 0; LED_A_ON(); bool buttonPressed = false; uint8_t response_delay = 1; while (!exitLoop) { WDT_HIT(); response_delay = 200; // receivedCmd[0] = 0; receivedCmd[1] = 0; receivedCmd[2] = 0; receivedCmd[3] = 0; // receivedCmd[4] = 0; receivedCmd[5] = 0; receivedCmd[6] = 0; receivedCmd[7] = 0; // receivedCmd[8] = 0; receivedCmd[9] = 0; receivedCmd[10] = 0; receivedCmd[11] = 0; // receivedCmd[12] = 0;receivedCmd[13] = 0;receivedCmd[14] = 0; receivedCmd[15] = 0; //Signal tracer, can be used to get a trigger for an oscilloscope.. LED_B_OFF(); LED_C_OFF(); if (!GetIClassCommandFromReader(receivedCmd, &len, 0)) { buttonPressed = true; exitLoop = true; continue; } r2t_time = GetCountSspClk(); LED_C_ON(); //Signal tracer if (receivedCmd[0] == ICLASS_CMD_ACTALL ) { // 0x0A // Reader in anticollission phase modulated_response = resp_sof; modulated_response_size = resp_sof_Len; //order = 1; trace_data = sof_data; trace_data_size = sizeof(sof_data); } else if (receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 1) { // 0x0C // Reader asks for anticollission CSN modulated_response = resp_anticoll; modulated_response_size = resp_anticoll_len; //order = 2; trace_data = anticoll_data; trace_data_size = sizeof(anticoll_data); } else if (receivedCmd[0] == ICLASS_CMD_SELECT) { // 0x81 // Reader selects anticollission CSN. // Tag sends the corresponding real CSN modulated_response = resp_csn; modulated_response_size = resp_csn_len; //order = 3; trace_data = csn_data; trace_data_size = sizeof(csn_data); } else if (receivedCmd[0] == ICLASS_CMD_READCHECK_KD) { // 0x88 // Read e-purse (88 02) modulated_response = resp_cc; modulated_response_size = resp_cc_len; //order = 4; trace_data = card_challenge_data; trace_data_size = sizeof(card_challenge_data); LED_B_ON(); } else if (receivedCmd[0] == ICLASS_CMD_CHECK) { // 0x05 // Reader random and reader MAC!!! if (simulationMode == MODE_FULLSIM) { //NR, from reader, is in receivedCmd +1 opt_doTagMAC_2(cipher_state,receivedCmd+1,data_generic_trace,diversified_key); trace_data = data_generic_trace; trace_data_size = 4; CodeIClassTagAnswer(trace_data , trace_data_size); memcpy(data_response, ToSend, ToSendMax); modulated_response = data_response; modulated_response_size = ToSendMax; response_delay = 0;//We need to hurry here... //exitLoop = true; } else { //Not fullsim, we don't respond // We do not know what to answer, so lets keep quiet modulated_response = resp_sof; modulated_response_size = 0; trace_data = NULL; trace_data_size = 0; if (simulationMode == MODE_EXIT_AFTER_MAC) { // dbprintf:ing ... Dbprintf("CSN: %02x %02x %02x %02x %02x %02x %02x %02x", csn[0], csn[1], csn[2], csn[3], csn[4], csn[5], csn[6], csn[7]); Dbprintf("RDR: (len=%02d): %02x %02x %02x %02x %02x %02x %02x %02x %02x", len, receivedCmd[0], receivedCmd[1], receivedCmd[2], receivedCmd[3], receivedCmd[4], receivedCmd[5], receivedCmd[6], receivedCmd[7], receivedCmd[8]); if (reader_mac_buf != NULL) { memcpy(reader_mac_buf, receivedCmd+1, 8); } exitLoop = true; } } } else if (receivedCmd[0] == ICLASS_CMD_HALT && len == 1) { // Reader ends the session modulated_response = resp_sof; modulated_response_size = 0; //order = 0; trace_data = NULL; trace_data_size = 0; // sim 2 / 4, } else if (simulationMode == MODE_EXIT_AFTER_MAC && receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4){ // block0,1,2,5 is always readable. uint16_t blk = receivedCmd[1]; switch (blk){ case 0: // csn (0c 00) modulated_response = resp_csn; modulated_response_size = resp_csn_len; trace_data = csn_data; trace_data_size = sizeof(csn_data); break; case 