//----------------------------------------------------------------------------- // Copyright (C) 2010 iZsh // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Low frequency EM4x commands //----------------------------------------------------------------------------- #include #include #include #include "proxmark3.h" #include "ui.h" #include "graph.h" #include "cmdmain.h" #include "cmdparser.h" #include "cmddata.h" #include "cmdlf.h" #include "cmdlfem4x.h" #include "util.h" #include "data.h" #define LF_TRACE_BUFF_SIZE 12000 #define LF_BITSSTREAM_LEN 1000 char *global_em410xId; static int CmdHelp(const char *Cmd); /* Read the ID of an EM410x tag. * Format: * 1111 1111 1 <-- standard non-repeatable header * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID * .... * CCCC <-- each bit here is parity for the 10 bits above in corresponding column * 0 <-- stop bit, end of tag */ int CmdEM410xRead(const char *Cmd) { int i, j, clock, header, rows, bit, hithigh, hitlow, first, bit2idx, high, low; int parity[4]; char id[11]; char id2[11]; int retested = 0; uint8_t BitStream[MAX_GRAPH_TRACE_LEN]; high = low = 0; /* Detect high and lows and clock */ for (i = 0; i < GraphTraceLen; i++) { if (GraphBuffer[i] > high) high = GraphBuffer[i]; else if (GraphBuffer[i] < low) low = GraphBuffer[i]; } /* get clock */ clock = GetClock(Cmd, high, 0); /* parity for our 4 columns */ parity[0] = parity[1] = parity[2] = parity[3] = 0; header = rows = 0; /* manchester demodulate */ bit = bit2idx = 0; for (i = 0; i < (int)(GraphTraceLen / clock); i++) { hithigh = 0; hitlow = 0; first = 1; /* Find out if we hit both high and low peaks */ for (j = 0; j < clock; j++) { if (GraphBuffer[(i * clock) + j] == high) hithigh = 1; else if (GraphBuffer[(i * clock) + j] == low) hitlow = 1; /* it doesn't count if it's the first part of our read because it's really just trailing from the last sequence */ if (first && (hithigh || hitlow)) hithigh = hitlow = 0; else first = 0; if (hithigh && hitlow) break; } /* If we didn't hit both high and low peaks, we had a bit transition */ if (!hithigh || !hitlow) bit ^= 1; BitStream[bit2idx++] = bit; } retest: /* We go till 5 before the graph ends because we'll get that far below */ for (i = 0; i < bit2idx - 5; i++) { /* Step 2: We have our header but need our tag ID */ if (header == 9 && rows < 10) { /* Confirm parity is correct */ if ((BitStream[i] ^ BitStream[i+1] ^ BitStream[i+2] ^ BitStream[i+3]) == BitStream[i+4]) { /* Read another byte! */ sprintf(id+rows, "%x", (8 * BitStream[i]) + (4 * BitStream[i+1]) + (2 * BitStream[i+2]) + (1 * BitStream[i+3])); sprintf(id2+rows, "%x", (8 * BitStream[i+3]) + (4 * BitStream[i+2]) + (2 * BitStream[i+1]) + (1 * BitStream[i])); rows++; /* Keep parity info */ parity[0] ^= BitStream[i]; parity[1] ^= BitStream[i+1]; parity[2] ^= BitStream[i+2]; parity[3] ^= BitStream[i+3]; /* Move 4 bits ahead */ i += 4; } /* Damn, something wrong! reset */ else { PrintAndLog("Thought we had a valid tag but failed at word %d (i=%d)", rows + 1, i); /* Start back rows * 5 + 9 header bits, -1 to not start at same place */ i -= 9 + (5 * rows) -5; rows = header = 0; } } /* Step 3: Got our 40 bits! confirm column parity */ else if (rows == 10) { /* We need to make sure our 4 bits of parity are correct and we have a stop bit */ if (BitStream[i] == parity[0] && BitStream[i+1] == parity[1] && BitStream[i+2] == parity[2] && BitStream[i+3] == parity[3] && BitStream[i+4] == 