//----------------------------------------------------------------------------- // Frederik Möllers - August 2012 // // This code is licensed to you under the terms of the GNU GPL, version 2 or, // at your option, any later version. See the LICENSE.txt file for the text of // the license. //----------------------------------------------------------------------------- // Routines to support the German electronic "Personalausweis" (ID card) // Note that the functions which do not implement USB commands do NOT initialize // the card (with iso14443a_select_card etc.). If You want to use these // functions, You need to do the setup before calling them! //----------------------------------------------------------------------------- #include "epa.h" #include "cmd.h" #include "fpgaloader.h" #include "iso14443a.h" #include "iso14443b.h" #include "string.h" #include "util.h" #include "dbprint.h" #include "commonutil.h" #include "ticks.h" // Protocol and Parameter Selection Request for ISO 14443 type A cards // use regular (1x) speed in both directions // CRC is already included static const uint8_t pps[] = {0xD0, 0x11, 0x00, 0x52, 0xA6}; // APDUs for communication with German Identification Card // General Authenticate (request encrypted nonce) WITHOUT the Le at the end static const uint8_t apdu_general_authenticate_pace_get_nonce[] = { 0x10, // CLA 0x86, // INS 0x00, // P1 0x00, // P2 0x02, // Lc 0x7C, // Type: Dynamic Authentication Data 0x00, // Length: 0 bytes }; // MSE: Set AT (only CLA, INS, P1 and P2) static const uint8_t apdu_mse_set_at_start[] = { 0x00, // CLA 0x22, // INS 0xC1, // P1 0xA4, // P2 }; // SELECT BINARY with the ID for EF.CardAccess static const uint8_t apdu_select_binary_cardaccess[] = { 0x00, // CLA 0xA4, // INS 0x02, // P1 0x0C, // P2 0x02, // Lc 0x01, // ID 0x1C // ID }; // READ BINARY static const uint8_t apdu_read_binary[] = { 0x00, // CLA 0xB0, // INS 0x00, // P1 0x00, // P2 0x38 // Le }; // the leading bytes of a PACE OID static const uint8_t oid_pace_start[] = { 0x04, // itu-t, identified-organization 0x00, // etsi 0x7F, // reserved 0x00, // etsi-identified-organization 0x07, // bsi-de 0x02, // protocols 0x02, // smartcard 0x04 // id-PACE }; // APDUs for replaying: // MSE: Set AT (initiate PACE) static uint8_t apdu_replay_mse_set_at_pace[41]; // General Authenticate (Get Nonce) static uint8_t apdu_replay_general_authenticate_pace_get_nonce[8]; // General Authenticate (Map Nonce) static uint8_t apdu_replay_general_authenticate_pace_map_nonce[75]; // General Authenticate (Mutual Authenticate) static uint8_t apdu_replay_general_authenticate_pace_mutual_authenticate[75]; // General Authenticate (Perform Key Agreement) static uint8_t apdu_replay_general_authenticate_pace_perform_key_agreement[18]; // pointers to the APDUs (for iterations) static struct { uint8_t len; uint8_t *data; } const apdus_replay[] = { {sizeof(apdu_replay_mse_set_at_pace), apdu_replay_mse_set_at_pace}, {sizeof(apdu_replay_general_authenticate_pace_get_nonce), apdu_replay_general_authenticate_pace_get_nonce}, {sizeof(apdu_replay_general_authenticate_pace_map_nonce), apdu_replay_general_authenticate_pace_map_nonce}, {sizeof(apdu_replay_general_authenticate_pace_mutual_authenticate), apdu_replay_general_authenticate_pace_mutual_authenticate}, {sizeof(apdu_replay_general_authenticate_pace_perform_key_agreement), apdu_replay_general_authenticate_pace_perform_key_agreement} }; // lengths of the replay APDUs static uint8_t apdu_lengths_replay[5]; // type of card (ISO 14443 A or B) static char iso_type = 0; //----------------------------------------------------------------------------- // Wrapper for sending APDUs to type A and B cards //----------------------------------------------------------------------------- static int EPA_APDU(uint8_t *apdu, size_t length, uint8_t *response, uint16_t respmaxlen) { switch (iso_type) { case 'a': return iso14_apdu(apdu, (uint16_t) length, false, response, NULL); case 'b': return iso14443b_apdu(apdu, length, false, response, respmaxlen); default: return 0; } } //----------------------------------------------------------------------------- // Closes the communication channel and turns off the field //----------------------------------------------------------------------------- void EPA_Finish(void) { FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); LEDsoff(); iso_type = 0; } //----------------------------------------------------------------------------- // Parses DER encoded data, e.g. from EF.CardAccess and fills out the given // structs. If a pointer is 0, it is ignored. // The function returns 0 on success and if an error occurred, it returns the // offset where it occurred. // // TODO: This function can access memory outside of the given data if the DER // encoding is broken // TODO: Support skipping elements with a length > 0x7F // TODO: Support OIDs with a length > 7F // TODO: Support elements with long tags (tag is longer than 1 byte) // TODO: Support proprietary PACE domain parameters //----------------------------------------------------------------------------- size_t EPA_Parse_CardAccess(uint8_t *data, size_t length, pace_version_info_t *pace_info) { size_t index = 0; while (index <= length - 2) { // determine type of element // SET or SEQUENCE if (data[index] == 0x31 || data[index] == 0x30) { // enter the set (skip tag + length) index += 2; // check for extended length if ((data[index - 1] & 0x80) != 0) { index += (data[index - 1] & 0x7F); } } // OID else if (data[index] == 0x06) { // is this a PACE OID? if (data[index + 1] == 0x0A // length matches && memcmp(data + index + 2, oid_pace_start, sizeof(oid_pace_start)) == 0 // content matches && pace_info != NULL) { // first, clear the pace_info struct memset(pace_info, 0, sizeof(pace_version_info_t)); memcpy(pace_info->oid, data + index + 2, sizeof(pace_info->oid)); // a PACE OID is followed by the version index += data[index + 1] + 2; if (data[index] == 02 && data[index + 1] == 01) { pace_info->version = data[index + 2]; index += 3; } else { return index; } // after that there might(!) be the parameter ID if (data[index] == 02 && data[index + 1] == 01) { pace_info->parameter_id = data[index + 2]; index += 3; } } else { // skip this OID index += 2 + data[index + 1]; } } // if the length is 0, something is wrong // TODO: This needs to be extended to support long tags else if (data[index + 1] == 0) { return index; } else { // skip this part // TODO: This needs to be extended to support long tags // TODO: This needs to be extended to support unknown elements with // a size > 0x7F index += 2 + data[index + 1]; } } // TODO: We should check whether we reached the end in error, but for that // we need a better parser (e.g. with states like IN_SET or IN_PACE_INFO) return 0; } //----------------------------------------------------------------------------- // Read the file EF.CardAccess and save it into a buffer (at most max_length bytes) // Returns -1 on failure or the length of the data on success // TODO: for the moment this sends only 1 APDU regardless of the requested length //----------------------------------------------------------------------------- int EPA_Read_CardAccess(uint8_t *buffer, size_t max_length) { // the response APDU of the card // since the card doesn't always care for the expected length we send it, // we reserve 262 bytes here just to be safe (256-byte APDU + SW + ISO frame) uint8_t response_apdu[262]; // select the file EF.CardAccess int rapdu_length = EPA_APDU((uint8_t *)apdu_select_binary_cardaccess, sizeof(apdu_select_binary_cardaccess), response_apdu, sizeof(response_apdu) ); if (rapdu_length < 6 || response_apdu[rapdu_length - 4] != 0x90 || response_apdu[rapdu_length - 3] != 0x00) { DbpString("Failed to select EF.CardAccess!"); return -1; } // read the file rapdu_length = EPA_APDU((uint8_t *)apdu_read_binary, sizeof(apdu_read_binary), response_apdu, sizeof(response_apdu) ); if (rapdu_length <= 6 || response_apdu[rapdu_length - 4] != 0x90 || response_apdu[rapdu_length - 3] != 0x00) { Dbprintf("Failed to read EF.CardAccess!"); return -1; } // copy the content into the buffer // length of data available: apdu_length - 4 (ISO frame) - 2 (SW) size_t len = rapdu_length - 6; len = len < max_length ? len : max_length; memcpy(buffer, response_apdu + 2, len); return len; } //----------------------------------------------------------------------------- // Abort helper function