1: // configuration (0c 01) modulated_response = resp_conf; modulated_response_size = resp_conf_len; trace_data = conf_data; trace_data_size = sizeof(conf_data); break; case 2: // e-purse (0c 02) modulated_response = resp_cc; modulated_response_size = resp_cc_len; trace_data = card_challenge_data; trace_data_size = sizeof(card_challenge_data); break; case 5:// Application Issuer Area (0c 05) modulated_response = resp_aia; modulated_response_size = resp_aia_len; trace_data = aia_data; trace_data_size = sizeof(aia_data); break; default: break; } } else if (simulationMode == MODE_FULLSIM && receivedCmd[0] == ICLASS_CMD_READ_OR_IDENTIFY && len == 4){ //Read block uint16_t blk = receivedCmd[1]; //Take the data... memcpy(data_generic_trace, emulator+(blk << 3),8); //Add crc AppendCrc(data_generic_trace, 8); trace_data = data_generic_trace; trace_data_size = 10; CodeIClassTagAnswer(trace_data , trace_data_size); memcpy(data_response, ToSend, ToSendMax); modulated_response = data_response; modulated_response_size = ToSendMax; } else if (simulationMode == MODE_FULLSIM && receivedCmd[0] == ICLASS_CMD_UPDATE) { //Probably the reader wants to update the nonce. Let's just ignore that for now. // OBS! If this is implemented, don't forget to regenerate the cipher_state //We're expected to respond with the data+crc, exactly what's already in the receivedcmd //receivedcmd is now UPDATE 1b | ADDRESS 1b| DATA 8b| Signature 4b or CRC 2b| //Take the data... memcpy(data_generic_trace, receivedCmd+2,8); //Add crc AppendCrc(data_generic_trace, 8); trace_data = data_generic_trace; trace_data_size = 10; CodeIClassTagAnswer(trace_data , trace_data_size); memcpy(data_response, ToSend, ToSendMax); modulated_response = data_response; modulated_response_size = ToSendMax; // } else if(receivedCmd[0] == ICLASS_CMD_PAGESEL) { // 0x84 //Pagesel //Pagesel enables to select a page in the selected chip memory and return its configuration block //Chips with a single page will not answer to this command // It appears we're fine ignoring this. //Otherwise, we should answer 8bytes (block) + 2bytes CRC // } else if(receivedCmd[0] == ICLASS_CMD_DETECT) { // 0x0F } else { //#db# Unknown command received from reader (len=5): 26 1 0 f6 a 44 44 44 44 // Never seen this command before if ( MF_DBGLEVEL == MF_DBG_EXTENDED) { Dbprintf("Unhandled command received from reader (len %d) | %02x %02x %02x %02x %02x %02x %02x %02x %02x", len, receivedCmd[0], receivedCmd[1], receivedCmd[2], receivedCmd[3], receivedCmd[4], receivedCmd[5], receivedCmd[6], receivedCmd[7], receivedCmd[8] ); } // Do not respond modulated_response = resp_sof; modulated_response_size = 0; //order = 0; trace_data = NULL; trace_data_size = 0; } cmdsRecvd++; /** A legit tag has about 380us delay between reader EOT and tag SOF. **/ if (modulated_response_size > 0) { SendIClassAnswer(modulated_response, modulated_response_size, response_delay); t2r_time = (GetCountSspClk() - time_0) << 4; } LogTrace(receivedCmd, len, (r2t_time - time_0)<< 4, (r2t_time - time_0) << 4, NULL, true); if (trace_data != NULL) { LogTrace(trace_data, trace_data_size, t2r_time, t2r_time, NULL, false); if ( MF_DBGLEVEL == MF_DBG_EXTENDED) DbpString("trace written"); } } LEDsoff(); if (buttonPressed) DbpString("Button pressed"); return buttonPressed; } /** * @brief sends our simulated tag answer * @param resp * @param respLen * @param delay */ static int SendIClassAnswer(uint8_t *resp, int respLen, int delay) { int i = 0, d = 0; uint8_t b = 0; FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_SIMULATOR | FPGA_HF_SIMULATOR_MODULATE_424K_8BIT); AT91C_BASE_SSC->SSC_THR = 0x00; //FpgaSetupSsc(); while (!BUTTON_PRESS()) { if ( (AT91C_BASE_SSC->SSC_SR & AT91C_SSC_RXRDY)){ b = AT91C_BASE_SSC->SSC_RHR; (void) b; } if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)){ b = 0x00; if (d < delay) { d++; } else { if ( i < respLen){ b = resp[i]; //Hack //b = 0xAC; } i++; } AT91C_BASE_SSC->SSC_THR = b; } // if (i > respLen + 4) break; if (i > respLen + 1) break; } return 0; } /// THE READER CODE //----------------------------------------------------------------------------- // Transmit the command (to the tag) that was placed in ToSend[]. //----------------------------------------------------------------------------- static void TransmitIClassCommand(const uint8_t *cmd, int len, int *samples, int *wait) { int c; volatile uint32_t r; bool firstpart = true; uint8_t sendbyte; FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); AT91C_BASE_SSC->SSC_THR = 0x00; //SpinDelay(200); if (wait) { if (*wait < 10) *wait = 10; for (c = 0; c < *wait;) { WDT_HIT(); if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = 0x00; // For exact timing! c++; } if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { r = AT91C_BASE_SSC->SSC_RHR; (void)r; } } } c = 0; for(;;) { WDT_HIT(); if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { // DOUBLE THE SAMPLES! if (firstpart) { sendbyte = (cmd[c] & 0xf0) | (cmd[c] >> 4); } else { sendbyte = (cmd[c] & 0x0f) | (cmd[c] << 4); c++; } if(sendbyte == 0xff) sendbyte = 0xfe; AT91C_BASE_SSC->SSC_THR = sendbyte; firstpart = !firstpart; if (c >= len) break; } if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { r = AT91C_BASE_SSC->SSC_RHR; (void)r; } } if (samples) { if (wait) *samples = (c + *wait) << 3; else *samples = c << 3; } } //----------------------------------------------------------------------------- // Prepare iClass reader command to send to FPGA //----------------------------------------------------------------------------- void CodeIClassCommand(const uint8_t* cmd, int len) { int i, j, k; uint8_t b; ToSendReset(); // (SOC) Start of Communication: 1 out of 4 ToSend[++ToSendMax] = 0xf0; ToSend[++ToSendMax] = 0x00; ToSend[++ToSendMax] = 0x0f; ToSend[++ToSendMax] = 0x00; // Modulate the bytes for (i = 0; i < len; i++) { b = cmd[i]; for (j = 0; j < 4; j++) { for (k = 0; k < 4; k++) { if (k == (b & 3)) ToSend[++ToSendMax] = 0xf0; else ToSend[++ToSendMax] = 0x00; } b >>= 2; } } // (EOC) End of Communication ToSend[++ToSendMax] = 0x00; ToSend[++ToSendMax] = 0x00; ToSend[++ToSendMax] = 0xf0; ToSend[++ToSendMax] = 0x00; // Convert from last character reference to length ToSendMax++; } void ReaderTransmitIClass(uint8_t* frame, int len) { int wait = 0, samples = 0; // This is tied to other size changes CodeIClassCommand(frame, len); // Select the card TransmitIClassCommand(ToSend, ToSendMax, &samples, &wait); if (trigger) LED_A_ON(); // Store reader command in buffer //uint8_t par[len/8]; //GetParity(frame, len, par); //LogTrace(frame, len, rsamples, rsamples, par, true); LogTrace(frame, len, rsamples, rsamples, NULL, true); } //----------------------------------------------------------------------------- // Wait a certain time for tag response // If a response is captured return TRUE // If it takes too long return FALSE //----------------------------------------------------------------------------- static int GetIClassAnswer(uint8_t* receivedResponse, int maxLen, int *samples, int *elapsed) { // buffer needs to be 512 bytes // maxLen is not used... int c = 0; bool skip = false; // Setup