0) { /* Sweet! */ PrintAndLog("EM410x Tag ID: %s", id); PrintAndLog("Unique Tag ID: %s", id2); global_em410xId = id; /* Stop any loops */ return 1; } /* Crap! Incorrect parity or no stop bit, start all over */ else { rows = header = 0; /* Go back 59 bits (9 header bits + 10 rows at 4+1 parity) */ i -= 59; } } /* Step 1: get our header */ else if (header < 9) { /* Need 9 consecutive 1's */ if (BitStream[i] == 1) header++; /* We don't have a header, not enough consecutive 1 bits */ else header = 0; } } /* if we've already retested after flipping bits, return */ if (retested++){ return 0; } /* if this didn't work, try flipping bits */ for (i = 0; i < bit2idx; i++) BitStream[i] ^= 1; goto retest; } /* emulate an EM410X tag * Format: * 1111 1111 1 <-- standard non-repeatable header * XXXX [row parity bit] <-- 10 rows of 5 bits for our 40 bit tag ID * .... * CCCC <-- each bit here is parity for the 10 bits above in corresponding column * 0 <-- stop bit, end of tag */ int CmdEM410xSim(const char *Cmd) { int i, n, j, h, binary[4], parity[4]; char cmdp = param_getchar(Cmd, 0); uint8_t uid[5] = {0x00}; if (cmdp == 'h' || cmdp == 'H') { PrintAndLog("Usage: lf em4x sim "); PrintAndLog(""); PrintAndLog(" sample: lf em4x sim 0F0368568B"); return 0; } if (param_gethex(Cmd, 0, uid, 10)) { PrintAndLog("UID must include 10 HEX symbols"); return 0; } PrintAndLog("Starting simulating UID %02X%02X%02X%02X%02X", uid[0],uid[1],uid[2],uid[3],uid[4]); PrintAndLog("Press pm3-button to about simulation"); /* clock is 64 in EM410x tags */ int clock = 64; /* clear our graph */ ClearGraph(0); /* write it out a few times */ //for (h = 0; h < 4; h++) //{ /* write 9 start bits */ for (i = 0; i < 9; i++) AppendGraph(0, clock, 1); /* for each hex char */ parity[0] = parity[1] = parity[2] = parity[3] = 0; for (i = 0; i < 10; i++) { /* read each hex char */ sscanf(&Cmd[i], "%1x", &n); for (j = 3; j >= 0; j--, n/= 2) binary[j] = n % 2; /* append each bit */ AppendGraph(0, clock, binary[0]); AppendGraph(0, clock, binary[1]); AppendGraph(0, clock, binary[2]); AppendGraph(0, clock, binary[3]); /* append parity bit */ AppendGraph(0, clock, binary[0] ^ binary[1] ^ binary[2] ^ binary[3]); /* keep track of column parity */ parity[0] ^= binary[0]; parity[1] ^= binary[1]; parity[2] ^= binary[2]; parity[3] ^= binary[3]; } /* parity columns */ AppendGraph(0, clock, parity[0]); AppendGraph(0, clock, parity[1]); AppendGraph(0, clock, parity[2]); AppendGraph(0, clock, parity[3]); /* stop bit */ AppendGraph(0, clock, 0); //} /* modulate that biatch */ //CmdManchesterMod("64"); /* booyah! */ RepaintGraphWindow(); CmdLFSim(""); return 0; } /* Function is equivalent of lf read + data samples + em410xread * looped until an EM410x tag is detected * * Why is CmdSamples("16000")? * TBD: Auto-grow sample size based on detected sample rate. IE: If the * rate gets lower, then grow the number of samples * Changed by martin, 4000 x 4 = 16000, * see http://www.proxmark.org/forum/viewtopic.php?pid=7235#p7235 */ int CmdEM410xWatch(const char *Cmd) { int read_h = (*Cmd == 'h'); do { if (ukbhit()) { printf("\naborted via keyboard!