for EPA_PACE_Collect_Nonce // sets relevant data in ack, sends the response //----------------------------------------------------------------------------- static void EPA_PACE_Collect_Nonce_Abort(uint32_t cmd, uint8_t step, int func_return) { // power down the field EPA_Finish(); // send the USB packet reply_mix(cmd, step, func_return, 0, 0, 0); } //----------------------------------------------------------------------------- // Acquire one encrypted PACE nonce //----------------------------------------------------------------------------- void EPA_PACE_Collect_Nonce(PacketCommandNG *c) { /* * ack layout: * arg: * 1. element * step where the error occurred or 0 if no error occurred * 2. element * return code of the last executed function * d: * Encrypted nonce */ // set up communication int func_return = EPA_Setup(); if (func_return != 0) { EPA_PACE_Collect_Nonce_Abort(CMD_HF_EPA_COLLECT_NONCE, 1, func_return); return; } // read the CardAccess file // this array will hold the CardAccess file uint8_t card_access[256] = {0}; int cardlen = EPA_Read_CardAccess(card_access, 256); // the response has to be at least this big to hold the OID if (cardlen < 18) { EPA_PACE_Collect_Nonce_Abort(CMD_HF_EPA_COLLECT_NONCE, 2, cardlen); return; } // this will hold the PACE info of the card pace_version_info_t pace_version_info; // search for the PACE OID func_return = EPA_Parse_CardAccess(card_access, cardlen, &pace_version_info); if (func_return != 0 || pace_version_info.version == 0) { EPA_PACE_Collect_Nonce_Abort(CMD_HF_EPA_COLLECT_NONCE, 3, func_return); return; } // initiate the PACE protocol // use the CAN for the password since that doesn't change func_return = EPA_PACE_MSE_Set_AT(pace_version_info, 2); // check if the command succeeded if (func_return != 0) { EPA_PACE_Collect_Nonce_Abort(CMD_HF_EPA_COLLECT_NONCE, 4, func_return); return; } // now get the nonce uint8_t nonce[256] = {0}; struct p { uint32_t m; } PACKED; struct p *packet = (struct p *)c->data.asBytes; func_return = EPA_PACE_Get_Nonce(packet->m, nonce); // check if the command succeeded if (func_return < 0) { EPA_PACE_Collect_Nonce_Abort(CMD_HF_EPA_COLLECT_NONCE, 5, func_return); return; } EPA_Finish(); // save received information reply_mix(CMD_HF_EPA_COLLECT_NONCE, 0, func_return, 0, nonce, func_return); } //----------------------------------------------------------------------------- // Performs the "Get Nonce" step of the PACE protocol and saves the returned // nonce. The caller is responsible for allocating enough memory to store the // nonce. Note that the returned size might be less or than or greater than the // requested size! // Returns the actual size of the nonce on success or a less-than-zero error // code on failure. //----------------------------------------------------------------------------- int EPA_PACE_Get_Nonce(uint8_t requested_length, uint8_t *nonce) { // build the APDU uint8_t apdu[sizeof(apdu_general_authenticate_pace_get_nonce) + 1]; // copy the constant part memcpy(apdu, apdu_general_authenticate_pace_get_nonce, sizeof(apdu_general_authenticate_pace_get_nonce)); // append Le (requested length + 2 due to tag/length taking 2 bytes) in RAPDU apdu[sizeof(apdu_general_authenticate_pace_get_nonce)] = requested_length + 4; uint8_t response_apdu[262]; int send_return = EPA_APDU(apdu, sizeof(apdu), response_apdu, sizeof(response_apdu)); if (send_return < 6 || response_apdu[send_return - 4] != 0x90 || response_apdu[send_return - 3] != 0x00) { return -1; } // if there is no nonce in the RAPDU, return here if (send_return < 10) { // no error return 0; } // get the actual length of the nonce uint8_t nonce_length = response_apdu[5]; if (nonce_length > send_return - 10) { nonce_length = send_return - 10; } // copy the nonce memcpy(nonce, response_apdu + 6, nonce_length); return nonce_length; } //----------------------------------------------------------------------------- // Initializes the PACE protocol by performing the "MSE: Set AT" step // Returns 0 on success or a non-zero error code on failure //----------------------------------------------------------------------------- int EPA_PACE_MSE_Set_AT(pace_version_info_t pace_version_info, uint8_t password) { // create