UART/DEMOD to receive DemodInit(receivedResponse); if (elapsed) *elapsed = 0; // Set FPGA mode to "reader listen mode", no modulation (listen // only, since we are receiving, not transmitting). FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_LISTEN); // clear RXRDY: uint8_t b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; while (!BUTTON_PRESS()) { WDT_HIT(); if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_TXRDY)) { AT91C_BASE_SSC->SSC_THR = 0x00; // To make use of exact timing of next command from reader!! if (elapsed) (*elapsed)++; } if (AT91C_BASE_SSC->SSC_SR & (AT91C_SSC_RXRDY)) { if (c >= timeout) return false; c++; b = (uint8_t)AT91C_BASE_SSC->SSC_RHR; skip = !skip; if (skip) continue; if (ManchesterDecoding(b & 0x0f)) { if (samples) *samples = c << 3; return true; } } } return false; } int ReaderReceiveIClass(uint8_t* receivedAnswer) { int samples = 0; if (!GetIClassAnswer(receivedAnswer, 0, &samples, NULL)) return false; rsamples += samples; LogTrace(receivedAnswer, Demod.len, rsamples, rsamples, NULL, false); if (samples == 0) return false; return Demod.len; } void setupIclassReader() { LEDsoff(); // Start from off (no field generated) // Signal field is off with the appropriate LED FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); FpgaDownloadAndGo(FPGA_BITSTREAM_HF); FpgaSetupSsc(); SetAdcMuxFor(GPIO_MUXSEL_HIPKD); // Reset trace buffer clear_trace(); set_tracing(true); // Now give it time to spin up. // Signal field is on with the appropriate LED FpgaWriteConfWord(FPGA_MAJOR_MODE_HF_ISO14443A | FPGA_HF_ISO14443A_READER_MOD); SpinDelay(200); // Start the timer StartCountSspClk(); LED_A_ON(); } bool sendCmdGetResponseWithRetries(uint8_t* command, size_t cmdsize, uint8_t* resp, uint8_t expected_size, uint8_t retries) { while (retries-- > 0) { ReaderTransmitIClass(command, cmdsize); if (expected_size == ReaderReceiveIClass(resp)) return true; } return false; } /** * @brief Talks to an iclass tag, sends the commands to get CSN and CC. * @param card_data where the CSN and CC are stored for return * @return 0 = fail * 1 = Got CSN * 2 = Got CSN and CC */ uint8_t handshakeIclassTag_ext(uint8_t *card_data, bool use_credit_key) { // act_all... static uint8_t act_all[] = { ICLASS_CMD_ACTALL }; static uint8_t identify[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x00, 0x73, 0x33 }; static uint8_t select[] = { ICLASS_CMD_SELECT, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; static uint8_t readcheck_cc[] = { ICLASS_CMD_READCHECK_KD, 0x02 }; if (use_credit_key) readcheck_cc[0] = ICLASS_CMD_READCHECK_KC; uint8_t resp[ICLASS_BUFFER_SIZE] = {0}; uint8_t read_status = 0; // Send act_all ReaderTransmitIClass(act_all, 1); // Card present? if (!ReaderReceiveIClass(resp)) return read_status;//Fail //Send Identify ReaderTransmitIClass(identify, 1); //We expect a 10-byte response here, 8 byte anticollision-CSN and 2 byte CRC uint8_t len = ReaderReceiveIClass(resp); if (len != 10) return read_status;//Fail //Copy the Anti-collision CSN to our select-packet memcpy(&select[1], resp, 8); //Select the card ReaderTransmitIClass(select, sizeof(select)); //We expect a 10-byte response here, 8 byte CSN and 2 byte CRC len = ReaderReceiveIClass(resp); if (len != 10) return read_status;//Fail //Success - level 1, we got CSN //Save CSN in response data memcpy(card_data, resp, 8); //Flag that we got to at least stage 1, read CSN read_status = 1; // Card selected, now read e-purse (cc) (only 8 bytes no CRC) ReaderTransmitIClass(readcheck_cc, sizeof(readcheck_cc)); if (ReaderReceiveIClass(resp) == 