\n"); break; } CmdLFRead(read_h ? "h" : ""); CmdSamples("6000"); } while ( !CmdEM410xRead("") ); return 0; } int CmdEM410xWatchnSpoof(const char *Cmd) { CmdEM410xWatch(Cmd); PrintAndLog("# Replaying : %s",global_em410xId); CmdEM410xSim(global_em410xId); return 0; } /* Read the transmitted data of an EM4x50 tag * Format: * * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity * XXXXXXXX [row parity bit (even)] <- 8 bits plus parity * CCCCCCCC <- column parity bits * 0 <- stop bit * LW <- Listen Window * * This pattern repeats for every block of data being transmitted. * Transmission starts with two Listen Windows (LW - a modulated * pattern of 320 cycles each (32/32/128/64/64)). * * Note that this data may or may not be the UID. It is whatever data * is stored in the blocks defined in the control word First and Last * Word Read values. UID is stored in block 32. */ int CmdEM4x50Read(const char *Cmd) { int i, j, startblock, skip, block, start, end, low, high; bool complete= false; int tmpbuff[MAX_GRAPH_TRACE_LEN / 64]; char tmp[6]; high= low= 0; memset(tmpbuff, 0, MAX_GRAPH_TRACE_LEN / 64); /* first get high and low values */ for (i = 0; i < GraphTraceLen; i++) { if (GraphBuffer[i] > high) high = GraphBuffer[i]; else if (GraphBuffer[i] < low) low = GraphBuffer[i]; } /* populate a buffer with pulse lengths */ i= 0; j= 0; while (i < GraphTraceLen) { // measure from low to low while ((GraphBuffer[i] > low) && (i low) && (i=(MAX_GRAPH_TRACE_LEN/64)) { break; } tmpbuff[j++]= i - start; } /* look for data start - should be 2 pairs of LW (pulses of 192,128) */ start= -1; skip= 0; for (i= 0; i < j - 4 ; ++i) { skip += tmpbuff[i]; if (tmpbuff[i] >= 190 && tmpbuff[i] <= 194) if (tmpbuff[i+1] >= 126 && tmpbuff[i+1] <= 130) if (tmpbuff[i+2] >= 190 && tmpbuff[i+2] <= 194) if (tmpbuff[i+3] >= 126 && tmpbuff[i+3] <= 130) { start= i + 3; break; } } startblock= i + 3; /* skip over the remainder of the LW */ skip += tmpbuff[i+1]+tmpbuff[i+2]; while (skip < MAX_GRAPH_TRACE_LEN && GraphBuffer[skip] > low) ++skip; skip += 8; /* now do it again to find the end */ end= start; for (i += 3; i < j - 4 ; ++i) { end += tmpbuff[i]; if (tmpbuff[i] >= 190 && tmpbuff[i] <= 194) if (tmpbuff[i+1] >= 126 && tmpbuff[i+1] <= 130) if (tmpbuff[i+2] >= 190 && tmpbuff[i+2] <= 194) if (tmpbuff[i+3] >= 126 && tmpbuff[i+3] <= 130) { complete= true; break; } } if (start >= 0) PrintAndLog("Found data at sample: %i",skip); else { PrintAndLog("No data found!"); PrintAndLog("Try again with more samples."); return 0; } if (!complete) { PrintAndLog("*** Warning!"); PrintAndLog("Partial data - no end found!"); PrintAndLog("Try again with more samples."); } /* get rid of leading crap */ sprintf(tmp,"%i",skip); CmdLtrim(tmp); /* now work through remaining buffer printing out data blocks */ block= 0; i= startblock; while (block < 6) { PrintAndLog("Block %i:", block); // mandemod routine needs to be split so we can call it for data // just print for now for debugging CmdManchesterDemod("i 64"); skip= 0; /* look for LW before start of next block */ for ( ; i < j - 4 ; ++i) { skip += tmpbuff[i]; if (tmpbuff[i] >= 190 && tmpbuff[i] <= 194) if (tmpbuff[i+1] >= 126 && tmpbuff[i+1] <= 130) break; } while (GraphBuffer[skip] > low) ++skip; skip += 8; sprintf(tmp,"%i",skip); CmdLtrim(tmp); start += skip; block++; } return 0; } int CmdEM410xWrite(const char *Cmd) { uint64_t id = 0xFFFFFFFFFFFFFFFF; // invalid id value int card = 0xFF; // invalid card value unsigned int clock = 0; // invalid clock value sscanf(Cmd, "%" PRIx64 " %d %d", &id, &card, &clock); // Check ID if (id == 0xFFFFFFFFFFFFFFFF) { PrintAndLog("Error! ID is required.