the MSE: Set AT APDU uint8_t apdu[23]; // the minimum length (will be increased as more data is added) size_t apdu_length = 20; // copy the constant part memcpy(apdu, apdu_mse_set_at_start, sizeof(apdu_mse_set_at_start)); // type: OID apdu[5] = 0x80; // length of the OID apdu[6] = sizeof(pace_version_info.oid); // copy the OID memcpy(apdu + 7, pace_version_info.oid, sizeof(pace_version_info.oid)); // type: password apdu[17] = 0x83; // length: 1 apdu[18] = 1; // password apdu[19] = password; // if standardized domain parameters are used, copy the ID if (pace_version_info.parameter_id != 0) { apdu_length += 3; // type: domain parameter apdu[20] = 0x84; // length: 1 apdu[21] = 1; // copy the parameter ID apdu[22] = pace_version_info.parameter_id; } // now set Lc to the actual length apdu[4] = apdu_length - 5; // send it uint8_t response_apdu[6]; int send_return = EPA_APDU(apdu, apdu_length, response_apdu, sizeof(response_apdu)); Dbprintf("send ret %d bytes", send_return); // Dbhexdump(send_return, response_apdu, false); // check if the command succeeded if (send_return != 6) // && response_apdu[send_return - 4] != 0x90 // || response_apdu[send_return - 3] != 0x00) { return 1; } return 0; } //----------------------------------------------------------------------------- // Perform the PACE protocol by replaying given APDUs //----------------------------------------------------------------------------- void EPA_PACE_Replay(PacketCommandNG *c) { uint32_t timings[ARRAYLEN(apdu_lengths_replay)] = {0}; // if an APDU has been passed, save it if (c->oldarg[0] != 0) { // make sure it's not too big if (c->oldarg[2] > apdus_replay[c->oldarg[0] - 1].len) { reply_mix(CMD_ACK, 1, 0, 0, NULL, 0); } memcpy(apdus_replay[c->oldarg[0] - 1].data + c->oldarg[1], c->data.asBytes, c->oldarg[2]); // save/update APDU length if (c->oldarg[1] == 0) { apdu_lengths_replay[c->oldarg[0] - 1] = c->oldarg[2]; } else { apdu_lengths_replay[c->oldarg[0] - 1] += c->oldarg[2]; } reply_mix(CMD_ACK, 0, 0, 0, NULL, 0); return; } // return value of a function int func_return; // set up communication func_return = EPA_Setup(); if (func_return != 0) { EPA_Finish(); reply_mix(CMD_ACK, 2, func_return, 0, NULL, 0); return; } // increase the timeout (at least some cards really do need this!)///////////// // iso14a_set_timeout(0x0003FFFF); // response APDU uint8_t response_apdu[300] = {0}; // now replay the data and measure the timings for (int i = 0; i < ARRAYLEN(apdu_lengths_replay); i++) { StartCountUS(); func_return = EPA_APDU(apdus_replay[i].data, apdu_lengths_replay[i], response_apdu, sizeof(response_apdu) ); timings[i] = GetCountUS(); // every step but the last one should succeed if (i < ARRAYLEN(apdu_lengths_replay) - 1 && (func_return < 6 || response_apdu[func_return - 4] != 0x90 || response_apdu[func_return - 3] != 0x00)) { EPA_Finish(); reply_mix(CMD_ACK, 3 + i, func_return, 0, timings, 20); return; } } EPA_Finish(); reply_mix(CMD_ACK, 0, 0, 0, timings, 20); return; } //----------------------------------------------------------------------------- // Set up a communication channel (Card Select, PPS) // Returns 0 on success or a non-zero error code on failure //----------------------------------------------------------------------------- int EPA_Setup(void) { // first, look for type A cards // power up the field iso14443a_setup(FPGA_HF_ISO14443A_READER_MOD); iso14a_card_select_t card_a_info; int return_code = iso14443a_select_card(NULL, &card_a_info, NULL, true, 0, false); if (return_code == 1) { uint8_t pps_response[3]; uint8_t pps_response_par[1]; // send the PPS request ReaderTransmit((uint8_t *)pps, sizeof(pps), NULL); return_code = ReaderReceive(pps_response, pps_response_par); if (return_code != 3 || pps_response[0] != 0xD0) { return return_code == 0 ? 2 : return_code; } Dbprintf("ISO 14443 Type A"); iso_type = 'a'; return 0; } FpgaWriteConfWord(FPGA_MAJOR_MODE_OFF); // if we're here, there is no type A card, so we look for type B // power up the field iso14443b_setup(); iso14b_card_select_t card_b_info; return_code = iso14443b_select_card(&card_b_info); if (return_code == 0) { Dbprintf("ISO 14443 Type B"); iso_type = 'b'; return 0; } Dbprintf("No card found"); return 1; }