8) { //Save CC (e-purse) in response data memcpy(card_data+8, resp, 8); read_status++; } return read_status; } uint8_t handshakeIclassTag(uint8_t *card_data){ return handshakeIclassTag_ext(card_data, false); } // Reader iClass Anticollission // turn off afterwards void ReaderIClass(uint8_t arg0) { uint8_t card_data[6 * 8] = {0}; memset(card_data, 0xFF, sizeof(card_data)); uint8_t last_csn[8] = {0,0,0,0,0,0,0,0}; uint8_t resp[ICLASS_BUFFER_SIZE]; memset(resp, 0xFF, sizeof(resp)); //Read conf block CRC(0x01) => 0xfa 0x22 uint8_t readConf[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x01, 0xfa, 0x22}; //Read App Issuer Area block CRC(0x05) => 0xde 0x64 uint8_t readAA[] = { ICLASS_CMD_READ_OR_IDENTIFY, 0x05, 0xde, 0x64}; int read_status= 0; uint8_t result_status = 0; // flag to read until one tag is found successfully bool abort_after_read = arg0 & FLAG_ICLASS_READER_ONLY_ONCE; // flag to only try 5 times to find one tag then return bool try_once = arg0 & FLAG_ICLASS_READER_ONE_TRY; // if neither abort_after_read nor try_once then continue reading until button pressed. bool use_credit_key = arg0 & FLAG_ICLASS_READER_CEDITKEY; // test flags for what blocks to be sure to read uint8_t flagReadConfig = arg0 & FLAG_ICLASS_READER_CONF; uint8_t flagReadCC = arg0 & FLAG_ICLASS_READER_CC; uint8_t flagReadAA = arg0 & FLAG_ICLASS_READER_AA; setupIclassReader(); uint16_t tryCnt = 0; bool userCancelled = BUTTON_PRESS() || usb_poll_validate_length(); while (!userCancelled) { WDT_HIT(); // if only looking for one card try 2 times if we missed it the first time if (try_once && tryCnt > 2) break; tryCnt++; read_status = handshakeIclassTag_ext(card_data, use_credit_key); if (read_status == 0) continue; if (read_status == 1) result_status = FLAG_ICLASS_READER_CSN; if (read_status == 2) result_status = FLAG_ICLASS_READER_CSN | FLAG_ICLASS_READER_CC; // handshakeIclass returns CSN|CC, but the actual block // layout is CSN|CONFIG|CC, so here we reorder the data, // moving CC forward 8 bytes memcpy(card_data+16, card_data+8, 8); //Read block 1, config if (flagReadConfig) { if (sendCmdGetResponseWithRetries(readConf, sizeof(readConf), resp, 10, 10)) { result_status |= FLAG_ICLASS_READER_CONF; memcpy(card_data+8, resp, 8); } else { DbpString("Failed to dump config block"); } } //Read block 5, AA if (flagReadAA) { if (sendCmdGetResponseWithRetries(readAA, sizeof(readAA), resp, 10, 10)) { result_status |= FLAG_ICLASS_READER_AA; memcpy(card_data+(8*5), resp, 8); } else { //DbpString("Failed to dump AA block"); } } // 0 : CSN // 1 : Configuration // 2 : e-purse // (3,4 write-only, kc and kd) // 5 Application issuer area // //Then we can 'ship' back the 8 * 5 bytes of data, // with 0xFF:s in block 3 and 4. LED_B_ON(); //Send back to client, but don't bother if we already sent this - // only useful if looping in arm (not try_once && not abort_after_read) if (memcmp(last_csn, card_data, 8) != 0) { // If caller requires that we get Conf, CC, AA, continue until we got it if ( (result_status ^ FLAG_ICLASS_READER_CSN ^ flagReadConfig ^ flagReadCC ^ flagReadAA) == 0) { cmd_send(CMD_ACK, result_status, 0, 0, card_data, sizeof(card_data) ); if (abort_after_read) goto out; //Save that we already sent this.... memcpy(last_csn, card_data, 8); } } LED_B_OFF(); userCancelled = BUTTON_PRESS() || usb_poll_validate_length(); } if (userCancelled) cmd_send(CMD_ACK, 0xFF, 0, 0, card_data, 0); else cmd_send(CMD_ACK, 0, 0, 0, card_data, 0); out: switch_off(); } // turn off afterwards void ReaderIClass_Replay(uint8_t arg0, uint8_t *MAC) { uint8_t