\n"); return 0; } if (id >= 0x10000000000) { PrintAndLog("Error! Given EM410x ID is longer than 40 bits.\n"); return 0; } // Check Card if (card == 0xFF) { PrintAndLog("Error! Card type required.\n"); return 0; } if (card < 0) { PrintAndLog("Error! Bad card type selected.\n"); return 0; } // Check Clock if (card == 1) { // Default: 64 if (clock == 0) clock = 64; // Allowed clock rates: 16, 32 and 64 if ((clock != 16) && (clock != 32) && (clock != 64)) { PrintAndLog("Error! Clock rate %d not valid. Supported clock rates are 16, 32 and 64.\n", clock); return 0; } } else if (clock != 0) { PrintAndLog("Error! Clock rate is only supported on T55x7 tags.\n"); return 0; } if (card == 1) { PrintAndLog("Writing %s tag with UID 0x%010" PRIx64 " (clock rate: %d)", "T55x7", id, clock); // NOTE: We really should pass the clock in as a separate argument, but to // provide for backwards-compatibility for older firmware, and to avoid // having to add another argument to CMD_EM410X_WRITE_TAG, we just store // the clock rate in bits 8-15 of the card value card = (card & 0xFF) | (((uint64_t)clock << 8) & 0xFF00); } else if (card == 0) PrintAndLog("Writing %s tag with UID 0x%010" PRIx64, "T5555", id, clock); else { PrintAndLog("Error! Bad card type selected.\n"); return 0; } UsbCommand c = {CMD_EM410X_WRITE_TAG, {card, (uint32_t)(id >> 32), (uint32_t)id}}; SendCommand(&c); return 0; } int CmdReadWord(const char *Cmd) { int Word = -1; //default to invalid word UsbCommand c; sscanf(Cmd, "%d", &Word); if ( (Word > 15) | (Word < 0) ) { PrintAndLog("Word must be between 0 and 15"); return 1; } PrintAndLog("Reading word %d", Word); c.cmd = CMD_EM4X_READ_WORD; c.d.asBytes[0] = 0x0; //Normal mode c.arg[0] = 0; c.arg[1] = Word; c.arg[2] = 0; SendCommand(&c); WaitForResponse(CMD_ACK, NULL); uint8_t data[LF_TRACE_BUFF_SIZE] = {0x00}; GetFromBigBuf(data,LF_TRACE_BUFF_SIZE,3560); //3560 -- should be offset.. WaitForResponseTimeout(CMD_ACK,NULL, 1500); for (int j = 0; j < LF_TRACE_BUFF_SIZE; j++) { GraphBuffer[j] = ((int)data[j]); } GraphTraceLen = LF_TRACE_BUFF_SIZE; uint8_t bits[LF_BITSSTREAM_LEN] = {0x00}; uint8_t * bitstream = bits; manchester_decode(GraphBuffer, LF_TRACE_BUFF_SIZE, bitstream,LF_BITSSTREAM_LEN); RepaintGraphWindow(); return 0; } int CmdReadWordPWD(const char *Cmd) { int Word = -1; //default to invalid word int Password = 0xFFFFFFFF; //default to blank password UsbCommand c; sscanf(Cmd, "%d %x", &Word, &Password); if ( (Word > 15) | (Word < 0) ) { PrintAndLog("Word must be between 0 and 15"); return 1; } PrintAndLog("Reading word %d with password %08X", Word, Password); c.cmd = CMD_EM4X_READ_WORD; c.d.asBytes[0] = 0x1; //Password mode c.arg[0] = 0; c.arg[1] = Word; c.arg[2] = Password; SendCommand(&c); WaitForResponse(CMD_ACK, NULL); uint8_t data[LF_TRACE_BUFF_SIZE] = {0x00}; GetFromBigBuf(data,LF_TRACE_BUFF_SIZE,3560); //3560 -- should be offset.. WaitForResponseTimeout(CMD_ACK,NULL, 1500); for (int j = 0; j < LF_TRACE_BUFF_SIZE; j++) { GraphBuffer[j] = ((int)data[j]); } GraphTraceLen = LF_TRACE_BUFF_SIZE; uint8_t bits[LF_BITSSTREAM_LEN] = {0x00}; uint8_t * bitstream = bits; manchester_decode(GraphBuffer, LF_TRACE_BUFF_SIZE, bitstream, LF_BITSSTREAM_LEN); RepaintGraphWindow(); return 0; } int CmdWriteWord(const char *Cmd) { int Word = 16; //default to invalid block int Data = 0xFFFFFFFF; //default to blank data UsbCommand c; sscanf(Cmd, "%x %d", &Data, &Word); if (Word > 15) { PrintAndLog("Word must be between 0 and 15"); return 1; } PrintAndLog("Writing word %d with data %08X", Word, Data); c.cmd = CMD_EM4X_WRITE_WORD; c.d.asBytes[0] = 0x0; //Normal mode c.arg[0] = Data; c.arg[1] = Word; c.arg[2] = 0; SendCommand(&c); return 0; } int CmdWriteWordPWD(const char *Cmd) { int Word = 16; //default to invalid word int Data = 0xFFFFFFFF; //default to blank data int Password = 0xFFFFFFFF; //default to blank password UsbCommand c; sscanf(Cmd, "%x %d %x", &Data, &Word, &Password); if (Word > 15) { PrintAndLog("Word must be between 0 and 15"); return 1; } PrintAndLog("Writing word %d with data %08X and password %08X", Word, Data, Password); c.cmd = CMD_EM4X_WRITE_WORD; c.d.asBytes[0] = 0x1; //Password mode c.arg[0] = Data; c.arg[1] = Word; c.arg[2] = Password; SendCommand(&c); return 0; } static command_t CommandTable[] = { {"help", CmdHelp, 1, "This help"}, {"410xread", CmdEM410xRead, 1, "[clock rate] -- Extract ID from EM410x tag"}, {"410xsim", CmdEM410xSim, 0, " -- Simulate EM410x tag"}, {"replay", MWRem4xReplay, 0, "Watches for tag and simulates manchester encoded em4x tag"}, {"410xwatch", CmdEM410xWatch, 0, "['h'] -- Watches for EM410x 125/134 kHz tags (option 'h' for 134)"}, {"410xspoof", CmdEM410xWatchnSpoof, 0, "['h'] --- Watches for EM410x 125/134 kHz tags, and replays them. (option 'h' for 134)" }, {"410xwrite", CmdEM410xWrite, 1, " <'0' T5555> <'1' T55x7> [clock rate] -- Write EM410x UID to T5555(Q5) or T55x7 tag, optionally setting clock rate"}, {"4x50read", CmdEM4x50Read, 1, "Extract data from EM4x50 tag"}, {"rd", CmdReadWord, 1, " -- Read EM4xxx word data"}, {"rdpwd", CmdReadWordPWD, 1, " -- Read EM4xxx word data in password mode "}, {"wr", CmdWriteWord, 1, " -- Write EM4xxx word data"}, {"wrpwd", CmdWriteWordPWD, 1, " -- Write EM4xxx word data in password mode"}, {NULL, NULL, 0, NULL} }; //Confirms the parity of a bitstream as well as obtaining the data (TagID) from within the appropriate memory space. //Arguments: // Pointer to a string containing the desired bitsream // Pointer to a string that will receive the decoded tag ID // Length of the bitsream pointed at in the first argument, char* _strBitStream //Retuns: //1 Parity confirmed //0 Parity not confirmed int ConfirmEm410xTagParity( char* _strBitStream, char* pID, int LengthOfBitstream ) { int i = 0; int rows = 0; int Parity[4] = {0x00}; char ID[11] = {0x00}; int k = 0; int BitStream[70] = {0x00}; int counter = 0; //prepare variables for ( i = 0; i <= LengthOfBitstream; i++) { if (_strBitStream[i] == '1') { k =1; memcpy(&BitStream[i], &k,4); } else if (_strBitStream[i] == '0') { k = 0; memcpy(&BitStream[i], &k,4); } } while ( counter < 2 ) { //set/reset variables and counters memset(ID,0x00,sizeof(ID)); memset(Parity,0x00,sizeof(Parity)); rows = 0; for ( i = 9; i <= LengthOfBitstream; i++) { if ( rows < 10 ) { if ((BitStream[i] ^ BitStream[i+1] ^ BitStream[i+2] ^ BitStream[i+3]) == BitStream[i+4]) { sprintf(ID+rows, "%x", (8 * BitStream[i]) + (4 * BitStream[i+1]) + (2 * BitStream[i+2]) + (1 * BitStream[i+3])); rows++; /* Keep parity info and move four bits ahead*/ Parity[0] ^= BitStream[i]; Parity[1] ^= BitStream[i+1]; Parity[2] ^= BitStream[i+2]; Parity[3] ^= BitStream[i+3]; i += 4; } } if ( rows == 10 ) { if ( BitStream[i] == Parity[0] && BitStream[i+1] == Parity[1] && BitStream[i+2] == Parity[2] && BitStream[i+3] == Parity[3] && BitStream[i+4] == 0) { memcpy(pID,ID,strlen(ID)); return 1; } } } printf("[PARITY ->]Failed. Flipping Bits, and rechecking parity for bitstream:\n[PARITY ->]"); for (k = 0; k < LengthOfBitstream; k++) { BitStream[k] ^= 1; printf("%i", BitStream[k]); } puts(" "); counter++; } return 0; } //Reads and demodulates an em410x RFID tag. It further allows slight modification to the decoded bitstream //Once a suitable bitstream has been identified, and if needed, modified, it is replayed. Allowing emulation of the //"stolen" rfid tag. //No meaningful returns or arguments. int MWRem4xReplay(const char* Cmd) { // //header traces // static char ArrayTraceZero[] = { '0','0','0','0','0','0','0','0','0' }; // static char ArrayTraceOne[] = { '1','1','1','1','1','1','1','1','1' }; // //local string variables // char strClockRate[10] = {0x00}; // char strAnswer[4] = {0x00}; // char strTempBufferMini[2] = {0x00}; // //our outbound bit-stream // char strSimulateBitStream[65] = {0x00}; // //integers // int iClockRate = 0; // int needle = 0; // int j = 0; // int iFirstHeaderOffset = 0x00000000; // int numManchesterDemodBits=0; // //boolean values // bool bInverted = false; // //pointers to strings. memory will be allocated. // char* pstrInvertBitStream = 0x00000000; // char* pTempBuffer = 0x00000000; // char* pID = 0x00000000; // char* strBitStreamBuffer = 0x00000000; // puts("###################################"); // puts("#### Em4x Replay ##"); // puts("#### R.A.M. June 2013 ##"); // puts("###################################"); // //initialize // CmdLFRead(""); // //Collect ourselves 10,000 samples // CmdSamples("10000"); // puts("[->]preforming ASK demodulation\n"); // //demodulate ask // Cmdaskdemod("0"); // iClockRate = DetectClock(0); // sprintf(strClockRate, "%i\n",iClockRate); // printf("[->]Detected ClockRate: %s\n", strClockRate); // //If detected clock rate is something completely unreasonable, dont go ahead // if ( iClockRate < 0xFFFE ) // { // pTempBuffer = (char*)malloc(MAX_GRAPH_TRACE_LEN); // if (pTempBuffer == 0x00000000) // return 0; // memset(pTempBuffer,0x00,MAX_GRAPH_TRACE_LEN); // //Preform manchester de-modulation and display in a single line. // numManchesterDemodBits = CmdManchesterDemod( strClockRate ); // //note: numManchesterDemodBits is set above in CmdManchesterDemod() // if ( numManchesterDemodBits == 0 ) // return 0; // strBitStreamBuffer = malloc(numManchesterDemodBits+1); // if ( strBitStreamBuffer == 0x00000000 ) // return 0; // memset(strBitStreamBuffer, 0x00, (numManchesterDemodBits+1)); // //fill strBitStreamBuffer with demodulated, string formatted bits. // for ( j = 0; j <= numManchesterDemodBits; j++ ) // { // sprintf(strTempBufferMini, "%i",BitStream[j]); // strcat(strBitStreamBuffer,strTempBufferMini); // } // printf("[->]Demodulated Bitstream: \n%s\n", strBitStreamBuffer); // //Reset counter and select most probable bit stream // j = 0; // while ( j < numManchesterDemodBits ) // { // memset(strSimulateBitStream,0x00,64); // //search for header of nine (9) 0's : 000000000 or nine (9) 1's : 1111 1111 1 // if ( ( strncmp(strBitStreamBuffer+j, ArrayTraceZero, sizeof(ArrayTraceZero)) == 0 ) || // ( strncmp(strBitStreamBuffer+j, ArrayTraceOne, sizeof(ArrayTraceOne)) == 0 ) ) // { // iFirstHeaderOffset = j; // memcpy(strSimulateBitStream, strBitStreamBuffer+j,64); // printf("[->]Offset of Header"); // if ( strncmp(strBitStreamBuffer+iFirstHeaderOffset, "0", 1) == 0 ) // printf("'%s'", ArrayTraceZero ); // else // printf("'%s'", ArrayTraceOne ); // printf(": %i\nHighlighted string : %s\n",iFirstHeaderOffset,strSimulateBitStream); // //allow us to escape loop or choose another frame // puts("[<-]Are we happy with this sample? [Y]es/[N]o"); // gets(strAnswer); // if ( ( strncmp(strAnswer,"y",1) == 0 ) || ( strncmp(strAnswer,"Y",1) == 0 ) ) // { // j = numManchesterDemodBits+1; // break; // } // } // j++; // } // } // else return 0; // //Do we want the buffer inverted? // memset(strAnswer, 0x00, sizeof(strAnswer)); // printf("[<-]Do you wish to invert the highlighted bitstream? [Y]es/[N]o\n"); // gets(strAnswer); // if ( ( strncmp("y", strAnswer,1) == 0 ) || ( strncmp("Y", strAnswer, 1 ) == 0 ) ) // { // //allocate heap memory // pstrInvertBitStream = (char*)malloc(numManchesterDemodBits); // if ( pstrInvertBitStream != 0x00000000 ) // { // memset(pstrInvertBitStream,0x00,numManchesterDemodBits); // bInverted = true; // //Invert Bitstream // for ( needle = 0; needle <= numManchesterDemodBits; needle++ ) // { // if (strSimulateBitStream[needle] == '0') // strcat(pstrInvertBitStream,"1"); // else if (strSimulateBitStream[needle] == '1') // strcat(pstrInvertBitStream,"0"); // } // printf("[->]Inverted bitstream: %s\n", pstrInvertBitStream); // } // } // //Confirm parity of selected string // pID = (char*)malloc(11); // if (pID != 0x00000000) // { // memset(pID, 0x00, 11); // if (ConfirmEm410xTagParity(strSimulateBitStream,pID, 64) == 1) // { // printf("[->]Parity confirmed for selected bitstream!\n"); // printf("[->]Tag ID was detected as: [hex]:%s\n",pID ); // } // else // printf("[->]Parity check failed for the selected bitstream!\n"); // } // //Spoof // memset(strAnswer, 0x00, sizeof(strAnswer)); // printf("[<-]Do you wish to continue with the EM4x simulation? [Y]es/[N]o\n"); // gets(strAnswer); // if ( ( strncmp(strAnswer,"y",1) == 0 ) || ( strncmp(strAnswer,"Y",1) == 0 ) ) // { // strcat(pTempBuffer, strClockRate); // strcat(pTempBuffer, " "); // if (bInverted == true) // strcat(pTempBuffer,pstrInvertBitStream); // if (bInverted == false) // strcat(pTempBuffer,strSimulateBitStream); // //inform the user // puts("[->]Starting simulation now: \n"); // //Simulate tag with prepared buffer. // CmdLFSimManchester(pTempBuffer); // } // else if ( ( strcmp("n", strAnswer) == 0 ) || ( strcmp("N", strAnswer ) == 0 ) ) // printf("[->]Exiting procedure now...\n"); // else // printf("[->]Erroneous selection\nExiting procedure now....\n"); // //Clean up -- Exit function // //clear memory, then release pointer. // if ( pstrInvertBitStream != 0x00000000 ) // { // memset(pstrInvertBitStream,0x00,numManchesterDemodBits); // free(pstrInvertBitStream); // } // if ( pTempBuffer != 0x00000000 ) // { // memset(pTempBuffer,0x00,MAX_GRAPH_TRACE_LEN); // free(pTempBuffer); // } // if ( pID != 0x00000000 ) // { // memset(pID,0x00,11); // free(pID); // } // if ( strBitStreamBuffer != 0x00000000 ) // { // memset(strBitStreamBuffer,0x00,numManchesterDemodBits); // free(strBitStreamBuffer); // } return 0; } int CmdLFEM4X(const char *Cmd) { CmdsParse(CommandTable, Cmd); return 0; } int CmdHelp(const char *Cmd) { CmdsHelp(CommandTable); return 0; }