card_data[USB_CMD_DATA_SIZE] = {0}; uint16_t block_crc_LUT[255] = {0}; //Generate a lookup table for block crc for (int block = 0; block < 255; block++){ char bl = block; block_crc_LUT[block] = iclass_crc16(&bl ,1); } //Dbprintf("Lookup table: %02x %02x %02x" ,block_crc_LUT[0],block_crc_LUT[1],block_crc_LUT[2]); uint8_t check[] = { 0x05, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t read[] = { 0x0c, 0x00, 0x00, 0x00 }; uint16_t crc = 0; uint8_t cardsize = 0; uint8_t mem = 0; static struct memory_t{ int k16; int book; int k2; int lockauth; int keyaccess; } memory; uint8_t resp[ICLASS_BUFFER_SIZE]; setupIclassReader(); while (!BUTTON_PRESS()) { WDT_HIT(); uint8_t read_status = handshakeIclassTag(card_data); if (read_status < 2) continue; //for now replay captured auth (as cc not updated) memcpy(check+5, MAC, 4); if (!sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 5)) { DbpString("Error: Authentication Fail!"); continue; } //first get configuration block (block 1) crc = block_crc_LUT[1]; read[1] = 1; read[2] = crc >> 8; read[3] = crc & 0xff; if (!sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10)) { DbpString("Dump config (block 1) failed"); continue; } mem = resp[5]; memory.k16 = (mem & 0x80); memory.book = (mem & 0x20); memory.k2 = (mem & 0x8); memory.lockauth = (mem & 0x2); memory.keyaccess = (mem & 0x1); cardsize = memory.k16 ? 255 : 32; WDT_HIT(); //Set card_data to all zeroes, we'll fill it with data memset(card_data, 0x0, USB_CMD_DATA_SIZE); uint8_t failedRead = 0; uint32_t stored_data_length = 0; //then loop around remaining blocks for (int block=0; block < cardsize; block++) { read[1] = block; crc = block_crc_LUT[block]; read[2] = crc >> 8; read[3] = crc & 0xff; if (sendCmdGetResponseWithRetries(read, sizeof(read), resp, 10, 10)) { Dbprintf(" %02x: %02x %02x %02x %02x %02x %02x %02x %02x", block, resp[0], resp[1], resp[2], resp[3], resp[4], resp[5], resp[6], resp[7] ); //Fill up the buffer memcpy(card_data + stored_data_length, resp, 8); stored_data_length += 8; if (stored_data_length + 8 > USB_CMD_DATA_SIZE) { //Time to send this off and start afresh cmd_send(CMD_ACK, stored_data_length,//data length failedRead,//Failed blocks? 0,//Not used ATM card_data, stored_data_length ); //reset stored_data_length = 0; failedRead = 0; } } else { failedRead = 1; stored_data_length += 8;//Otherwise, data becomes misaligned Dbprintf("Failed to dump block %d", block); } } //Send off any remaining data if (stored_data_length > 0) { cmd_send(CMD_ACK, stored_data_length,//data length failedRead,//Failed blocks? 0,//Not used ATM card_data, stored_data_length ); } //If we got here, let's break break; } //Signal end of transmission cmd_send(CMD_ACK, 0,//data length 0,//Failed blocks? 0,//Not used ATM card_data, 0 ); switch_off(); } // turn off afterwards void iClass_ReadCheck(uint8_t blockNo, uint8_t keyType) { uint8_t readcheck[] = { keyType, blockNo }; uint8_t resp[] = {0,0,0,0,0,0,0,0}; size_t isOK = 0; isOK = sendCmdGetResponseWithRetries(readcheck, sizeof(readcheck), resp, sizeof(resp), 6); cmd_send(CMD_ACK,isOK,0,0,0,0); switch_off(); } // used with function select_and_auth (cmdhficlass.c) // which needs to authenticate before doing more things like read/write void iClass_Authentication(uint8_t *MAC) { uint8_t check[] = { ICLASS_CMD_CHECK, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t resp[ICLASS_BUFFER_SIZE]; memcpy(check+5, MAC, 4); bool isOK; isOK = sendCmdGetResponseWithRetries(check, sizeof(check), resp, 4, 6); cmd_send(CMD_ACK,isOK,0,0,0,0); } bool iClass_ReadBlock(uint8_t blockNo, uint8_t *readdata) { uint8_t readcmd[] = {ICLASS_CMD_READ_OR_IDENTIFY, blockNo, 0x00, 0x00}; //0x88, 0x00 // can i use 0C? char bl = blockNo; uint16_t crc = iclass_crc16(&bl, 1); readcmd[2] = crc >> 8; readcmd[3] = crc & 0xff; uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0}; bool isOK = sendCmdGetResponseWithRetries(readcmd, sizeof(readcmd), resp, 10, 10); memcpy(readdata, resp, sizeof(resp)); return isOK; } // turn off afterwards void iClass_ReadBlk(uint8_t blockno) { uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0}; bool isOK = false; isOK = iClass_ReadBlock(blockno, readblockdata); cmd_send(CMD_ACK, isOK, 0, 0, readblockdata, 8); switch_off(); } // turn off afterwards void iClass_Dump(uint8_t blockno, uint8_t numblks) { uint8_t readblockdata[] = {0,0,0,0,0,0,0,0,0,0}; bool isOK = false; uint8_t blkCnt = 0; BigBuf_free(); uint8_t *dataout = BigBuf_malloc(255*8); if (dataout == NULL){ DbpString("out of memory"); OnError(1); return; } // fill mem with 0xFF memset(dataout, 0xFF, 255*8); for (;blkCnt < numblks; blkCnt++) { isOK = iClass_ReadBlock(blockno + blkCnt, readblockdata); // 0xBB is the internal debug separator byte.. if (!isOK || (readblockdata[0] == 0xBB || readblockdata[7] == 0xBB || readblockdata[2] == 0xBB)) { //try again isOK = iClass_ReadBlock(blockno + blkCnt, readblockdata); if (!isOK) { Dbprintf("Block %02X failed to read", blkCnt + blockno); break; } } memcpy(dataout + (blkCnt * 8), readblockdata, 8); } //return pointer to dump memory in arg3 cmd_send(CMD_ACK, isOK, blkCnt, BigBuf_max_traceLen(), 0, 0); switch_off(); BigBuf_free(); } bool iClass_WriteBlock_ext(uint8_t blockNo, uint8_t *data) { uint8_t write[] = { ICLASS_CMD_UPDATE, blockNo, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; memcpy(write+2, data, 12); // data + mac char *wrCmd = (char *)(write+1); uint16_t crc = iclass_crc16(wrCmd, 13); write[14] = crc >> 8; write[15] = crc & 0xff; uint8_t resp[] = {0,0,0,0,0,0,0,0,0,0}; bool isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10); if (isOK) { //if reader responded correctly //Dbprintf("WriteResp: %02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",resp[0],resp[1],resp[2],resp[3],resp[4],resp[5],resp[6],resp[7],resp[8],resp[9]); //if response is not equal to write values if (memcmp(write + 2, resp, 8)) { //if not programming key areas (note key blocks don't get programmed with actual key data it is xor data) if (blockNo != 3 && blockNo != 4) { //error try again isOK = sendCmdGetResponseWithRetries(write, sizeof(write), resp, sizeof(resp), 10); } } } return isOK; } // turn off afterwards void iClass_WriteBlock(uint8_t blockNo, uint8_t *data) { bool isOK = iClass_WriteBlock_ext(blockNo, data); if (isOK) Dbprintf("Write block [%02x] successful", blockNo); else Dbprintf("Write block [%02x] failed", blockNo); cmd_send(CMD_ACK,isOK,0,0,0,0); switch_off(); } // turn off afterwards void iClass_Clone(uint8_t startblock, uint8_t endblock, uint8_t *data) { int i, written = 0; int total_block = (endblock - startblock) + 1; for (i = 0; i < total_block; i++){ // block number if (iClass_WriteBlock_ext(i + startblock, data + ( i*12 ) )){ Dbprintf("Write block [%02x] successful", i + startblock); written++; } else { if (iClass_WriteBlock_ext(i + startblock, data + ( i*12 ) )){ Dbprintf("Write block [%02x] successful", i + startblock); written++; } else { Dbprintf("Write block [%02x] failed", i + startblock); } } } if (written == total_block) DbpString("Clone complete"); else DbpString("Clone incomplete"); cmd_send(CMD_ACK,1,0,0,0,0); switch_off(); }